Properties

Label 702.2.bs.a
Level $702$
Weight $2$
Character orbit 702.bs
Analytic conductor $5.605$
Analytic rank $0$
Dimension $504$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(5,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(36))
 
chi = DirichletCharacter(H, H._module([10, 27]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.5");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.bs (of order \(36\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(504\)
Relative dimension: \(42\) over \(\Q(\zeta_{36})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{36}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 504 q - 24 q^{11} + 24 q^{15} + 24 q^{21} - 144 q^{27} + 24 q^{39} + 48 q^{41} + 12 q^{45} + 132 q^{47} + 24 q^{50} + 72 q^{54} - 72 q^{57} + 12 q^{63} - 156 q^{65} + 96 q^{66} - 48 q^{72} + 36 q^{73} - 96 q^{74}+ \cdots - 144 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
5.1 −0.996195 0.0871557i −1.72829 + 0.114016i 0.984808 + 0.173648i 3.39240 + 1.58190i 1.73165 + 0.0370487i 0.735095 1.04983i −0.965926 0.258819i 2.97400 0.394106i −3.24162 1.87155i
5.2 −0.996195 0.0871557i −1.71493 + 0.242953i 0.984808 + 0.173648i −3.44912 1.60835i 1.72958 0.0925624i −1.15046 + 1.64303i −0.965926 0.258819i 2.88195 0.833292i 3.29582 + 1.90284i
5.3 −0.996195 0.0871557i −1.68860 + 0.385530i 0.984808 + 0.173648i −0.145511 0.0678528i 1.71577 0.236891i 2.79229 3.98781i −0.965926 0.258819i 2.70273 1.30201i 0.139043 + 0.0802766i
5.4 −0.996195 0.0871557i −1.44995 0.947444i 0.984808 + 0.173648i 1.82372 + 0.850415i 1.36186 + 1.07021i −0.615439 + 0.878939i −0.965926 0.258819i 1.20470 + 2.74749i −1.74266 1.00613i
5.5 −0.996195 0.0871557i −1.42868 0.979218i 0.984808 + 0.173648i −2.40537 1.12164i 1.33790 + 1.10001i 2.42794 3.46745i −0.965926 0.258819i 1.08226 + 2.79798i 2.29846 + 1.32702i
5.6 −0.996195 0.0871557i −1.24829 + 1.20074i 0.984808 + 0.173648i 0.699190 + 0.326038i 1.34819 1.08737i −0.588520 + 0.840494i −0.965926 0.258819i 0.116468 2.99774i −0.668114 0.385736i
5.7 −0.996195 0.0871557i −1.17070 1.27650i 0.984808 + 0.173648i −0.486588 0.226900i 1.05499 + 1.37368i −1.73769 + 2.48168i −0.965926 0.258819i −0.258919 + 2.98881i 0.464961 + 0.268445i
5.8 −0.996195 0.0871557i −1.03486 + 1.38890i 0.984808 + 0.173648i 0.229130 + 0.106845i 1.15198 1.29343i 0.372424 0.531877i −0.965926 0.258819i −0.858114 2.87465i −0.218946 0.126408i
5.9 −0.996195 0.0871557i −0.624455 + 1.61557i 0.984808 + 0.173648i −3.34201 1.55841i 0.762885 1.55499i −0.371998 + 0.531269i −0.965926 0.258819i −2.22011 2.01770i 3.19347 + 1.84375i
5.10 −0.996195 0.0871557i 0.0949325 1.72945i 0.984808 + 0.173648i 2.31860 + 1.08118i −0.245302 + 1.71459i 0.605375 0.864565i −0.965926 0.258819i −2.98198 0.328361i −2.21555 1.27915i
5.11 −0.996195 0.0871557i 0.326010 1.70109i 0.984808 + 0.173648i 1.69330 + 0.789598i −0.473029 + 1.66621i −2.87225 + 4.10200i −0.965926 0.258819i −2.78744 1.10915i −1.61804 0.934174i
5.12 −0.996195 0.0871557i 0.369695 + 1.69214i 0.984808 + 0.173648i −0.624213 0.291075i −0.220808 1.71792i 2.16691 3.09467i −0.965926 0.258819i −2.72665 + 1.25115i 0.596469 + 0.344372i
5.13 −0.996195 0.0871557i 0.416480 1.68123i 0.984808 + 0.173648i −2.51109 1.17094i −0.561424 + 1.63854i 1.30083 1.85778i −0.965926 0.258819i −2.65309 1.40040i 2.39948 + 1.38534i
5.14 −0.996195 0.0871557i 0.849091 + 1.50965i 0.984808 + 0.173648i 3.34415 + 1.55940i −0.714285 1.57791i −0.970968 + 1.38669i −0.965926 0.258819i −1.55809 + 2.56366i −3.19552 1.84493i
5.15 −0.996195 0.0871557i 0.958159 + 1.44289i 0.984808 + 0.173648i −0.313418 0.146149i −0.828757 1.52091i −2.45988 + 3.51307i −0.965926 0.258819i −1.16386 + 2.76504i 0.299487 + 0.172909i
5.16 −0.996195 0.0871557i 1.28976 1.15608i 0.984808 + 0.173648i −1.90388 0.887795i −1.38561 + 1.03927i −0.418222 + 0.597283i −0.965926 0.258819i 0.326947 2.98213i 1.81926 + 1.05035i
5.17 −0.996195 0.0871557i 1.44083 0.961248i 0.984808 + 0.173648i −0.508880 0.237295i −1.51913 + 0.832013i −1.36461 + 1.94887i −0.965926 0.258819i 1.15200 2.77000i 0.486262 + 0.280743i
5.18 −0.996195 0.0871557i 1.50253 + 0.861624i 0.984808 + 0.173648i −3.41514 1.59251i −1.42172 0.989299i −0.396544 + 0.566323i −0.965926 0.258819i 1.51521 + 2.58924i 3.26335 + 1.88410i
5.19 −0.996195 0.0871557i 1.52526 0.820720i 0.984808 + 0.173648i 3.44121 + 1.60466i −1.59099 + 0.684662i −0.481228 + 0.687265i −0.965926 0.258819i 1.65284 2.50362i −3.28825 1.89847i
5.20 −0.996195 0.0871557i 1.58718 + 0.693439i 0.984808 + 0.173648i 1.27501 + 0.594545i −1.52070 0.829132i 0.673612 0.962018i −0.965926 0.258819i 2.03829 + 2.20123i −1.21834 0.703407i
See next 80 embeddings (of 504 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 5.42
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.d odd 4 1 inner
27.f odd 18 1 inner
351.bt even 36 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.bs.a 504
13.d odd 4 1 inner 702.2.bs.a 504
27.f odd 18 1 inner 702.2.bs.a 504
351.bt even 36 1 inner 702.2.bs.a 504
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.bs.a 504 1.a even 1 1 trivial
702.2.bs.a 504 13.d odd 4 1 inner
702.2.bs.a 504 27.f odd 18 1 inner
702.2.bs.a 504 351.bt even 36 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(702, [\chi])\).