Properties

Label 704.4.c.b
Level $704$
Weight $4$
Character orbit 704.c
Analytic conductor $41.537$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(353,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.353");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.c (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2}\cdot 5^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + 5 \beta_1 q^{3} + \beta_{2} q^{5} + 2 \beta_{3} q^{7} + 2 q^{9} + 11 \beta_1 q^{11} + 4 \beta_{2} q^{13} - 5 \beta_{3} q^{15} + 30 q^{17} + 44 \beta_1 q^{19} + 10 \beta_{2} q^{21} - 7 \beta_{3} q^{23}+ \cdots + 22 \beta_1 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 8 q^{9} + 120 q^{17} + 200 q^{25} - 220 q^{33} + 288 q^{41} - 172 q^{49} - 880 q^{57} - 1200 q^{65} - 2080 q^{73} - 2684 q^{81} - 3396 q^{89} - 4220 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 10\zeta_{12}^{2} - 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -5\zeta_{12}^{3} + 10\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + 5\beta_1 ) / 10 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 5 ) / 10 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
353.1
0.866025 0.500000i
−0.866025 0.500000i
−0.866025 + 0.500000i
0.866025 + 0.500000i
0 5.00000i 0 8.66025i 0 17.3205 0 2.00000 0
353.2 0 5.00000i 0 8.66025i 0 −17.3205 0 2.00000 0
353.3 0 5.00000i 0 8.66025i 0 −17.3205 0 2.00000 0
353.4 0 5.00000i 0 8.66025i 0 17.3205 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
8.b even 2 1 inner
8.d odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.4.c.b 4
4.b odd 2 1 inner 704.4.c.b 4
8.b even 2 1 inner 704.4.c.b 4
8.d odd 2 1 inner 704.4.c.b 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
704.4.c.b 4 1.a even 1 1 trivial
704.4.c.b 4 4.b odd 2 1 inner
704.4.c.b 4 8.b even 2 1 inner
704.4.c.b 4 8.d odd 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(704, [\chi])\):

\( T_{3}^{2} + 25 \) Copy content Toggle raw display
\( T_{5}^{2} + 75 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} \) Copy content Toggle raw display
$3$ \( (T^{2} + 25)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 75)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} - 300)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 121)^{2} \) Copy content Toggle raw display
$13$ \( (T^{2} + 1200)^{2} \) Copy content Toggle raw display
$17$ \( (T - 30)^{4} \) Copy content Toggle raw display
$19$ \( (T^{2} + 1936)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} - 3675)^{2} \) Copy content Toggle raw display
$29$ \( (T^{2} + 1200)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 114075)^{2} \) Copy content Toggle raw display
$37$ \( (T^{2} + 91875)^{2} \) Copy content Toggle raw display
$41$ \( (T - 72)^{4} \) Copy content Toggle raw display
$43$ \( (T^{2} + 62500)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} - 14700)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} + 19200)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 221841)^{2} \) Copy content Toggle raw display
$61$ \( (T^{2} + 172800)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 42025)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 54675)^{2} \) Copy content Toggle raw display
$73$ \( (T + 520)^{4} \) Copy content Toggle raw display
$79$ \( (T^{2} - 780300)^{2} \) Copy content Toggle raw display
$83$ \( (T^{2} + 44100)^{2} \) Copy content Toggle raw display
$89$ \( (T + 849)^{4} \) Copy content Toggle raw display
$97$ \( (T + 1055)^{4} \) Copy content Toggle raw display
show more
show less