Properties

Label 702.2.w.d
Level $702$
Weight $2$
Character orbit 702.w
Analytic conductor $5.605$
Analytic rank $0$
Dimension $66$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [702,2,Mod(79,702)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(702, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([10, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("702.79");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 702 = 2 \cdot 3^{3} \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 702.w (of order \(9\), degree \(6\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.60549822189\)
Analytic rank: \(0\)
Dimension: \(66\)
Relative dimension: \(11\) over \(\Q(\zeta_{9})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 66 q + 3 q^{5} + 9 q^{6} - 3 q^{7} + 33 q^{8} - 6 q^{9} - 9 q^{10} - 3 q^{11} + 3 q^{14} - 27 q^{15} + 12 q^{17} - 12 q^{18} - 21 q^{19} - 6 q^{20} - 18 q^{21} + 3 q^{22} - 3 q^{25} - 66 q^{26} + 9 q^{27}+ \cdots - 15 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1 −0.173648 + 0.984808i −1.68978 + 0.380306i −0.939693 0.342020i −0.275521 + 0.231189i −0.0811006 1.73015i 0.00574072 0.00208945i 0.500000 0.866025i 2.71073 1.28527i −0.179833 0.311481i
79.2 −0.173648 + 0.984808i −1.55499 0.762899i −0.939693 0.342020i −0.368840 + 0.309494i 1.02133 1.39889i −0.0350928 + 0.0127727i 0.500000 0.866025i 1.83597 + 2.37260i −0.240744 0.416980i
79.3 −0.173648 + 0.984808i −0.979722 1.42834i −0.939693 0.342020i 2.84105 2.38392i 1.57676 0.716809i 3.70478 1.34843i 0.500000 0.866025i −1.08029 + 2.79874i 1.85436 + 3.21185i
79.4 −0.173648 + 0.984808i −0.861412 + 1.50265i −0.939693 0.342020i −2.03645 + 1.70878i −1.33024 1.10926i −3.20713 + 1.16730i 0.500000 0.866025i −1.51594 2.58881i −1.32920 2.30224i
79.5 −0.173648 + 0.984808i −0.357692 1.69471i −0.939693 0.342020i −3.27654 + 2.74935i 1.73108 0.0579739i 2.94419 1.07160i 0.500000 0.866025i −2.74411 + 1.21237i −2.13861 3.70418i
79.6 −0.173648 + 0.984808i 0.137928 1.72655i −0.939693 0.342020i 2.87924 2.41597i 1.67637 + 0.435645i −4.70638 + 1.71298i 0.500000 0.866025i −2.96195 0.476280i 1.87929 + 3.25502i
79.7 −0.173648 + 0.984808i 0.535231 + 1.64728i −0.939693 0.342020i 0.695265 0.583396i −1.71519 + 0.241052i 3.66522 1.33403i 0.500000 0.866025i −2.42706 + 1.76335i 0.453802 + 0.786008i
79.8 −0.173648 + 0.984808i 1.09171 + 1.34468i −0.939693 0.342020i 1.17910 0.989383i −1.51383 + 0.841619i −4.46317 + 1.62446i 0.500000 0.866025i −0.616355 + 2.93600i 0.769603 + 1.33299i
79.9 −0.173648 + 0.984808i 1.10490 1.33386i −0.939693 0.342020i −1.91609 + 1.60779i 1.12173 + 1.31974i −0.872618 + 0.317607i 0.500000 0.866025i −0.558376 2.94758i −1.25064 2.16617i
79.10 −0.173648 + 0.984808i 1.49056 + 0.882179i −0.939693 0.342020i −2.25724 + 1.89405i −1.12761 + 1.31472i −1.04832 + 0.381559i 0.500000 0.866025i 1.44352 + 2.62988i −1.47331 2.55185i
79.11 −0.173648 + 0.984808i 1.67567 0.438337i −0.939693 0.342020i 1.67759 1.40766i 0.140701 + 1.72633i −0.245987 + 0.0895318i 0.500000 0.866025i 2.61572 1.46901i 1.09497 + 1.89654i
157.1 −0.766044 + 0.642788i −1.69764 + 0.343516i 0.173648 0.984808i −2.54927 + 0.927858i 1.07966 1.35437i −0.244846 1.38859i 0.500000 + 0.866025i 2.76399 1.16634i 1.35644 2.34942i
157.2 −0.766044 + 0.642788i −1.69465 0.358017i 0.173648 0.984808i 3.77055 1.37237i 1.52830 0.815041i 0.813092 + 4.61127i 0.500000 + 0.866025i 2.74365 + 1.21342i −2.00627 + 3.47496i
157.3 −0.766044 + 0.642788i −1.59587 + 0.673212i 0.173648 0.984808i 1.05679 0.384641i 0.789771 1.54151i −0.827291 4.69180i 0.500000 + 0.866025i 2.09357 2.14871i −0.562307 + 0.973945i
157.4 −0.766044 + 0.642788i −1.11840 1.32257i 0.173648 0.984808i 1.19732 0.435789i 1.70687 + 0.294255i −0.386363 2.19117i 0.500000 + 0.866025i −0.498376 + 2.95831i −0.637080 + 1.10346i
157.5 −0.766044 + 0.642788i −0.772196 + 1.55039i 0.173648 0.984808i −2.93798 + 1.06934i −0.405036 1.68403i 0.556756 + 3.15752i 0.500000 + 0.866025i −1.80743 2.39441i 1.56327 2.70766i
157.6 −0.766044 + 0.642788i −0.147653 1.72575i 0.173648 0.984808i 0.992799 0.361349i 1.22240 + 1.22709i 0.163744 + 0.928638i 0.500000 + 0.866025i −2.95640 + 0.509623i −0.528257 + 0.914969i
157.7 −0.766044 + 0.642788i 0.131706 + 1.72704i 0.173648 0.984808i 4.03739 1.46949i −1.21101 1.23833i −0.457883 2.59679i 0.500000 + 0.866025i −2.96531 + 0.454921i −2.14825 + 3.72088i
157.8 −0.766044 + 0.642788i 0.839912 1.51478i 0.173648 0.984808i −2.36910 + 0.862282i 0.330269 + 1.70027i 0.250820 + 1.42247i 0.500000 + 0.866025i −1.58909 2.54456i 1.26057 2.18338i
157.9 −0.766044 + 0.642788i 1.08543 + 1.34975i 0.173648 0.984808i 0.0151353 0.00550879i −1.69909 0.336269i 0.674116 + 3.82310i 0.500000 + 0.866025i −0.643672 + 2.93013i −0.00805331 + 0.0139487i
See all 66 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 79.11
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
27.e even 9 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 702.2.w.d 66
27.e even 9 1 inner 702.2.w.d 66
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
702.2.w.d 66 1.a even 1 1 trivial
702.2.w.d 66 27.e even 9 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{66} - 3 T_{5}^{65} + 6 T_{5}^{64} - 56 T_{5}^{63} + 114 T_{5}^{62} - 48 T_{5}^{61} + \cdots + 43808164416 \) acting on \(S_{2}^{\mathrm{new}}(702, [\chi])\). Copy content Toggle raw display