Properties

Label 702.2.bc.a.557.12
Level $702$
Weight $2$
Character 702.557
Analytic conductor $5.605$
Analytic rank $0$
Dimension $56$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(305,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([2, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.305");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bc (of order \(12\), degree \(4\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(56\)
Relative dimension: \(14\) over \(\Q(\zeta_{12})\)
Twist minimal: no (minimal twist has level 234)
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

Embedding invariants

Embedding label 557.12
Character \(\chi\) \(=\) 702.557
Dual form 702.2.bc.a.305.12

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.258819 + 0.965926i) q^{2} +(-0.866025 + 0.500000i) q^{4} +(0.179629 + 0.670386i) q^{5} +(3.24572 - 3.24572i) q^{7} +(-0.707107 - 0.707107i) q^{8} +(-0.601052 + 0.347017i) q^{10} +(2.17356 - 0.582403i) q^{11} +(-1.78196 - 3.13442i) q^{13} +(3.97518 + 2.29507i) q^{14} +(0.500000 - 0.866025i) q^{16} +(2.32181 - 4.02149i) q^{17} +(-2.81042 + 0.753050i) q^{19} +(-0.490757 - 0.490757i) q^{20} +(1.12512 + 1.94876i) q^{22} -4.74503 q^{23} +(3.91298 - 2.25916i) q^{25} +(2.56642 - 2.53249i) q^{26} +(-1.18802 + 4.43374i) q^{28} +(4.22816 + 2.44113i) q^{29} +(6.51808 - 1.74651i) q^{31} +(0.965926 + 0.258819i) q^{32} +(4.48539 + 1.20186i) q^{34} +(2.75891 + 1.59286i) q^{35} +(3.44953 + 0.924299i) q^{37} +(-1.45478 - 2.51976i) q^{38} +(0.347017 - 0.601052i) q^{40} +(-4.05999 + 4.05999i) q^{41} +5.30657i q^{43} +(-1.59115 + 1.59115i) q^{44} +(-1.22810 - 4.58334i) q^{46} +(-3.12430 + 11.6601i) q^{47} -14.0694i q^{49} +(3.19493 + 3.19493i) q^{50} +(3.11043 + 1.82351i) q^{52} +5.06576i q^{53} +(0.780869 + 1.35250i) q^{55} -4.59014 q^{56} +(-1.26362 + 4.71590i) q^{58} +(1.38984 - 5.18694i) q^{59} +3.12110 q^{61} +(3.37401 + 5.84395i) q^{62} +1.00000i q^{64} +(1.78118 - 1.75764i) q^{65} +(9.25140 + 9.25140i) q^{67} +4.64361i q^{68} +(-0.824524 + 3.07717i) q^{70} +(-4.16970 - 15.5615i) q^{71} +(-5.55110 + 5.55110i) q^{73} +3.57122i q^{74} +(2.05737 - 2.05737i) q^{76} +(5.16444 - 8.94507i) q^{77} +(-1.55400 - 2.69161i) q^{79} +(0.670386 + 0.179629i) q^{80} +(-4.97245 - 2.87085i) q^{82} +(-9.17998 - 2.45977i) q^{83} +(3.11301 + 0.834129i) q^{85} +(-5.12575 + 1.37344i) q^{86} +(-1.94876 - 1.12512i) q^{88} +(-0.648204 + 2.41913i) q^{89} +(-15.9572 - 4.38972i) q^{91} +(4.10931 - 2.37251i) q^{92} -12.0714 q^{94} +(-1.00967 - 1.74880i) q^{95} +(-0.868150 - 0.868150i) q^{97} +(13.5900 - 3.64143i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 56 q - 8 q^{7} + 24 q^{11} + 28 q^{16} - 8 q^{19} - 4 q^{28} - 4 q^{31} + 24 q^{35} - 4 q^{37} - 36 q^{38} + 48 q^{41} + 36 q^{47} + 24 q^{50} + 8 q^{52} + 36 q^{65} + 28 q^{67} + 24 q^{71} + 28 q^{73}+ \cdots - 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/702\mathbb{Z}\right)^\times\).

\(n\) \(379\) \(677\)
\(\chi(n)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.258819 + 0.965926i 0.183013 + 0.683013i
\(3\) 0 0
\(4\) −0.866025 + 0.500000i −0.433013 + 0.250000i
\(5\) 0.179629 + 0.670386i 0.0803327 + 0.299806i 0.994390 0.105780i \(-0.0337341\pi\)
−0.914057 + 0.405586i \(0.867067\pi\)
\(6\) 0 0
\(7\) 3.24572 3.24572i 1.22677 1.22677i 0.261587 0.965180i \(-0.415754\pi\)
0.965180 0.261587i \(-0.0842458\pi\)
\(8\) −0.707107 0.707107i −0.250000 0.250000i
\(9\) 0 0
\(10\) −0.601052 + 0.347017i −0.190069 + 0.109736i
\(11\) 2.17356 0.582403i 0.655352 0.175601i 0.0842044 0.996449i \(-0.473165\pi\)
0.571147 + 0.820848i \(0.306498\pi\)
\(12\) 0 0
\(13\) −1.78196 3.13442i −0.494227 0.869333i
\(14\) 3.97518 + 2.29507i 1.06241 + 0.613383i
\(15\) 0 0
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 2.32181 4.02149i 0.563121 0.975354i −0.434101 0.900864i \(-0.642934\pi\)
0.997222 0.0744895i \(-0.0237327\pi\)
\(18\) 0 0
\(19\) −2.81042 + 0.753050i −0.644755 + 0.172762i −0.566356 0.824160i \(-0.691647\pi\)
−0.0783988 + 0.996922i \(0.524981\pi\)
\(20\) −0.490757 0.490757i −0.109736 0.109736i
\(21\) 0 0
\(22\) 1.12512 + 1.94876i 0.239875 + 0.415476i
\(23\) −4.74503 −0.989407 −0.494703 0.869062i \(-0.664723\pi\)
−0.494703 + 0.869062i \(0.664723\pi\)
\(24\) 0 0
\(25\) 3.91298 2.25916i 0.782595 0.451832i
\(26\) 2.56642 2.53249i 0.503316 0.496662i
\(27\) 0 0
\(28\) −1.18802 + 4.43374i −0.224514 + 0.837897i
\(29\) 4.22816 + 2.44113i 0.785150 + 0.453307i 0.838252 0.545282i \(-0.183578\pi\)
−0.0531023 + 0.998589i \(0.516911\pi\)
\(30\) 0 0
\(31\) 6.51808 1.74651i 1.17068 0.313683i 0.379457 0.925209i \(-0.376111\pi\)
0.791224 + 0.611526i \(0.209444\pi\)
\(32\) 0.965926 + 0.258819i 0.170753 + 0.0457532i
\(33\) 0 0
\(34\) 4.48539 + 1.20186i 0.769237 + 0.206116i
\(35\) 2.75891 + 1.59286i 0.466341 + 0.269242i
\(36\) 0 0
\(37\) 3.44953 + 0.924299i 0.567099 + 0.151954i 0.530966 0.847393i \(-0.321829\pi\)
0.0361333 + 0.999347i \(0.488496\pi\)
\(38\) −1.45478 2.51976i −0.235997 0.408758i
\(39\) 0 0
\(40\) 0.347017 0.601052i 0.0548682 0.0950346i
\(41\) −4.05999 + 4.05999i −0.634064 + 0.634064i −0.949085 0.315021i \(-0.897988\pi\)
0.315021 + 0.949085i \(0.397988\pi\)
\(42\) 0 0
\(43\) 5.30657i 0.809244i 0.914484 + 0.404622i \(0.132597\pi\)
−0.914484 + 0.404622i \(0.867403\pi\)
\(44\) −1.59115 + 1.59115i −0.239875 + 0.239875i
\(45\) 0 0
\(46\) −1.22810 4.58334i −0.181074 0.675777i
\(47\) −3.12430 + 11.6601i −0.455727 + 1.70080i 0.230216 + 0.973140i \(0.426057\pi\)
−0.685943 + 0.727656i \(0.740610\pi\)
\(48\) 0 0
\(49\) 14.0694i 2.00991i
\(50\) 3.19493 + 3.19493i 0.451832 + 0.451832i
\(51\) 0 0
\(52\) 3.11043 + 1.82351i 0.431340 + 0.252876i
\(53\) 5.06576i 0.695835i 0.937525 + 0.347918i \(0.113111\pi\)
−0.937525 + 0.347918i \(0.886889\pi\)
\(54\) 0 0
\(55\) 0.780869 + 1.35250i 0.105292 + 0.182372i
\(56\) −4.59014 −0.613383
\(57\) 0 0
\(58\) −1.26362 + 4.71590i −0.165922 + 0.619228i
\(59\) 1.38984 5.18694i 0.180941 0.675282i −0.814522 0.580133i \(-0.803001\pi\)
0.995463 0.0951492i \(-0.0303328\pi\)
\(60\) 0 0
\(61\) 3.12110 0.399616 0.199808 0.979835i \(-0.435968\pi\)
0.199808 + 0.979835i \(0.435968\pi\)
\(62\) 3.37401 + 5.84395i 0.428499 + 0.742182i
\(63\) 0 0
\(64\) 1.00000i 0.125000i
\(65\) 1.78118 1.75764i 0.220928 0.218008i
\(66\) 0 0
\(67\) 9.25140 + 9.25140i 1.13024 + 1.13024i 0.990137 + 0.140102i \(0.0447429\pi\)
0.140102 + 0.990137i \(0.455257\pi\)
\(68\) 4.64361i 0.563121i
\(69\) 0 0
\(70\) −0.824524 + 3.07717i −0.0985495 + 0.367792i
\(71\) −4.16970 15.5615i −0.494852 1.84681i −0.530857 0.847461i \(-0.678130\pi\)
0.0360054 0.999352i \(-0.488537\pi\)
\(72\) 0 0
\(73\) −5.55110 + 5.55110i −0.649707 + 0.649707i −0.952922 0.303215i \(-0.901940\pi\)
0.303215 + 0.952922i \(0.401940\pi\)
\(74\) 3.57122i 0.415145i
\(75\) 0 0
\(76\) 2.05737 2.05737i 0.235997 0.235997i
\(77\) 5.16444 8.94507i 0.588542 1.01939i
\(78\) 0 0
\(79\) −1.55400 2.69161i −0.174839 0.302829i 0.765267 0.643713i \(-0.222607\pi\)
−0.940105 + 0.340884i \(0.889274\pi\)
\(80\) 0.670386 + 0.179629i 0.0749514 + 0.0200832i
\(81\) 0 0
\(82\) −4.97245 2.87085i −0.549115 0.317032i
\(83\) −9.17998 2.45977i −1.00763 0.269995i −0.282993 0.959122i \(-0.591327\pi\)
−0.724640 + 0.689127i \(0.757994\pi\)
\(84\) 0 0
\(85\) 3.11301 + 0.834129i 0.337654 + 0.0904740i
\(86\) −5.12575 + 1.37344i −0.552724 + 0.148102i
\(87\) 0 0
\(88\) −1.94876 1.12512i −0.207738 0.119938i
\(89\) −0.648204 + 2.41913i −0.0687095 + 0.256427i −0.991733 0.128315i \(-0.959043\pi\)
0.923024 + 0.384743i \(0.125710\pi\)
\(90\) 0 0
\(91\) −15.9572 4.38972i −1.67277 0.460168i
\(92\) 4.10931 2.37251i 0.428426 0.247352i
\(93\) 0 0
\(94\) −12.0714 −1.24507
\(95\) −1.00967 1.74880i −0.103590 0.179423i
\(96\) 0 0
\(97\) −0.868150 0.868150i −0.0881473 0.0881473i 0.661658 0.749806i \(-0.269853\pi\)
−0.749806 + 0.661658i \(0.769853\pi\)
\(98\) 13.5900 3.64143i 1.37280 0.367840i
\(99\) 0 0
\(100\) −2.25916 + 3.91298i −0.225916 + 0.391298i
\(101\) 1.88220 3.26007i 0.187286 0.324389i −0.757058 0.653347i \(-0.773364\pi\)
0.944345 + 0.328958i \(0.106698\pi\)
\(102\) 0 0
\(103\) −13.1567 7.59604i −1.29637 0.748460i −0.316596 0.948561i \(-0.602540\pi\)
−0.979775 + 0.200100i \(0.935873\pi\)
\(104\) −0.956337 + 3.47641i −0.0937766 + 0.340890i
\(105\) 0 0
\(106\) −4.89315 + 1.31111i −0.475264 + 0.127347i
\(107\) −4.73458 + 2.73351i −0.457709 + 0.264259i −0.711081 0.703111i \(-0.751794\pi\)
0.253371 + 0.967369i \(0.418461\pi\)
\(108\) 0 0
\(109\) 5.10130 + 5.10130i 0.488616 + 0.488616i 0.907869 0.419253i \(-0.137708\pi\)
−0.419253 + 0.907869i \(0.637708\pi\)
\(110\) −1.10432 + 1.10432i −0.105292 + 0.105292i
\(111\) 0 0
\(112\) −1.18802 4.43374i −0.112257 0.418949i
\(113\) −0.409538 + 0.236447i −0.0385261 + 0.0222430i −0.519139 0.854690i \(-0.673747\pi\)
0.480613 + 0.876933i \(0.340414\pi\)
\(114\) 0 0
\(115\) −0.852346 3.18100i −0.0794817 0.296630i
\(116\) −4.88226 −0.453307
\(117\) 0 0
\(118\) 5.36992 0.494341
\(119\) −5.51668 20.5885i −0.505714 1.88735i
\(120\) 0 0
\(121\) −5.14113 + 2.96823i −0.467375 + 0.269839i
\(122\) 0.807800 + 3.01475i 0.0731348 + 0.272943i
\(123\) 0 0
\(124\) −4.77157 + 4.77157i −0.428499 + 0.428499i
\(125\) 4.67118 + 4.67118i 0.417803 + 0.417803i
\(126\) 0 0
\(127\) −0.377096 + 0.217716i −0.0334618 + 0.0193192i −0.516638 0.856204i \(-0.672817\pi\)
0.483176 + 0.875523i \(0.339483\pi\)
\(128\) −0.965926 + 0.258819i −0.0853766 + 0.0228766i
\(129\) 0 0
\(130\) 2.15875 + 1.26558i 0.189335 + 0.110999i
\(131\) 9.02321 + 5.20955i 0.788361 + 0.455161i 0.839385 0.543537i \(-0.182915\pi\)
−0.0510241 + 0.998697i \(0.516249\pi\)
\(132\) 0 0
\(133\) −6.67765 + 11.5660i −0.579026 + 1.00290i
\(134\) −6.54173 + 11.3306i −0.565119 + 0.978815i
\(135\) 0 0
\(136\) −4.48539 + 1.20186i −0.384619 + 0.103058i
\(137\) 5.40791 + 5.40791i 0.462029 + 0.462029i 0.899320 0.437291i \(-0.144062\pi\)
−0.437291 + 0.899320i \(0.644062\pi\)
\(138\) 0 0
\(139\) −5.58662 9.67631i −0.473851 0.820734i 0.525701 0.850670i \(-0.323803\pi\)
−0.999552 + 0.0299353i \(0.990470\pi\)
\(140\) −3.18572 −0.269242
\(141\) 0 0
\(142\) 13.9521 8.05524i 1.17083 0.675980i
\(143\) −5.69869 5.77503i −0.476548 0.482932i
\(144\) 0 0
\(145\) −0.876997 + 3.27300i −0.0728307 + 0.271808i
\(146\) −6.79868 3.92522i −0.562663 0.324853i
\(147\) 0 0
\(148\) −3.44953 + 0.924299i −0.283550 + 0.0759769i
\(149\) 7.14709 + 1.91506i 0.585513 + 0.156888i 0.539401 0.842049i \(-0.318651\pi\)
0.0461110 + 0.998936i \(0.485317\pi\)
\(150\) 0 0
\(151\) 13.8415 + 3.70881i 1.12640 + 0.301818i 0.773471 0.633831i \(-0.218519\pi\)
0.352930 + 0.935650i \(0.385185\pi\)
\(152\) 2.51976 + 1.45478i 0.204379 + 0.117998i
\(153\) 0 0
\(154\) 9.97693 + 2.67331i 0.803964 + 0.215421i
\(155\) 2.34168 + 4.05590i 0.188088 + 0.325778i
\(156\) 0 0
\(157\) −2.86104 + 4.95546i −0.228336 + 0.395489i −0.957315 0.289047i \(-0.906662\pi\)
0.728979 + 0.684536i \(0.239995\pi\)
\(158\) 2.19769 2.19769i 0.174839 0.174839i
\(159\) 0 0
\(160\) 0.694035i 0.0548682i
\(161\) −15.4010 + 15.4010i −1.21377 + 1.21377i
\(162\) 0 0
\(163\) −1.44621 5.39731i −0.113276 0.422750i 0.885877 0.463921i \(-0.153558\pi\)
−0.999152 + 0.0411708i \(0.986891\pi\)
\(164\) 1.48606 5.54605i 0.116042 0.433074i
\(165\) 0 0
\(166\) 9.50381i 0.737639i
\(167\) −17.3166 17.3166i −1.34000 1.34000i −0.896054 0.443945i \(-0.853579\pi\)
−0.443945 0.896054i \(-0.646421\pi\)
\(168\) 0 0
\(169\) −6.64924 + 11.1708i −0.511480 + 0.859295i
\(170\) 3.22283i 0.247180i
\(171\) 0 0
\(172\) −2.65328 4.59562i −0.202311 0.350413i
\(173\) 10.5940 0.805445 0.402722 0.915322i \(-0.368064\pi\)
0.402722 + 0.915322i \(0.368064\pi\)
\(174\) 0 0
\(175\) 5.36783 20.0330i 0.405770 1.51435i
\(176\) 0.582403 2.17356i 0.0439002 0.163838i
\(177\) 0 0
\(178\) −2.50447 −0.187718
\(179\) −6.22591 10.7836i −0.465346 0.806003i 0.533871 0.845566i \(-0.320737\pi\)
−0.999217 + 0.0395630i \(0.987403\pi\)
\(180\) 0 0
\(181\) 18.4465i 1.37112i 0.728018 + 0.685558i \(0.240442\pi\)
−0.728018 + 0.685558i \(0.759558\pi\)
\(182\) 0.110118 16.5496i 0.00816251 1.22674i
\(183\) 0 0
\(184\) 3.35524 + 3.35524i 0.247352 + 0.247352i
\(185\) 2.47855i 0.182226i
\(186\) 0 0
\(187\) 2.70445 10.0932i 0.197769 0.738084i
\(188\) −3.12430 11.6601i −0.227863 0.850398i
\(189\) 0 0
\(190\) 1.42789 1.42789i 0.103590 0.103590i
\(191\) 8.51565i 0.616171i 0.951359 + 0.308085i \(0.0996883\pi\)
−0.951359 + 0.308085i \(0.900312\pi\)
\(192\) 0 0
\(193\) −13.3856 + 13.3856i −0.963516 + 0.963516i −0.999358 0.0358411i \(-0.988589\pi\)
0.0358411 + 0.999358i \(0.488589\pi\)
\(194\) 0.613875 1.06326i 0.0440736 0.0763378i
\(195\) 0 0
\(196\) 7.03470 + 12.1845i 0.502478 + 0.870318i
\(197\) −16.8453 4.51369i −1.20018 0.321587i −0.397278 0.917698i \(-0.630045\pi\)
−0.802902 + 0.596111i \(0.796712\pi\)
\(198\) 0 0
\(199\) 20.0170 + 11.5568i 1.41897 + 0.819243i 0.996208 0.0869986i \(-0.0277276\pi\)
0.422761 + 0.906241i \(0.361061\pi\)
\(200\) −4.36436 1.16943i −0.308607 0.0826909i
\(201\) 0 0
\(202\) 3.63614 + 0.974300i 0.255838 + 0.0685515i
\(203\) 21.6467 5.80020i 1.51930 0.407095i
\(204\) 0 0
\(205\) −3.45105 1.99247i −0.241032 0.139160i
\(206\) 3.93200 14.6744i 0.273955 1.02242i
\(207\) 0 0
\(208\) −3.60547 0.0239902i −0.249994 0.00166342i
\(209\) −5.67003 + 3.27359i −0.392204 + 0.226439i
\(210\) 0 0
\(211\) −10.3885 −0.715172 −0.357586 0.933880i \(-0.616400\pi\)
−0.357586 + 0.933880i \(0.616400\pi\)
\(212\) −2.53288 4.38707i −0.173959 0.301306i
\(213\) 0 0
\(214\) −3.86577 3.86577i −0.264259 0.264259i
\(215\) −3.55745 + 0.953215i −0.242616 + 0.0650087i
\(216\) 0 0
\(217\) 15.4872 26.8246i 1.05134 1.82097i
\(218\) −3.60717 + 6.24779i −0.244308 + 0.423154i
\(219\) 0 0
\(220\) −1.35250 0.780869i −0.0911858 0.0526462i
\(221\) −16.7424 0.111401i −1.12622 0.00749365i
\(222\) 0 0
\(223\) −15.3255 + 4.10646i −1.02627 + 0.274989i −0.732414 0.680860i \(-0.761606\pi\)
−0.293859 + 0.955849i \(0.594940\pi\)
\(224\) 3.97518 2.29507i 0.265603 0.153346i
\(225\) 0 0
\(226\) −0.334386 0.334386i −0.0222430 0.0222430i
\(227\) −4.50740 + 4.50740i −0.299167 + 0.299167i −0.840687 0.541521i \(-0.817849\pi\)
0.541521 + 0.840687i \(0.317849\pi\)
\(228\) 0 0
\(229\) −3.31118 12.3575i −0.218809 0.816606i −0.984791 0.173744i \(-0.944414\pi\)
0.765982 0.642862i \(-0.222253\pi\)
\(230\) 2.85201 1.64661i 0.188056 0.108574i
\(231\) 0 0
\(232\) −1.26362 4.71590i −0.0829609 0.309614i
\(233\) 18.2644 1.19654 0.598271 0.801294i \(-0.295855\pi\)
0.598271 + 0.801294i \(0.295855\pi\)
\(234\) 0 0
\(235\) −8.37796 −0.546518
\(236\) 1.38984 + 5.18694i 0.0904707 + 0.337641i
\(237\) 0 0
\(238\) 18.4592 10.6574i 1.19653 0.690818i
\(239\) −5.17656 19.3192i −0.334844 1.24965i −0.904039 0.427451i \(-0.859412\pi\)
0.569195 0.822203i \(-0.307255\pi\)
\(240\) 0 0
\(241\) 10.6459 10.6459i 0.685762 0.685762i −0.275530 0.961292i \(-0.588853\pi\)
0.961292 + 0.275530i \(0.0888534\pi\)
\(242\) −4.19771 4.19771i −0.269839 0.269839i
\(243\) 0 0
\(244\) −2.70295 + 1.56055i −0.173039 + 0.0999040i
\(245\) 9.43192 2.52728i 0.602583 0.161462i
\(246\) 0 0
\(247\) 7.36844 + 7.46715i 0.468843 + 0.475124i
\(248\) −5.84395 3.37401i −0.371091 0.214250i
\(249\) 0 0
\(250\) −3.30302 + 5.72100i −0.208901 + 0.361828i
\(251\) −13.1431 + 22.7645i −0.829586 + 1.43689i 0.0687771 + 0.997632i \(0.478090\pi\)
−0.898363 + 0.439253i \(0.855243\pi\)
\(252\) 0 0
\(253\) −10.3136 + 2.76352i −0.648409 + 0.173741i
\(254\) −0.307897 0.307897i −0.0193192 0.0193192i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.0312500 0.0541266i
\(257\) −13.6658 −0.852450 −0.426225 0.904617i \(-0.640157\pi\)
−0.426225 + 0.904617i \(0.640157\pi\)
\(258\) 0 0
\(259\) 14.1962 8.19619i 0.882110 0.509286i
\(260\) −0.663731 + 2.41275i −0.0411629 + 0.149632i
\(261\) 0 0
\(262\) −2.69666 + 10.0641i −0.166600 + 0.621761i
\(263\) 4.15346 + 2.39800i 0.256113 + 0.147867i 0.622560 0.782572i \(-0.286093\pi\)
−0.366447 + 0.930439i \(0.619426\pi\)
\(264\) 0 0
\(265\) −3.39601 + 0.909959i −0.208615 + 0.0558983i
\(266\) −12.9002 3.45661i −0.790964 0.211938i
\(267\) 0 0
\(268\) −12.6377 3.38625i −0.771967 0.206848i
\(269\) 21.5499 + 12.4418i 1.31392 + 0.758591i 0.982743 0.184978i \(-0.0592214\pi\)
0.331176 + 0.943569i \(0.392555\pi\)
\(270\) 0 0
\(271\) −0.766787 0.205460i −0.0465790 0.0124808i 0.235454 0.971885i \(-0.424342\pi\)
−0.282033 + 0.959405i \(0.591009\pi\)
\(272\) −2.32181 4.02149i −0.140780 0.243838i
\(273\) 0 0
\(274\) −3.82397 + 6.62331i −0.231015 + 0.400129i
\(275\) 7.18933 7.18933i 0.433533 0.433533i
\(276\) 0 0
\(277\) 32.9502i 1.97979i 0.141813 + 0.989893i \(0.454707\pi\)
−0.141813 + 0.989893i \(0.545293\pi\)
\(278\) 7.90068 7.90068i 0.473851 0.473851i
\(279\) 0 0
\(280\) −0.824524 3.07717i −0.0492747 0.183896i
\(281\) 4.70802 17.5706i 0.280857 1.04817i −0.670957 0.741496i \(-0.734117\pi\)
0.951814 0.306676i \(-0.0992168\pi\)
\(282\) 0 0
\(283\) 24.4025i 1.45058i 0.688446 + 0.725288i \(0.258293\pi\)
−0.688446 + 0.725288i \(0.741707\pi\)
\(284\) 11.3918 + 11.3918i 0.675980 + 0.675980i
\(285\) 0 0
\(286\) 4.10332 6.99920i 0.242635 0.413871i
\(287\) 26.3552i 1.55570i
\(288\) 0 0
\(289\) −2.28157 3.95179i −0.134210 0.232458i
\(290\) −3.38846 −0.198977
\(291\) 0 0
\(292\) 2.03184 7.58294i 0.118905 0.443758i
\(293\) 0.941471 3.51362i 0.0550013 0.205268i −0.932957 0.359988i \(-0.882781\pi\)
0.987958 + 0.154720i \(0.0494475\pi\)
\(294\) 0 0
\(295\) 3.72691 0.216989
\(296\) −1.78561 3.09276i −0.103786 0.179763i
\(297\) 0 0
\(298\) 7.39921i 0.428625i
\(299\) 8.45545 + 14.8729i 0.488991 + 0.860124i
\(300\) 0 0
\(301\) 17.2236 + 17.2236i 0.992754 + 0.992754i
\(302\) 14.3297i 0.824583i
\(303\) 0 0
\(304\) −0.753050 + 2.81042i −0.0431904 + 0.161189i
\(305\) 0.560641 + 2.09234i 0.0321022 + 0.119807i
\(306\) 0 0
\(307\) 10.8993 10.8993i 0.622055 0.622055i −0.324001 0.946057i \(-0.605028\pi\)
0.946057 + 0.324001i \(0.105028\pi\)
\(308\) 10.3289i 0.588542i
\(309\) 0 0
\(310\) −3.31163 + 3.31163i −0.188088 + 0.188088i
\(311\) −5.37895 + 9.31661i −0.305012 + 0.528296i −0.977264 0.212026i \(-0.931994\pi\)
0.672252 + 0.740322i \(0.265327\pi\)
\(312\) 0 0
\(313\) 6.34655 + 10.9926i 0.358728 + 0.621336i 0.987749 0.156053i \(-0.0498771\pi\)
−0.629020 + 0.777389i \(0.716544\pi\)
\(314\) −5.52710 1.48098i −0.311912 0.0835766i
\(315\) 0 0
\(316\) 2.69161 + 1.55400i 0.151415 + 0.0874193i
\(317\) 25.1552 + 6.74033i 1.41286 + 0.378574i 0.882945 0.469477i \(-0.155557\pi\)
0.529914 + 0.848051i \(0.322224\pi\)
\(318\) 0 0
\(319\) 10.6119 + 2.84344i 0.594151 + 0.159202i
\(320\) −0.670386 + 0.179629i −0.0374757 + 0.0100416i
\(321\) 0 0
\(322\) −18.8623 10.8902i −1.05116 0.606886i
\(323\) −3.49687 + 13.0505i −0.194571 + 0.726150i
\(324\) 0 0
\(325\) −14.0539 8.23920i −0.779572 0.457029i
\(326\) 4.83910 2.79386i 0.268013 0.154737i
\(327\) 0 0
\(328\) 5.74169 0.317032
\(329\) 27.7047 + 47.9859i 1.52741 + 2.64555i
\(330\) 0 0
\(331\) −14.3286 14.3286i −0.787571 0.787571i 0.193525 0.981095i \(-0.438008\pi\)
−0.981095 + 0.193525i \(0.938008\pi\)
\(332\) 9.17998 2.45977i 0.503817 0.134997i
\(333\) 0 0
\(334\) 12.2447 21.2084i 0.670000 1.16047i
\(335\) −4.54019 + 7.86383i −0.248057 + 0.429647i
\(336\) 0 0
\(337\) 6.82932 + 3.94291i 0.372017 + 0.214784i 0.674339 0.738422i \(-0.264429\pi\)
−0.302322 + 0.953206i \(0.597762\pi\)
\(338\) −12.5112 3.53145i −0.680517 0.192085i
\(339\) 0 0
\(340\) −3.11301 + 0.834129i −0.168827 + 0.0452370i
\(341\) 13.1502 7.59229i 0.712125 0.411146i
\(342\) 0 0
\(343\) −22.9453 22.9453i −1.23893 1.23893i
\(344\) 3.75231 3.75231i 0.202311 0.202311i
\(345\) 0 0
\(346\) 2.74192 + 10.2330i 0.147407 + 0.550129i
\(347\) 14.7186 8.49778i 0.790135 0.456185i −0.0498748 0.998755i \(-0.515882\pi\)
0.840010 + 0.542571i \(0.182549\pi\)
\(348\) 0 0
\(349\) −3.76269 14.0426i −0.201412 0.751681i −0.990513 0.137418i \(-0.956120\pi\)
0.789101 0.614264i \(-0.210547\pi\)
\(350\) 20.7397 1.10858
\(351\) 0 0
\(352\) 2.25023 0.119938
\(353\) −2.20358 8.22389i −0.117285 0.437713i 0.882163 0.470945i \(-0.156087\pi\)
−0.999448 + 0.0332313i \(0.989420\pi\)
\(354\) 0 0
\(355\) 9.68322 5.59061i 0.513932 0.296719i
\(356\) −0.648204 2.41913i −0.0343548 0.128214i
\(357\) 0 0
\(358\) 8.80476 8.80476i 0.465346 0.465346i
\(359\) 2.80645 + 2.80645i 0.148119 + 0.148119i 0.777277 0.629158i \(-0.216600\pi\)
−0.629158 + 0.777277i \(0.716600\pi\)
\(360\) 0 0
\(361\) −9.12309 + 5.26722i −0.480163 + 0.277222i
\(362\) −17.8179 + 4.77430i −0.936489 + 0.250932i
\(363\) 0 0
\(364\) 16.0142 4.17699i 0.839373 0.218934i
\(365\) −4.71852 2.72424i −0.246979 0.142593i
\(366\) 0 0
\(367\) 12.1791 21.0948i 0.635742 1.10114i −0.350615 0.936520i \(-0.614027\pi\)
0.986357 0.164618i \(-0.0526392\pi\)
\(368\) −2.37251 + 4.10931i −0.123676 + 0.214213i
\(369\) 0 0
\(370\) −2.39409 + 0.641495i −0.124463 + 0.0333497i
\(371\) 16.4420 + 16.4420i 0.853628 + 0.853628i
\(372\) 0 0
\(373\) 4.62903 + 8.01772i 0.239682 + 0.415142i 0.960623 0.277855i \(-0.0896234\pi\)
−0.720941 + 0.692997i \(0.756290\pi\)
\(374\) 10.4492 0.540315
\(375\) 0 0
\(376\) 10.4541 6.03569i 0.539130 0.311267i
\(377\) 0.117126 17.6029i 0.00603231 0.906593i
\(378\) 0 0
\(379\) −3.58050 + 13.3626i −0.183918 + 0.686391i 0.810942 + 0.585127i \(0.198955\pi\)
−0.994860 + 0.101264i \(0.967711\pi\)
\(380\) 1.74880 + 1.00967i 0.0897114 + 0.0517949i
\(381\) 0 0
\(382\) −8.22549 + 2.20401i −0.420853 + 0.112767i
\(383\) −17.2004 4.60883i −0.878898 0.235500i −0.208967 0.977923i \(-0.567010\pi\)
−0.669932 + 0.742423i \(0.733677\pi\)
\(384\) 0 0
\(385\) 6.92433 + 1.85537i 0.352897 + 0.0945584i
\(386\) −16.3939 9.46505i −0.834430 0.481758i
\(387\) 0 0
\(388\) 1.18591 + 0.317765i 0.0602057 + 0.0161321i
\(389\) 7.46970 + 12.9379i 0.378729 + 0.655978i 0.990878 0.134765i \(-0.0430279\pi\)
−0.612149 + 0.790743i \(0.709695\pi\)
\(390\) 0 0
\(391\) −11.0170 + 19.0821i −0.557155 + 0.965021i
\(392\) −9.94856 + 9.94856i −0.502478 + 0.502478i
\(393\) 0 0
\(394\) 17.4396i 0.878593i
\(395\) 1.52527 1.52527i 0.0767447 0.0767447i
\(396\) 0 0
\(397\) 0.691339 + 2.58011i 0.0346973 + 0.129492i 0.981102 0.193491i \(-0.0619810\pi\)
−0.946405 + 0.322983i \(0.895314\pi\)
\(398\) −5.98226 + 22.3261i −0.299864 + 1.11911i
\(399\) 0 0
\(400\) 4.51832i 0.225916i
\(401\) 0.0475983 + 0.0475983i 0.00237694 + 0.00237694i 0.708294 0.705917i \(-0.249465\pi\)
−0.705917 + 0.708294i \(0.749465\pi\)
\(402\) 0 0
\(403\) −17.0893 17.3182i −0.851277 0.862682i
\(404\) 3.76440i 0.187286i
\(405\) 0 0
\(406\) 11.2051 + 19.4079i 0.556101 + 0.963196i
\(407\) 8.03606 0.398333
\(408\) 0 0
\(409\) −5.28660 + 19.7298i −0.261405 + 0.975578i 0.703009 + 0.711181i \(0.251840\pi\)
−0.964414 + 0.264397i \(0.914827\pi\)
\(410\) 1.03138 3.84915i 0.0509361 0.190096i
\(411\) 0 0
\(412\) 15.1921 0.748460
\(413\) −12.3243 21.3464i −0.606441 1.05039i
\(414\) 0 0
\(415\) 6.59597i 0.323784i
\(416\) −0.909992 3.48883i −0.0446160 0.171054i
\(417\) 0 0
\(418\) −4.62956 4.62956i −0.226439 0.226439i
\(419\) 22.9596i 1.12165i 0.827934 + 0.560826i \(0.189516\pi\)
−0.827934 + 0.560826i \(0.810484\pi\)
\(420\) 0 0
\(421\) −2.92242 + 10.9066i −0.142430 + 0.531556i 0.857426 + 0.514607i \(0.172062\pi\)
−0.999856 + 0.0169495i \(0.994605\pi\)
\(422\) −2.68874 10.0345i −0.130886 0.488472i
\(423\) 0 0
\(424\) 3.58203 3.58203i 0.173959 0.173959i
\(425\) 20.9813i 1.01774i
\(426\) 0 0
\(427\) 10.1302 10.1302i 0.490236 0.490236i
\(428\) 2.73351 4.73458i 0.132129 0.228855i
\(429\) 0 0
\(430\) −1.84147 3.18952i −0.0888036 0.153812i
\(431\) 8.79469 + 2.35653i 0.423625 + 0.113510i 0.464332 0.885661i \(-0.346294\pi\)
−0.0407069 + 0.999171i \(0.512961\pi\)
\(432\) 0 0
\(433\) 19.6096 + 11.3216i 0.942379 + 0.544083i 0.890705 0.454581i \(-0.150211\pi\)
0.0516737 + 0.998664i \(0.483544\pi\)
\(434\) 29.9189 + 8.01675i 1.43615 + 0.384816i
\(435\) 0 0
\(436\) −6.96851 1.86721i −0.333731 0.0894230i
\(437\) 13.3355 3.57325i 0.637925 0.170931i
\(438\) 0 0
\(439\) −18.5237 10.6947i −0.884090 0.510430i −0.0120853 0.999927i \(-0.503847\pi\)
−0.872005 + 0.489497i \(0.837180\pi\)
\(440\) 0.404207 1.50852i 0.0192698 0.0719160i
\(441\) 0 0
\(442\) −4.22565 16.2008i −0.200994 0.770592i
\(443\) −27.1059 + 15.6496i −1.28784 + 0.743535i −0.978269 0.207341i \(-0.933519\pi\)
−0.309571 + 0.950876i \(0.600186\pi\)
\(444\) 0 0
\(445\) −1.73819 −0.0823980
\(446\) −7.93307 13.7405i −0.375642 0.650631i
\(447\) 0 0
\(448\) 3.24572 + 3.24572i 0.153346 + 0.153346i
\(449\) 12.7731 3.42254i 0.602800 0.161520i 0.0555034 0.998458i \(-0.482324\pi\)
0.547297 + 0.836939i \(0.315657\pi\)
\(450\) 0 0
\(451\) −6.46007 + 11.1892i −0.304193 + 0.526877i
\(452\) 0.236447 0.409538i 0.0111215 0.0192630i
\(453\) 0 0
\(454\) −5.52042 3.18721i −0.259086 0.149583i
\(455\) 0.0764259 11.4860i 0.00358290 0.538472i
\(456\) 0 0
\(457\) −11.3132 + 3.03137i −0.529210 + 0.141801i −0.513523 0.858076i \(-0.671660\pi\)
−0.0156865 + 0.999877i \(0.504993\pi\)
\(458\) 11.0794 6.39671i 0.517707 0.298898i
\(459\) 0 0
\(460\) 2.32865 + 2.32865i 0.108574 + 0.108574i
\(461\) −5.18033 + 5.18033i −0.241272 + 0.241272i −0.817376 0.576104i \(-0.804572\pi\)
0.576104 + 0.817376i \(0.304572\pi\)
\(462\) 0 0
\(463\) 3.79457 + 14.1615i 0.176349 + 0.658142i 0.996318 + 0.0857346i \(0.0273237\pi\)
−0.819969 + 0.572407i \(0.806010\pi\)
\(464\) 4.22816 2.44113i 0.196288 0.113327i
\(465\) 0 0
\(466\) 4.72718 + 17.6421i 0.218982 + 0.817253i
\(467\) −18.0118 −0.833488 −0.416744 0.909024i \(-0.636829\pi\)
−0.416744 + 0.909024i \(0.636829\pi\)
\(468\) 0 0
\(469\) 60.0549 2.77308
\(470\) −2.16838 8.09249i −0.100020 0.373279i
\(471\) 0 0
\(472\) −4.65048 + 2.68496i −0.214056 + 0.123585i
\(473\) 3.09056 + 11.5341i 0.142104 + 0.530339i
\(474\) 0 0
\(475\) −9.29586 + 9.29586i −0.426523 + 0.426523i
\(476\) 15.0719 + 15.0719i 0.690818 + 0.690818i
\(477\) 0 0
\(478\) 17.3211 10.0003i 0.792249 0.457405i
\(479\) 6.94673 1.86137i 0.317404 0.0850482i −0.0965997 0.995323i \(-0.530797\pi\)
0.414004 + 0.910275i \(0.364130\pi\)
\(480\) 0 0
\(481\) −3.24978 12.4594i −0.148177 0.568098i
\(482\) 13.0385 + 7.52778i 0.593887 + 0.342881i
\(483\) 0 0
\(484\) 2.96823 5.14113i 0.134920 0.233688i
\(485\) 0.426050 0.737940i 0.0193459 0.0335082i
\(486\) 0 0
\(487\) 0.324094 0.0868407i 0.0146861 0.00393513i −0.251469 0.967865i \(-0.580913\pi\)
0.266155 + 0.963930i \(0.414247\pi\)
\(488\) −2.20695 2.20695i −0.0999040 0.0999040i
\(489\) 0 0
\(490\) 4.88232 + 8.45643i 0.220561 + 0.382023i
\(491\) 3.92764 0.177252 0.0886260 0.996065i \(-0.471752\pi\)
0.0886260 + 0.996065i \(0.471752\pi\)
\(492\) 0 0
\(493\) 19.6339 11.3357i 0.884269 0.510533i
\(494\) −5.30562 + 9.05001i −0.238711 + 0.407179i
\(495\) 0 0
\(496\) 1.74651 6.51808i 0.0784208 0.292670i
\(497\) −64.0420 36.9747i −2.87268 1.65854i
\(498\) 0 0
\(499\) 19.6072 5.25372i 0.877737 0.235189i 0.208307 0.978064i \(-0.433205\pi\)
0.669431 + 0.742875i \(0.266538\pi\)
\(500\) −6.38094 1.70977i −0.285365 0.0764632i
\(501\) 0 0
\(502\) −25.3906 6.80338i −1.13324 0.303650i
\(503\) 24.7833 + 14.3086i 1.10503 + 0.637991i 0.937538 0.347882i \(-0.113099\pi\)
0.167494 + 0.985873i \(0.446432\pi\)
\(504\) 0 0
\(505\) 2.52360 + 0.676198i 0.112299 + 0.0300904i
\(506\) −5.33870 9.24691i −0.237334 0.411075i
\(507\) 0 0
\(508\) 0.217716 0.377096i 0.00965960 0.0167309i
\(509\) −11.3503 + 11.3503i −0.503091 + 0.503091i −0.912397 0.409306i \(-0.865771\pi\)
0.409306 + 0.912397i \(0.365771\pi\)
\(510\) 0 0
\(511\) 36.0346i 1.59408i
\(512\) 0.707107 0.707107i 0.0312500 0.0312500i
\(513\) 0 0
\(514\) −3.53697 13.2002i −0.156009 0.582235i
\(515\) 2.72894 10.1846i 0.120252 0.448785i
\(516\) 0 0
\(517\) 27.1634i 1.19465i
\(518\) 11.5912 + 11.5912i 0.509286 + 0.509286i
\(519\) 0 0
\(520\) −2.50232 0.0166500i −0.109734 0.000730151i
\(521\) 19.3205i 0.846448i −0.906025 0.423224i \(-0.860898\pi\)
0.906025 0.423224i \(-0.139102\pi\)
\(522\) 0 0
\(523\) 4.17667 + 7.23421i 0.182633 + 0.316330i 0.942776 0.333426i \(-0.108205\pi\)
−0.760143 + 0.649755i \(0.774871\pi\)
\(524\) −10.4191 −0.455161
\(525\) 0 0
\(526\) −1.24130 + 4.63258i −0.0541231 + 0.201990i
\(527\) 8.11013 30.2674i 0.353283 1.31847i
\(528\) 0 0
\(529\) −0.484713 −0.0210745
\(530\) −1.75791 3.04478i −0.0763585 0.132257i
\(531\) 0 0
\(532\) 13.3553i 0.579026i
\(533\) 19.9605 + 5.49100i 0.864584 + 0.237841i
\(534\) 0 0
\(535\) −2.68298 2.68298i −0.115995 0.115995i
\(536\) 13.0835i 0.565119i
\(537\) 0 0
\(538\) −6.44036 + 24.0358i −0.277664 + 1.03625i
\(539\) −8.19405 30.5806i −0.352943 1.31720i
\(540\) 0 0
\(541\) 18.5480 18.5480i 0.797443 0.797443i −0.185249 0.982692i \(-0.559309\pi\)
0.982692 + 0.185249i \(0.0593092\pi\)
\(542\) 0.793836i 0.0340982i
\(543\) 0 0
\(544\) 3.28353 3.28353i 0.140780 0.140780i
\(545\) −2.50350 + 4.33618i −0.107238 + 0.185742i
\(546\) 0 0
\(547\) −11.1826 19.3688i −0.478133 0.828151i 0.521552 0.853219i \(-0.325353\pi\)
−0.999686 + 0.0250681i \(0.992020\pi\)
\(548\) −7.38734 1.97943i −0.315572 0.0845572i
\(549\) 0 0
\(550\) 8.80510 + 5.08363i 0.375451 + 0.216767i
\(551\) −13.7212 3.67659i −0.584544 0.156628i
\(552\) 0 0
\(553\) −13.7800 3.69235i −0.585987 0.157015i
\(554\) −31.8275 + 8.52814i −1.35222 + 0.362326i
\(555\) 0 0
\(556\) 9.67631 + 5.58662i 0.410367 + 0.236926i
\(557\) −3.13004 + 11.6815i −0.132624 + 0.494959i −0.999996 0.00270033i \(-0.999140\pi\)
0.867372 + 0.497660i \(0.165807\pi\)
\(558\) 0 0
\(559\) 16.6330 9.45609i 0.703503 0.399950i
\(560\) 2.75891 1.59286i 0.116585 0.0673105i
\(561\) 0 0
\(562\) 18.1904 0.767315
\(563\) −17.5904 30.4674i −0.741345 1.28405i −0.951883 0.306462i \(-0.900855\pi\)
0.210538 0.977586i \(-0.432479\pi\)
\(564\) 0 0
\(565\) −0.232075 0.232075i −0.00976349 0.00976349i
\(566\) −23.5710 + 6.31582i −0.990761 + 0.265474i
\(567\) 0 0
\(568\) −8.05524 + 13.9521i −0.337990 + 0.585416i
\(569\) 5.63117 9.75346i 0.236071 0.408886i −0.723513 0.690311i \(-0.757474\pi\)
0.959583 + 0.281425i \(0.0908070\pi\)
\(570\) 0 0
\(571\) −27.0909 15.6409i −1.13372 0.654553i −0.188852 0.982006i \(-0.560477\pi\)
−0.944868 + 0.327452i \(0.893810\pi\)
\(572\) 7.82272 + 2.15198i 0.327084 + 0.0899788i
\(573\) 0 0
\(574\) −25.4571 + 6.82122i −1.06256 + 0.284712i
\(575\) −18.5672 + 10.7198i −0.774305 + 0.447045i
\(576\) 0 0
\(577\) −26.9790 26.9790i −1.12315 1.12315i −0.991265 0.131887i \(-0.957897\pi\)
−0.131887 0.991265i \(-0.542103\pi\)
\(578\) 3.22662 3.22662i 0.134210 0.134210i
\(579\) 0 0
\(580\) −0.876997 3.27300i −0.0364153 0.135904i
\(581\) −37.7793 + 21.8119i −1.56735 + 0.904911i
\(582\) 0 0
\(583\) 2.95031 + 11.0107i 0.122189 + 0.456017i
\(584\) 7.85044 0.324853
\(585\) 0 0
\(586\) 3.63756 0.150266
\(587\) 0.590896 + 2.20525i 0.0243889 + 0.0910205i 0.977048 0.213021i \(-0.0683304\pi\)
−0.952659 + 0.304042i \(0.901664\pi\)
\(588\) 0 0
\(589\) −17.0033 + 9.81688i −0.700611 + 0.404498i
\(590\) 0.964595 + 3.59992i 0.0397117 + 0.148206i
\(591\) 0 0
\(592\) 2.52523 2.52523i 0.103786 0.103786i
\(593\) −21.4122 21.4122i −0.879295 0.879295i 0.114166 0.993462i \(-0.463580\pi\)
−0.993462 + 0.114166i \(0.963580\pi\)
\(594\) 0 0
\(595\) 12.8113 7.39662i 0.525213 0.303232i
\(596\) −7.14709 + 1.91506i −0.292756 + 0.0784438i
\(597\) 0 0
\(598\) −12.1777 + 12.0167i −0.497984 + 0.491401i
\(599\) 27.0669 + 15.6271i 1.10593 + 0.638506i 0.937771 0.347255i \(-0.112886\pi\)
0.168154 + 0.985761i \(0.446219\pi\)
\(600\) 0 0
\(601\) 13.9378 24.1409i 0.568533 0.984728i −0.428179 0.903694i \(-0.640845\pi\)
0.996711 0.0810336i \(-0.0258221\pi\)
\(602\) −12.1789 + 21.0946i −0.496377 + 0.859750i
\(603\) 0 0
\(604\) −13.8415 + 3.70881i −0.563201 + 0.150909i
\(605\) −2.91336 2.91336i −0.118445 0.118445i
\(606\) 0 0
\(607\) 1.42278 + 2.46433i 0.0577490 + 0.100024i 0.893455 0.449153i \(-0.148274\pi\)
−0.835706 + 0.549178i \(0.814941\pi\)
\(608\) −2.90956 −0.117998
\(609\) 0 0
\(610\) −1.87594 + 1.08308i −0.0759547 + 0.0438525i
\(611\) 42.1150 10.9849i 1.70379 0.444400i
\(612\) 0 0
\(613\) 0.202550 0.755928i 0.00818093 0.0305316i −0.961715 0.274053i \(-0.911636\pi\)
0.969896 + 0.243521i \(0.0783024\pi\)
\(614\) 13.3488 + 7.70696i 0.538716 + 0.311028i
\(615\) 0 0
\(616\) −9.97693 + 2.67331i −0.401982 + 0.107711i
\(617\) 26.7737 + 7.17399i 1.07787 + 0.288814i 0.753723 0.657193i \(-0.228256\pi\)
0.324147 + 0.946007i \(0.394923\pi\)
\(618\) 0 0
\(619\) −6.46639 1.73266i −0.259906 0.0696417i 0.126513 0.991965i \(-0.459621\pi\)
−0.386419 + 0.922323i \(0.626288\pi\)
\(620\) −4.05590 2.34168i −0.162889 0.0940440i
\(621\) 0 0
\(622\) −10.3913 2.78435i −0.416654 0.111642i
\(623\) 5.74793 + 9.95571i 0.230286 + 0.398867i
\(624\) 0 0
\(625\) 9.00338 15.5943i 0.360135 0.623772i
\(626\) −8.97538 + 8.97538i −0.358728 + 0.358728i
\(627\) 0 0
\(628\) 5.72207i 0.228336i
\(629\) 11.7262 11.7262i 0.467554 0.467554i
\(630\) 0 0
\(631\) −1.16111 4.33331i −0.0462230 0.172506i 0.938956 0.344038i \(-0.111795\pi\)
−0.985179 + 0.171532i \(0.945128\pi\)
\(632\) −0.804409 + 3.00210i −0.0319977 + 0.119417i
\(633\) 0 0
\(634\) 26.0426i 1.03428i
\(635\) −0.213691 0.213691i −0.00848008 0.00848008i
\(636\) 0 0
\(637\) −44.0995 + 25.0711i −1.74728 + 0.993353i
\(638\) 10.9862i 0.434948i
\(639\) 0 0
\(640\) −0.347017 0.601052i −0.0137171 0.0237586i
\(641\) −42.9821 −1.69769 −0.848845 0.528642i \(-0.822702\pi\)
−0.848845 + 0.528642i \(0.822702\pi\)
\(642\) 0 0
\(643\) 5.91017 22.0571i 0.233074 0.869845i −0.745933 0.666021i \(-0.767996\pi\)
0.979007 0.203824i \(-0.0653372\pi\)
\(644\) 5.63717 21.0382i 0.222136 0.829021i
\(645\) 0 0
\(646\) −13.5109 −0.531579
\(647\) −18.2315 31.5780i −0.716756 1.24146i −0.962278 0.272067i \(-0.912293\pi\)
0.245523 0.969391i \(-0.421040\pi\)
\(648\) 0 0
\(649\) 12.0836i 0.474321i
\(650\) 4.32103 15.7075i 0.169485 0.616099i
\(651\) 0 0
\(652\) 3.95111 + 3.95111i 0.154737 + 0.154737i
\(653\) 3.39452i 0.132838i 0.997792 + 0.0664190i \(0.0211574\pi\)
−0.997792 + 0.0664190i \(0.978843\pi\)
\(654\) 0 0
\(655\) −1.87158 + 6.98482i −0.0731285 + 0.272919i
\(656\) 1.48606 + 5.54605i 0.0580209 + 0.216537i
\(657\) 0 0
\(658\) −39.1803 + 39.1803i −1.52741 + 1.52741i
\(659\) 27.3904i 1.06698i −0.845806 0.533490i \(-0.820880\pi\)
0.845806 0.533490i \(-0.179120\pi\)
\(660\) 0 0
\(661\) 32.4505 32.4505i 1.26218 1.26218i 0.312144 0.950035i \(-0.398953\pi\)
0.950035 0.312144i \(-0.101047\pi\)
\(662\) 10.1318 17.5489i 0.393785 0.682056i
\(663\) 0 0
\(664\) 4.75191 + 8.23054i 0.184410 + 0.319407i
\(665\) −8.95321 2.39900i −0.347191 0.0930294i
\(666\) 0 0
\(667\) −20.0627 11.5832i −0.776833 0.448505i
\(668\) 23.6549 + 6.33832i 0.915236 + 0.245237i
\(669\) 0 0
\(670\) −8.77097 2.35017i −0.338852 0.0907951i
\(671\) 6.78389 1.81774i 0.261889 0.0701730i
\(672\) 0 0
\(673\) −17.9179 10.3449i −0.690685 0.398767i 0.113183 0.993574i \(-0.463895\pi\)
−0.803869 + 0.594807i \(0.797229\pi\)
\(674\) −2.04100 + 7.61712i −0.0786164 + 0.293401i
\(675\) 0 0
\(676\) 0.172992 12.9988i 0.00665353 0.499956i
\(677\) −6.49755 + 3.75136i −0.249721 + 0.144176i −0.619636 0.784889i \(-0.712720\pi\)
0.369916 + 0.929065i \(0.379387\pi\)
\(678\) 0 0
\(679\) −5.63554 −0.216272
\(680\) −1.61141 2.79105i −0.0617949 0.107032i
\(681\) 0 0
\(682\) 10.7371 + 10.7371i 0.411146 + 0.411146i
\(683\) −39.9739 + 10.7110i −1.52956 + 0.409844i −0.922875 0.385100i \(-0.874167\pi\)
−0.606683 + 0.794944i \(0.707500\pi\)
\(684\) 0 0
\(685\) −2.65397 + 4.59681i −0.101403 + 0.175635i
\(686\) 16.2248 28.1021i 0.619464 1.07294i
\(687\) 0 0
\(688\) 4.59562 + 2.65328i 0.175206 + 0.101155i
\(689\) 15.8782 9.02698i 0.604913 0.343900i
\(690\) 0 0
\(691\) −5.45974 + 1.46293i −0.207698 + 0.0556526i −0.361168 0.932501i \(-0.617622\pi\)
0.153470 + 0.988153i \(0.450955\pi\)
\(692\) −9.17465 + 5.29699i −0.348768 + 0.201361i
\(693\) 0 0
\(694\) 12.0177 + 12.0177i 0.456185 + 0.456185i
\(695\) 5.48334 5.48334i 0.207995 0.207995i
\(696\) 0 0
\(697\) 6.90068 + 25.7537i 0.261382 + 0.975491i
\(698\) 12.5902 7.26897i 0.476547 0.275134i
\(699\) 0 0
\(700\) 5.36783 + 20.0330i 0.202885 + 0.757177i
\(701\) 40.7022 1.53730 0.768651 0.639669i \(-0.220928\pi\)
0.768651 + 0.639669i \(0.220928\pi\)
\(702\) 0 0
\(703\) −10.3907 −0.391892
\(704\) 0.582403 + 2.17356i 0.0219501 + 0.0819190i
\(705\) 0 0
\(706\) 7.37333 4.25700i 0.277499 0.160214i
\(707\) −4.47217 16.6904i −0.168193 0.627706i
\(708\) 0 0
\(709\) −1.21373 + 1.21373i −0.0455824 + 0.0455824i −0.729531 0.683948i \(-0.760261\pi\)
0.683948 + 0.729531i \(0.260261\pi\)
\(710\) 7.90632 + 7.90632i 0.296719 + 0.296719i
\(711\) 0 0
\(712\) 2.16893 1.25223i 0.0812843 0.0469295i
\(713\) −30.9285 + 8.28726i −1.15828 + 0.310360i
\(714\) 0 0
\(715\) 2.84785 4.85768i 0.106503 0.181667i
\(716\) 10.7836 + 6.22591i 0.403001 + 0.232673i
\(717\) 0 0
\(718\) −1.98446 + 3.43719i −0.0740594 + 0.128275i
\(719\) −10.3528 + 17.9315i −0.386093 + 0.668732i −0.991920 0.126864i \(-0.959509\pi\)
0.605827 + 0.795596i \(0.292842\pi\)
\(720\) 0 0
\(721\) −67.3577 + 18.0484i −2.50853 + 0.672159i
\(722\) −7.44897 7.44897i −0.277222 0.277222i
\(723\) 0 0
\(724\) −9.22324 15.9751i −0.342779 0.593711i
\(725\) 22.0596 0.819273
\(726\) 0 0
\(727\) −38.1761 + 22.0410i −1.41587 + 0.817455i −0.995933 0.0900971i \(-0.971282\pi\)
−0.419940 + 0.907552i \(0.637949\pi\)
\(728\) 8.17945 + 14.3875i 0.303150 + 0.533234i
\(729\) 0 0
\(730\) 1.41017 5.26282i 0.0521927 0.194786i
\(731\) 21.3403 + 12.3208i 0.789299 + 0.455702i
\(732\) 0 0
\(733\) 19.6173 5.25644i 0.724582 0.194151i 0.122367 0.992485i \(-0.460952\pi\)
0.602215 + 0.798334i \(0.294285\pi\)
\(734\) 23.5282 + 6.30435i 0.868440 + 0.232698i
\(735\) 0 0
\(736\) −4.58334 1.22810i −0.168944 0.0452685i
\(737\) 25.4965 + 14.7204i 0.939175 + 0.542233i
\(738\) 0 0
\(739\) 37.8060 + 10.1301i 1.39072 + 0.372642i 0.875002 0.484118i \(-0.160860\pi\)
0.515715 + 0.856760i \(0.327526\pi\)
\(740\) −1.23927 2.14648i −0.0455566 0.0789063i
\(741\) 0 0
\(742\) −11.6263 + 20.1373i −0.426814 + 0.739263i
\(743\) −37.3133 + 37.3133i −1.36889 + 1.36889i −0.506867 + 0.862024i \(0.669197\pi\)
−0.862024 + 0.506867i \(0.830803\pi\)
\(744\) 0 0
\(745\) 5.13531i 0.188143i
\(746\) −6.54644 + 6.54644i −0.239682 + 0.239682i
\(747\) 0 0
\(748\) 2.70445 + 10.0932i 0.0988845 + 0.369042i
\(749\) −6.49491 + 24.2393i −0.237319 + 0.885686i
\(750\) 0 0
\(751\) 28.3546i 1.03467i 0.855782 + 0.517336i \(0.173076\pi\)
−0.855782 + 0.517336i \(0.826924\pi\)
\(752\) 8.53576 + 8.53576i 0.311267 + 0.311267i
\(753\) 0 0
\(754\) 17.0334 4.44282i 0.620319 0.161798i
\(755\) 9.94532i 0.361947i
\(756\) 0 0
\(757\) 24.6271 + 42.6555i 0.895089 + 1.55034i 0.833694 + 0.552226i \(0.186221\pi\)
0.0613944 + 0.998114i \(0.480445\pi\)
\(758\) −13.8340 −0.502473
\(759\) 0 0
\(760\) −0.522643 + 1.95053i −0.0189583 + 0.0707532i
\(761\) −6.93919 + 25.8974i −0.251545 + 0.938780i 0.718435 + 0.695595i \(0.244859\pi\)
−0.969980 + 0.243185i \(0.921808\pi\)
\(762\) 0 0
\(763\) 33.1148 1.19884
\(764\) −4.25783 7.37477i −0.154043 0.266810i
\(765\) 0 0
\(766\) 17.8071i 0.643398i
\(767\) −18.7347 + 4.88658i −0.676471 + 0.176444i
\(768\) 0 0
\(769\) −30.3153 30.3153i −1.09320 1.09320i −0.995185 0.0980127i \(-0.968751\pi\)
−0.0980127 0.995185i \(-0.531249\pi\)
\(770\) 7.16860i 0.258338i
\(771\) 0 0
\(772\) 4.89947 18.2851i 0.176336 0.658094i
\(773\) 1.46006 + 5.44904i 0.0525149 + 0.195988i 0.987200 0.159490i \(-0.0509848\pi\)
−0.934685 + 0.355478i \(0.884318\pi\)
\(774\) 0 0
\(775\) 21.5594 21.5594i 0.774438 0.774438i
\(776\) 1.22775i 0.0440736i
\(777\) 0 0
\(778\) −10.5638 + 10.5638i −0.378729 + 0.378729i
\(779\) 8.35291 14.4677i 0.299274 0.518358i
\(780\) 0 0
\(781\) −18.1261 31.3954i −0.648604 1.12342i
\(782\) −21.2833 5.70284i −0.761088 0.203933i
\(783\) 0 0
\(784\) −12.1845 7.03470i −0.435159 0.251239i
\(785\) −3.83600 1.02785i −0.136913 0.0366856i
\(786\) 0 0
\(787\) −42.8409 11.4792i −1.52711 0.409189i −0.605036 0.796198i \(-0.706841\pi\)
−0.922076 + 0.387009i \(0.873508\pi\)
\(788\) 16.8453 4.51369i 0.600090 0.160794i
\(789\) 0 0
\(790\) 1.86807 + 1.07853i 0.0664629 + 0.0383723i
\(791\) −0.561805 + 2.09668i −0.0199755 + 0.0745495i
\(792\) 0 0
\(793\) −5.56168 9.78286i −0.197501 0.347399i
\(794\) −2.31327 + 1.33556i −0.0820947 + 0.0473974i
\(795\) 0 0
\(796\) −23.1137 −0.819243
\(797\) −0.0239676 0.0415131i −0.000848975 0.00147047i 0.865601 0.500735i \(-0.166937\pi\)
−0.866450 + 0.499265i \(0.833604\pi\)
\(798\) 0 0
\(799\) 39.6368 + 39.6368i 1.40225 + 1.40225i
\(800\) 4.36436 1.16943i 0.154303 0.0413455i
\(801\) 0 0
\(802\) −0.0336571 + 0.0582957i −0.00118847 + 0.00205849i
\(803\) −8.83265 + 15.2986i −0.311697 + 0.539876i
\(804\) 0 0
\(805\) −13.0911 7.55816i −0.461401 0.266390i
\(806\) 12.3051 20.9893i 0.433428 0.739315i
\(807\) 0 0
\(808\) −3.63614 + 0.974300i −0.127919 + 0.0342757i
\(809\) 11.0405 6.37425i 0.388164 0.224107i −0.293200 0.956051i \(-0.594720\pi\)
0.681364 + 0.731944i \(0.261387\pi\)
\(810\) 0 0
\(811\) 8.60363 + 8.60363i 0.302114 + 0.302114i 0.841841 0.539726i \(-0.181472\pi\)
−0.539726 + 0.841841i \(0.681472\pi\)
\(812\) −15.8465 + 15.8465i −0.556101 + 0.556101i
\(813\) 0 0
\(814\) 2.07988 + 7.76224i 0.0728999 + 0.272066i
\(815\) 3.35850 1.93903i 0.117643 0.0679213i
\(816\) 0 0
\(817\) −3.99611 14.9137i −0.139806 0.521764i
\(818\) −20.4258 −0.714173
\(819\) 0 0
\(820\) 3.98493 0.139160
\(821\) −5.06925 18.9187i −0.176918 0.660267i −0.996217 0.0869005i \(-0.972304\pi\)
0.819299 0.573367i \(-0.194363\pi\)
\(822\) 0 0
\(823\) 2.77266 1.60080i 0.0966489 0.0558003i −0.450897 0.892576i \(-0.648896\pi\)
0.547545 + 0.836776i \(0.315562\pi\)
\(824\) 3.93200 + 14.6744i 0.136978 + 0.511208i
\(825\) 0 0
\(826\) 17.4292 17.4292i 0.606441 0.606441i
\(827\) −35.9697 35.9697i −1.25079 1.25079i −0.955367 0.295423i \(-0.904539\pi\)
−0.295423 0.955367i \(-0.595461\pi\)
\(828\) 0 0
\(829\) −19.7591 + 11.4079i −0.686263 + 0.396214i −0.802211 0.597041i \(-0.796343\pi\)
0.115947 + 0.993255i \(0.463010\pi\)
\(830\) 6.37122 1.70716i 0.221148 0.0592565i
\(831\) 0 0
\(832\) 3.13442 1.78196i 0.108667 0.0617783i
\(833\) −56.5799 32.6664i −1.96038 1.13182i
\(834\) 0 0
\(835\) 8.49824 14.7194i 0.294094 0.509385i
\(836\) 3.27359 5.67003i 0.113220 0.196102i
\(837\) 0 0
\(838\) −22.1773 + 5.94239i −0.766102 + 0.205276i
\(839\) −6.32004 6.32004i −0.218192 0.218192i 0.589544 0.807736i \(-0.299307\pi\)
−0.807736 + 0.589544i \(0.799307\pi\)
\(840\) 0 0
\(841\) −2.58176 4.47174i −0.0890262 0.154198i
\(842\) −11.2914 −0.389126
\(843\) 0 0
\(844\) 8.99669 5.19424i 0.309679 0.178793i
\(845\) −8.68317 2.45095i −0.298710 0.0843151i
\(846\) 0 0
\(847\) −7.05261 + 26.3207i −0.242331 + 0.904390i
\(848\) 4.38707 + 2.53288i 0.150653 + 0.0869794i
\(849\) 0 0
\(850\) 20.2664 5.43036i 0.695131 0.186260i
\(851\) −16.3681 4.38582i −0.561092 0.150344i
\(852\) 0 0
\(853\) −1.39540 0.373895i −0.0477774 0.0128019i 0.234851 0.972031i \(-0.424540\pi\)
−0.282629 + 0.959229i \(0.591206\pi\)
\(854\) 12.4069 + 7.16315i 0.424557 + 0.245118i
\(855\) 0 0
\(856\) 5.28074 + 1.41497i 0.180492 + 0.0483627i
\(857\) 14.4133 + 24.9645i 0.492347 + 0.852770i 0.999961 0.00881420i \(-0.00280568\pi\)
−0.507614 + 0.861585i \(0.669472\pi\)
\(858\) 0 0
\(859\) 7.53374 13.0488i 0.257048 0.445220i −0.708402 0.705809i \(-0.750584\pi\)
0.965450 + 0.260589i \(0.0839169\pi\)
\(860\) 2.60423 2.60423i 0.0888036 0.0888036i
\(861\) 0 0
\(862\) 9.10494i 0.310115i
\(863\) 6.35047 6.35047i 0.216173 0.216173i −0.590711 0.806883i \(-0.701153\pi\)
0.806883 + 0.590711i \(0.201153\pi\)
\(864\) 0 0
\(865\) 1.90299 + 7.10205i 0.0647036 + 0.241477i
\(866\) −5.86051 + 21.8717i −0.199148 + 0.743231i
\(867\) 0 0
\(868\) 30.9743i 1.05134i
\(869\) −4.94530 4.94530i −0.167758 0.167758i
\(870\) 0 0
\(871\) 12.5122 45.4835i 0.423960 1.54115i
\(872\) 7.21433i 0.244308i
\(873\) 0 0
\(874\) 6.90298 + 11.9563i 0.233497 + 0.404428i
\(875\) 30.3227 1.02509
\(876\) 0 0
\(877\) 8.20836 30.6340i 0.277177 1.03444i −0.677192 0.735806i \(-0.736803\pi\)
0.954369 0.298631i \(-0.0965299\pi\)
\(878\) 5.53598 20.6606i 0.186830 0.697260i
\(879\) 0 0
\(880\) 1.56174 0.0526462
\(881\) 25.4661 + 44.1086i 0.857975 + 1.48606i 0.873858 + 0.486182i \(0.161611\pi\)
−0.0158827 + 0.999874i \(0.505056\pi\)
\(882\) 0 0
\(883\) 3.78144i 0.127256i −0.997974 0.0636278i \(-0.979733\pi\)
0.997974 0.0636278i \(-0.0202671\pi\)
\(884\) 14.5551 8.27473i 0.489539 0.278309i
\(885\) 0 0
\(886\) −22.1319 22.1319i −0.743535 0.743535i
\(887\) 16.2551i 0.545792i −0.962043 0.272896i \(-0.912018\pi\)
0.962043 0.272896i \(-0.0879816\pi\)
\(888\) 0 0
\(889\) −0.517301 + 1.93059i −0.0173497 + 0.0647500i
\(890\) −0.449876 1.67896i −0.0150799 0.0562789i
\(891\) 0 0
\(892\) 11.2191 11.2191i 0.375642 0.375642i
\(893\) 35.1225i 1.17533i
\(894\) 0 0
\(895\) 6.11081 6.11081i 0.204262 0.204262i
\(896\) −2.29507 + 3.97518i −0.0766729 + 0.132801i
\(897\) 0 0
\(898\) 6.61184 + 11.4520i 0.220640 + 0.382160i
\(899\) 31.8230 + 8.52694i 1.06136 + 0.284389i
\(900\) 0 0
\(901\) 20.3719 + 11.7617i 0.678685 + 0.391839i
\(902\) −12.4799 3.34398i −0.415535 0.111342i
\(903\) 0 0
\(904\) 0.456780 + 0.122394i 0.0151923 + 0.00407076i
\(905\) −12.3663 + 3.31353i −0.411068 + 0.110145i
\(906\) 0 0
\(907\) 9.30188 + 5.37044i 0.308864 + 0.178323i 0.646418 0.762984i \(-0.276266\pi\)
−0.337554 + 0.941306i \(0.609600\pi\)
\(908\) 1.64982 6.15723i 0.0547513 0.204335i
\(909\) 0 0
\(910\) 11.1144 2.89898i 0.368439 0.0961001i
\(911\) 51.7103 29.8550i 1.71324 0.989139i 0.783130 0.621858i \(-0.213622\pi\)
0.930110 0.367281i \(-0.119711\pi\)
\(912\) 0 0
\(913\) −21.3858 −0.707766
\(914\) −5.85615 10.1432i −0.193704 0.335506i
\(915\) 0 0
\(916\) 9.04631 + 9.04631i 0.298898 + 0.298898i
\(917\) 46.1955 12.3781i 1.52551 0.408759i
\(918\) 0 0
\(919\) −9.50921 + 16.4704i −0.313680 + 0.543310i −0.979156 0.203110i \(-0.934895\pi\)
0.665476 + 0.746419i \(0.268229\pi\)
\(920\) −1.64661 + 2.85201i −0.0542870 + 0.0940279i
\(921\) 0 0
\(922\) −6.34459 3.66305i −0.208948 0.120636i
\(923\) −41.3462 + 40.7996i −1.36093 + 1.34294i
\(924\) 0 0
\(925\) 15.5861 4.17627i 0.512467 0.137315i
\(926\) −12.6969 + 7.33055i −0.417245 + 0.240897i
\(927\) 0 0
\(928\) 3.45228 + 3.45228i 0.113327 + 0.113327i
\(929\) −1.83688 + 1.83688i −0.0602660 + 0.0602660i −0.736597 0.676331i \(-0.763569\pi\)
0.676331 + 0.736597i \(0.263569\pi\)
\(930\) 0 0
\(931\) 10.5950 + 39.5409i 0.347236 + 1.29590i
\(932\) −15.8174 + 9.13221i −0.518118 + 0.299135i
\(933\) 0 0
\(934\) −4.66180 17.3981i −0.152539 0.569283i
\(935\) 7.25210 0.237169
\(936\) 0 0
\(937\) −11.7808 −0.384863 −0.192431 0.981310i \(-0.561637\pi\)
−0.192431 + 0.981310i \(0.561637\pi\)
\(938\) 15.5434 + 58.0086i 0.507509 + 1.89405i
\(939\) 0 0
\(940\) 7.25552 4.18898i 0.236649 0.136629i
\(941\) −11.8964 44.3981i −0.387813 1.44734i −0.833684 0.552241i \(-0.813773\pi\)
0.445871 0.895097i \(-0.352894\pi\)
\(942\) 0 0
\(943\) 19.2648 19.2648i 0.627347 0.627347i
\(944\) −3.79710 3.79710i −0.123585 0.123585i
\(945\) 0 0
\(946\) −10.3412 + 5.97050i −0.336222 + 0.194118i
\(947\) 4.27109 1.14443i 0.138792 0.0371891i −0.188754 0.982024i \(-0.560445\pi\)
0.327546 + 0.944835i \(0.393778\pi\)
\(948\) 0 0
\(949\) 27.2913 + 7.50767i 0.885914 + 0.243709i
\(950\) −11.3851 6.57316i −0.369380 0.213262i
\(951\) 0 0
\(952\) −10.6574 + 18.4592i −0.345409 + 0.598266i
\(953\) −15.6177 + 27.0507i −0.505908 + 0.876258i 0.494069 + 0.869423i \(0.335509\pi\)
−0.999977 + 0.00683493i \(0.997824\pi\)
\(954\) 0 0
\(955\) −5.70877 + 1.52966i −0.184732 + 0.0494987i
\(956\) 14.1426 + 14.1426i 0.457405 + 0.457405i
\(957\) 0 0
\(958\) 3.59589 + 6.22827i 0.116178 + 0.201226i
\(959\) 35.1051 1.13360
\(960\) 0 0
\(961\) 12.5883 7.26783i 0.406073 0.234446i
\(962\) 11.1937 6.36376i 0.360900 0.205176i
\(963\) 0 0
\(964\) −3.89667 + 14.5426i −0.125503 + 0.468384i
\(965\) −11.3780 6.56907i −0.366270 0.211466i
\(966\) 0 0
\(967\) 4.87497 1.30625i 0.156769 0.0420060i −0.179581 0.983743i \(-0.557474\pi\)
0.336350 + 0.941737i \(0.390808\pi\)
\(968\) 5.73418 + 1.53647i 0.184304 + 0.0493840i
\(969\) 0 0
\(970\) 0.823066 + 0.220540i 0.0264270 + 0.00708111i
\(971\) −44.8178 25.8756i −1.43827 0.830387i −0.440543 0.897732i \(-0.645214\pi\)
−0.997730 + 0.0673446i \(0.978547\pi\)
\(972\) 0 0
\(973\) −49.5392 13.2740i −1.58815 0.425545i
\(974\) 0.167763 + 0.290575i 0.00537549 + 0.00931061i
\(975\) 0 0
\(976\) 1.56055 2.70295i 0.0499520 0.0865194i
\(977\) −15.1413 + 15.1413i −0.484415 + 0.484415i −0.906538 0.422124i \(-0.861285\pi\)
0.422124 + 0.906538i \(0.361285\pi\)
\(978\) 0 0
\(979\) 5.63563i 0.180116i
\(980\) −6.90465 + 6.90465i −0.220561 + 0.220561i
\(981\) 0 0
\(982\) 1.01655 + 3.79381i 0.0324394 + 0.121065i
\(983\) 12.5292 46.7595i 0.399618 1.49140i −0.414151 0.910208i \(-0.635922\pi\)
0.813769 0.581188i \(-0.197412\pi\)
\(984\) 0 0
\(985\) 12.1037i 0.385655i
\(986\) 16.0311 + 16.0311i 0.510533 + 0.510533i
\(987\) 0 0
\(988\) −10.1148 2.78252i −0.321796 0.0885239i
\(989\) 25.1798i 0.800671i
\(990\) 0 0
\(991\) 18.5761 + 32.1748i 0.590090 + 1.02207i 0.994220 + 0.107364i \(0.0342409\pi\)
−0.404130 + 0.914701i \(0.632426\pi\)
\(992\) 6.74801 0.214250
\(993\) 0 0
\(994\) 19.1395 71.4296i 0.607068 2.26561i
\(995\) −4.15189 + 15.4951i −0.131624 + 0.491227i
\(996\) 0 0
\(997\) 53.0118 1.67890 0.839451 0.543436i \(-0.182877\pi\)
0.839451 + 0.543436i \(0.182877\pi\)
\(998\) 10.1494 + 17.5793i 0.321274 + 0.556463i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 702.2.bc.a.557.12 56
3.2 odd 2 234.2.z.a.167.4 yes 56
9.2 odd 6 702.2.bb.a.89.5 56
9.7 even 3 234.2.y.a.11.9 56
13.6 odd 12 702.2.bb.a.71.5 56
39.32 even 12 234.2.y.a.149.9 yes 56
117.97 odd 12 234.2.z.a.227.4 yes 56
117.110 even 12 inner 702.2.bc.a.305.12 56
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
234.2.y.a.11.9 56 9.7 even 3
234.2.y.a.149.9 yes 56 39.32 even 12
234.2.z.a.167.4 yes 56 3.2 odd 2
234.2.z.a.227.4 yes 56 117.97 odd 12
702.2.bb.a.71.5 56 13.6 odd 12
702.2.bb.a.89.5 56 9.2 odd 6
702.2.bc.a.305.12 56 117.110 even 12 inner
702.2.bc.a.557.12 56 1.1 even 1 trivial