Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [702,2,Mod(79,702)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(702, base_ring=CyclotomicField(18))
chi = DirichletCharacter(H, H._module([10, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("702.79");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 702 = 2 \cdot 3^{3} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 702.w (of order \(9\), degree \(6\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.60549822189\) |
Analytic rank: | \(0\) |
Dimension: | \(66\) |
Relative dimension: | \(11\) over \(\Q(\zeta_{9})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{9}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
79.1 | −0.173648 | + | 0.984808i | −1.68978 | + | 0.380306i | −0.939693 | − | 0.342020i | −0.275521 | + | 0.231189i | −0.0811006 | − | 1.73015i | 0.00574072 | − | 0.00208945i | 0.500000 | − | 0.866025i | 2.71073 | − | 1.28527i | −0.179833 | − | 0.311481i |
79.2 | −0.173648 | + | 0.984808i | −1.55499 | − | 0.762899i | −0.939693 | − | 0.342020i | −0.368840 | + | 0.309494i | 1.02133 | − | 1.39889i | −0.0350928 | + | 0.0127727i | 0.500000 | − | 0.866025i | 1.83597 | + | 2.37260i | −0.240744 | − | 0.416980i |
79.3 | −0.173648 | + | 0.984808i | −0.979722 | − | 1.42834i | −0.939693 | − | 0.342020i | 2.84105 | − | 2.38392i | 1.57676 | − | 0.716809i | 3.70478 | − | 1.34843i | 0.500000 | − | 0.866025i | −1.08029 | + | 2.79874i | 1.85436 | + | 3.21185i |
79.4 | −0.173648 | + | 0.984808i | −0.861412 | + | 1.50265i | −0.939693 | − | 0.342020i | −2.03645 | + | 1.70878i | −1.33024 | − | 1.10926i | −3.20713 | + | 1.16730i | 0.500000 | − | 0.866025i | −1.51594 | − | 2.58881i | −1.32920 | − | 2.30224i |
79.5 | −0.173648 | + | 0.984808i | −0.357692 | − | 1.69471i | −0.939693 | − | 0.342020i | −3.27654 | + | 2.74935i | 1.73108 | − | 0.0579739i | 2.94419 | − | 1.07160i | 0.500000 | − | 0.866025i | −2.74411 | + | 1.21237i | −2.13861 | − | 3.70418i |
79.6 | −0.173648 | + | 0.984808i | 0.137928 | − | 1.72655i | −0.939693 | − | 0.342020i | 2.87924 | − | 2.41597i | 1.67637 | + | 0.435645i | −4.70638 | + | 1.71298i | 0.500000 | − | 0.866025i | −2.96195 | − | 0.476280i | 1.87929 | + | 3.25502i |
79.7 | −0.173648 | + | 0.984808i | 0.535231 | + | 1.64728i | −0.939693 | − | 0.342020i | 0.695265 | − | 0.583396i | −1.71519 | + | 0.241052i | 3.66522 | − | 1.33403i | 0.500000 | − | 0.866025i | −2.42706 | + | 1.76335i | 0.453802 | + | 0.786008i |
79.8 | −0.173648 | + | 0.984808i | 1.09171 | + | 1.34468i | −0.939693 | − | 0.342020i | 1.17910 | − | 0.989383i | −1.51383 | + | 0.841619i | −4.46317 | + | 1.62446i | 0.500000 | − | 0.866025i | −0.616355 | + | 2.93600i | 0.769603 | + | 1.33299i |
79.9 | −0.173648 | + | 0.984808i | 1.10490 | − | 1.33386i | −0.939693 | − | 0.342020i | −1.91609 | + | 1.60779i | 1.12173 | + | 1.31974i | −0.872618 | + | 0.317607i | 0.500000 | − | 0.866025i | −0.558376 | − | 2.94758i | −1.25064 | − | 2.16617i |
79.10 | −0.173648 | + | 0.984808i | 1.49056 | + | 0.882179i | −0.939693 | − | 0.342020i | −2.25724 | + | 1.89405i | −1.12761 | + | 1.31472i | −1.04832 | + | 0.381559i | 0.500000 | − | 0.866025i | 1.44352 | + | 2.62988i | −1.47331 | − | 2.55185i |
79.11 | −0.173648 | + | 0.984808i | 1.67567 | − | 0.438337i | −0.939693 | − | 0.342020i | 1.67759 | − | 1.40766i | 0.140701 | + | 1.72633i | −0.245987 | + | 0.0895318i | 0.500000 | − | 0.866025i | 2.61572 | − | 1.46901i | 1.09497 | + | 1.89654i |
157.1 | −0.766044 | + | 0.642788i | −1.69764 | + | 0.343516i | 0.173648 | − | 0.984808i | −2.54927 | + | 0.927858i | 1.07966 | − | 1.35437i | −0.244846 | − | 1.38859i | 0.500000 | + | 0.866025i | 2.76399 | − | 1.16634i | 1.35644 | − | 2.34942i |
157.2 | −0.766044 | + | 0.642788i | −1.69465 | − | 0.358017i | 0.173648 | − | 0.984808i | 3.77055 | − | 1.37237i | 1.52830 | − | 0.815041i | 0.813092 | + | 4.61127i | 0.500000 | + | 0.866025i | 2.74365 | + | 1.21342i | −2.00627 | + | 3.47496i |
157.3 | −0.766044 | + | 0.642788i | −1.59587 | + | 0.673212i | 0.173648 | − | 0.984808i | 1.05679 | − | 0.384641i | 0.789771 | − | 1.54151i | −0.827291 | − | 4.69180i | 0.500000 | + | 0.866025i | 2.09357 | − | 2.14871i | −0.562307 | + | 0.973945i |
157.4 | −0.766044 | + | 0.642788i | −1.11840 | − | 1.32257i | 0.173648 | − | 0.984808i | 1.19732 | − | 0.435789i | 1.70687 | + | 0.294255i | −0.386363 | − | 2.19117i | 0.500000 | + | 0.866025i | −0.498376 | + | 2.95831i | −0.637080 | + | 1.10346i |
157.5 | −0.766044 | + | 0.642788i | −0.772196 | + | 1.55039i | 0.173648 | − | 0.984808i | −2.93798 | + | 1.06934i | −0.405036 | − | 1.68403i | 0.556756 | + | 3.15752i | 0.500000 | + | 0.866025i | −1.80743 | − | 2.39441i | 1.56327 | − | 2.70766i |
157.6 | −0.766044 | + | 0.642788i | −0.147653 | − | 1.72575i | 0.173648 | − | 0.984808i | 0.992799 | − | 0.361349i | 1.22240 | + | 1.22709i | 0.163744 | + | 0.928638i | 0.500000 | + | 0.866025i | −2.95640 | + | 0.509623i | −0.528257 | + | 0.914969i |
157.7 | −0.766044 | + | 0.642788i | 0.131706 | + | 1.72704i | 0.173648 | − | 0.984808i | 4.03739 | − | 1.46949i | −1.21101 | − | 1.23833i | −0.457883 | − | 2.59679i | 0.500000 | + | 0.866025i | −2.96531 | + | 0.454921i | −2.14825 | + | 3.72088i |
157.8 | −0.766044 | + | 0.642788i | 0.839912 | − | 1.51478i | 0.173648 | − | 0.984808i | −2.36910 | + | 0.862282i | 0.330269 | + | 1.70027i | 0.250820 | + | 1.42247i | 0.500000 | + | 0.866025i | −1.58909 | − | 2.54456i | 1.26057 | − | 2.18338i |
157.9 | −0.766044 | + | 0.642788i | 1.08543 | + | 1.34975i | 0.173648 | − | 0.984808i | 0.0151353 | − | 0.00550879i | −1.69909 | − | 0.336269i | 0.674116 | + | 3.82310i | 0.500000 | + | 0.866025i | −0.643672 | + | 2.93013i | −0.00805331 | + | 0.0139487i |
See all 66 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
27.e | even | 9 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 702.2.w.d | ✓ | 66 |
27.e | even | 9 | 1 | inner | 702.2.w.d | ✓ | 66 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
702.2.w.d | ✓ | 66 | 1.a | even | 1 | 1 | trivial |
702.2.w.d | ✓ | 66 | 27.e | even | 9 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{66} - 3 T_{5}^{65} + 6 T_{5}^{64} - 56 T_{5}^{63} + 114 T_{5}^{62} - 48 T_{5}^{61} + \cdots + 43808164416 \)
acting on \(S_{2}^{\mathrm{new}}(702, [\chi])\).