Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [702,2,Mod(5,702)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(702, base_ring=CyclotomicField(36))
chi = DirichletCharacter(H, H._module([10, 27]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("702.5");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 702 = 2 \cdot 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 702.bs (of order \(36\), degree \(12\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.60549822189\) |
Analytic rank: | \(0\) |
Dimension: | \(504\) |
Relative dimension: | \(42\) over \(\Q(\zeta_{36})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{36}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
5.1 | −0.996195 | − | 0.0871557i | −1.72829 | + | 0.114016i | 0.984808 | + | 0.173648i | 3.39240 | + | 1.58190i | 1.73165 | + | 0.0370487i | 0.735095 | − | 1.04983i | −0.965926 | − | 0.258819i | 2.97400 | − | 0.394106i | −3.24162 | − | 1.87155i |
5.2 | −0.996195 | − | 0.0871557i | −1.71493 | + | 0.242953i | 0.984808 | + | 0.173648i | −3.44912 | − | 1.60835i | 1.72958 | − | 0.0925624i | −1.15046 | + | 1.64303i | −0.965926 | − | 0.258819i | 2.88195 | − | 0.833292i | 3.29582 | + | 1.90284i |
5.3 | −0.996195 | − | 0.0871557i | −1.68860 | + | 0.385530i | 0.984808 | + | 0.173648i | −0.145511 | − | 0.0678528i | 1.71577 | − | 0.236891i | 2.79229 | − | 3.98781i | −0.965926 | − | 0.258819i | 2.70273 | − | 1.30201i | 0.139043 | + | 0.0802766i |
5.4 | −0.996195 | − | 0.0871557i | −1.44995 | − | 0.947444i | 0.984808 | + | 0.173648i | 1.82372 | + | 0.850415i | 1.36186 | + | 1.07021i | −0.615439 | + | 0.878939i | −0.965926 | − | 0.258819i | 1.20470 | + | 2.74749i | −1.74266 | − | 1.00613i |
5.5 | −0.996195 | − | 0.0871557i | −1.42868 | − | 0.979218i | 0.984808 | + | 0.173648i | −2.40537 | − | 1.12164i | 1.33790 | + | 1.10001i | 2.42794 | − | 3.46745i | −0.965926 | − | 0.258819i | 1.08226 | + | 2.79798i | 2.29846 | + | 1.32702i |
5.6 | −0.996195 | − | 0.0871557i | −1.24829 | + | 1.20074i | 0.984808 | + | 0.173648i | 0.699190 | + | 0.326038i | 1.34819 | − | 1.08737i | −0.588520 | + | 0.840494i | −0.965926 | − | 0.258819i | 0.116468 | − | 2.99774i | −0.668114 | − | 0.385736i |
5.7 | −0.996195 | − | 0.0871557i | −1.17070 | − | 1.27650i | 0.984808 | + | 0.173648i | −0.486588 | − | 0.226900i | 1.05499 | + | 1.37368i | −1.73769 | + | 2.48168i | −0.965926 | − | 0.258819i | −0.258919 | + | 2.98881i | 0.464961 | + | 0.268445i |
5.8 | −0.996195 | − | 0.0871557i | −1.03486 | + | 1.38890i | 0.984808 | + | 0.173648i | 0.229130 | + | 0.106845i | 1.15198 | − | 1.29343i | 0.372424 | − | 0.531877i | −0.965926 | − | 0.258819i | −0.858114 | − | 2.87465i | −0.218946 | − | 0.126408i |
5.9 | −0.996195 | − | 0.0871557i | −0.624455 | + | 1.61557i | 0.984808 | + | 0.173648i | −3.34201 | − | 1.55841i | 0.762885 | − | 1.55499i | −0.371998 | + | 0.531269i | −0.965926 | − | 0.258819i | −2.22011 | − | 2.01770i | 3.19347 | + | 1.84375i |
5.10 | −0.996195 | − | 0.0871557i | 0.0949325 | − | 1.72945i | 0.984808 | + | 0.173648i | 2.31860 | + | 1.08118i | −0.245302 | + | 1.71459i | 0.605375 | − | 0.864565i | −0.965926 | − | 0.258819i | −2.98198 | − | 0.328361i | −2.21555 | − | 1.27915i |
5.11 | −0.996195 | − | 0.0871557i | 0.326010 | − | 1.70109i | 0.984808 | + | 0.173648i | 1.69330 | + | 0.789598i | −0.473029 | + | 1.66621i | −2.87225 | + | 4.10200i | −0.965926 | − | 0.258819i | −2.78744 | − | 1.10915i | −1.61804 | − | 0.934174i |
5.12 | −0.996195 | − | 0.0871557i | 0.369695 | + | 1.69214i | 0.984808 | + | 0.173648i | −0.624213 | − | 0.291075i | −0.220808 | − | 1.71792i | 2.16691 | − | 3.09467i | −0.965926 | − | 0.258819i | −2.72665 | + | 1.25115i | 0.596469 | + | 0.344372i |
5.13 | −0.996195 | − | 0.0871557i | 0.416480 | − | 1.68123i | 0.984808 | + | 0.173648i | −2.51109 | − | 1.17094i | −0.561424 | + | 1.63854i | 1.30083 | − | 1.85778i | −0.965926 | − | 0.258819i | −2.65309 | − | 1.40040i | 2.39948 | + | 1.38534i |
5.14 | −0.996195 | − | 0.0871557i | 0.849091 | + | 1.50965i | 0.984808 | + | 0.173648i | 3.34415 | + | 1.55940i | −0.714285 | − | 1.57791i | −0.970968 | + | 1.38669i | −0.965926 | − | 0.258819i | −1.55809 | + | 2.56366i | −3.19552 | − | 1.84493i |
5.15 | −0.996195 | − | 0.0871557i | 0.958159 | + | 1.44289i | 0.984808 | + | 0.173648i | −0.313418 | − | 0.146149i | −0.828757 | − | 1.52091i | −2.45988 | + | 3.51307i | −0.965926 | − | 0.258819i | −1.16386 | + | 2.76504i | 0.299487 | + | 0.172909i |
5.16 | −0.996195 | − | 0.0871557i | 1.28976 | − | 1.15608i | 0.984808 | + | 0.173648i | −1.90388 | − | 0.887795i | −1.38561 | + | 1.03927i | −0.418222 | + | 0.597283i | −0.965926 | − | 0.258819i | 0.326947 | − | 2.98213i | 1.81926 | + | 1.05035i |
5.17 | −0.996195 | − | 0.0871557i | 1.44083 | − | 0.961248i | 0.984808 | + | 0.173648i | −0.508880 | − | 0.237295i | −1.51913 | + | 0.832013i | −1.36461 | + | 1.94887i | −0.965926 | − | 0.258819i | 1.15200 | − | 2.77000i | 0.486262 | + | 0.280743i |
5.18 | −0.996195 | − | 0.0871557i | 1.50253 | + | 0.861624i | 0.984808 | + | 0.173648i | −3.41514 | − | 1.59251i | −1.42172 | − | 0.989299i | −0.396544 | + | 0.566323i | −0.965926 | − | 0.258819i | 1.51521 | + | 2.58924i | 3.26335 | + | 1.88410i |
5.19 | −0.996195 | − | 0.0871557i | 1.52526 | − | 0.820720i | 0.984808 | + | 0.173648i | 3.44121 | + | 1.60466i | −1.59099 | + | 0.684662i | −0.481228 | + | 0.687265i | −0.965926 | − | 0.258819i | 1.65284 | − | 2.50362i | −3.28825 | − | 1.89847i |
5.20 | −0.996195 | − | 0.0871557i | 1.58718 | + | 0.693439i | 0.984808 | + | 0.173648i | 1.27501 | + | 0.594545i | −1.52070 | − | 0.829132i | 0.673612 | − | 0.962018i | −0.965926 | − | 0.258819i | 2.03829 | + | 2.20123i | −1.21834 | − | 0.703407i |
See next 80 embeddings (of 504 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.d | odd | 4 | 1 | inner |
27.f | odd | 18 | 1 | inner |
351.bt | even | 36 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 702.2.bs.a | ✓ | 504 |
13.d | odd | 4 | 1 | inner | 702.2.bs.a | ✓ | 504 |
27.f | odd | 18 | 1 | inner | 702.2.bs.a | ✓ | 504 |
351.bt | even | 36 | 1 | inner | 702.2.bs.a | ✓ | 504 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
702.2.bs.a | ✓ | 504 | 1.a | even | 1 | 1 | trivial |
702.2.bs.a | ✓ | 504 | 13.d | odd | 4 | 1 | inner |
702.2.bs.a | ✓ | 504 | 27.f | odd | 18 | 1 | inner |
702.2.bs.a | ✓ | 504 | 351.bt | even | 36 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(702, [\chi])\).