Properties

Label 704.4.e.f
Level $704$
Weight $4$
Character orbit 704.e
Analytic conductor $41.537$
Analytic rank $0$
Dimension $16$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,4,Mod(703,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.703");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 704.e (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(41.5373446440\)
Analytic rank: \(0\)
Dimension: \(16\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} + 6x^{14} - 44x^{12} - 176x^{10} + 2176x^{8} - 11264x^{6} - 180224x^{4} + 1572864x^{2} + 16777216 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{42}\cdot 3^{2} \)
Twist minimal: no (minimal twist has level 44)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{15}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{3} + \beta_{2} q^{5} - \beta_{8} q^{7} + (\beta_{4} - 8) q^{9} - \beta_{6} q^{11} - \beta_{3} q^{13} + ( - \beta_{12} - \beta_1) q^{15} + \beta_{13} q^{17} - \beta_{11} q^{19} + ( - \beta_{15} + \beta_{13}) q^{21}+ \cdots + (5 \beta_{14} - 6 \beta_{12} + \cdots + 33 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q + 4 q^{5} - 132 q^{9} + 364 q^{25} - 116 q^{33} + 20 q^{37} + 888 q^{45} + 496 q^{49} - 1344 q^{53} + 564 q^{69} + 1184 q^{77} - 1656 q^{81} + 252 q^{89} - 2140 q^{93} - 4004 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{16} + 6x^{14} - 44x^{12} - 176x^{10} + 2176x^{8} - 11264x^{6} - 180224x^{4} + 1572864x^{2} + 16777216 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( 3\nu^{14} - 6\nu^{12} + 108\nu^{10} + 784\nu^{8} + 6144\nu^{6} - 14336\nu^{4} + 40960\nu^{2} + 2490368 ) / 1441792 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( - 19 \nu^{14} - 2 \nu^{12} + 740 \nu^{10} - 6192 \nu^{8} + 21888 \nu^{6} + 429056 \nu^{4} + \cdots - 29622272 ) / 2883584 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( - 17 \nu^{15} + 250 \nu^{13} + 1836 \nu^{11} + 5936 \nu^{9} + 290176 \nu^{7} + \cdots - 3145728 \nu ) / 11534336 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( ( - 21 \nu^{14} + 146 \nu^{12} + 2300 \nu^{10} - 9808 \nu^{8} - 65920 \nu^{6} - 142336 \nu^{4} + \cdots - 49283072 ) / 2883584 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( ( - 29 \nu^{15} + 12 \nu^{14} + 274 \nu^{13} + 328 \nu^{12} + 1404 \nu^{11} - 3088 \nu^{10} + \cdots + 108003328 ) / 11534336 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( ( 29 \nu^{15} + 12 \nu^{14} - 274 \nu^{13} + 328 \nu^{12} - 1404 \nu^{11} - 3088 \nu^{10} + \cdots + 108003328 ) / 11534336 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( ( - 71 \nu^{14} - 378 \nu^{12} + 4692 \nu^{10} + 18064 \nu^{8} - 301184 \nu^{6} - 9216 \nu^{4} + \cdots - 90963968 ) / 2883584 \) Copy content Toggle raw display
\(\beta_{8}\)\(=\) \( ( 43 \nu^{15} - 30 \nu^{13} - 1572 \nu^{11} + 9200 \nu^{9} + 70528 \nu^{7} - 1766400 \nu^{5} + \cdots + 79691776 \nu ) / 11534336 \) Copy content Toggle raw display
\(\beta_{9}\)\(=\) \( ( 41 \nu^{14} + 270 \nu^{12} - 2044 \nu^{10} - 8528 \nu^{8} + 89600 \nu^{6} - 481280 \nu^{4} + \cdots + 66715648 ) / 1441792 \) Copy content Toggle raw display
\(\beta_{10}\)\(=\) \( ( - 35 \nu^{15} - 562 \nu^{13} + 6596 \nu^{11} + 72848 \nu^{9} - 214912 \nu^{7} + \cdots - 370147328 \nu ) / 11534336 \) Copy content Toggle raw display
\(\beta_{11}\)\(=\) \( ( 5 \nu^{15} - 2 \nu^{13} + 612 \nu^{11} - 1520 \nu^{9} - 12160 \nu^{7} - 76800 \nu^{5} + \cdots - 8388608 \nu ) / 1048576 \) Copy content Toggle raw display
\(\beta_{12}\)\(=\) \( ( 53 \nu^{14} - 194 \nu^{12} - 2844 \nu^{10} - 112 \nu^{8} + 84608 \nu^{6} - 2014208 \nu^{4} + \cdots + 115605504 ) / 1441792 \) Copy content Toggle raw display
\(\beta_{13}\)\(=\) \( ( 101 \nu^{15} - 450 \nu^{13} - 6684 \nu^{11} + 45072 \nu^{9} + 110720 \nu^{7} + \cdots + 208666624 \nu ) / 11534336 \) Copy content Toggle raw display
\(\beta_{14}\)\(=\) \( ( - 133 \nu^{15} - 1086 \nu^{13} + 6172 \nu^{11} + 40176 \nu^{9} - 312448 \nu^{7} + \cdots + 171966464 \nu ) / 11534336 \) Copy content Toggle raw display
\(\beta_{15}\)\(=\) \( ( - 79 \nu^{15} - 122 \nu^{13} + 1492 \nu^{11} - 17968 \nu^{9} + 61056 \nu^{7} + \cdots - 139460608 \nu ) / 5767168 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( -\beta_{15} + \beta_{14} - \beta_{10} - \beta_{8} + \beta_{3} ) / 64 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( ( \beta_{9} + \beta_{7} - \beta_{4} + 2\beta_{2} + \beta _1 - 13 ) / 16 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -\beta_{15} - 4\beta_{13} - 2\beta_{11} + \beta_{10} + 6\beta_{8} + 2\beta_{6} - 2\beta_{5} - \beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( ( -4\beta_{12} + \beta_{9} - \beta_{7} - 4\beta_{6} - 4\beta_{5} - 11\beta_{4} + 2\beta_{2} + 17\beta _1 + 121 ) / 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( ( - 19 \beta_{15} - 3 \beta_{14} + 8 \beta_{13} - 4 \beta_{11} + \beta_{10} - 113 \beta_{8} + \cdots + 15 \beta_{3} ) / 16 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( ( 2\beta_{12} + 2\beta_{9} - \beta_{7} + 10\beta_{6} + 10\beta_{5} - 9\beta_{4} + 60\beta_{2} + 74\beta _1 - 137 ) / 2 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( ( 45 \beta_{15} - 17 \beta_{14} - 16 \beta_{13} - 16 \beta_{11} + 13 \beta_{10} + 129 \beta_{8} + \cdots + 195 \beta_{3} ) / 8 \) Copy content Toggle raw display
\(\nu^{8}\)\(=\) \( ( - 56 \beta_{12} - 27 \beta_{9} + 17 \beta_{7} + 88 \beta_{6} + 88 \beta_{5} - 89 \beta_{4} - 294 \beta_{2} + \cdots - 309 ) / 2 \) Copy content Toggle raw display
\(\nu^{9}\)\(=\) \( ( - 62 \beta_{15} + 37 \beta_{14} + 172 \beta_{13} - 74 \beta_{11} + 108 \beta_{10} + \cdots + 180 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{10}\)\(=\) \( - 4 \beta_{12} - 53 \beta_{9} + 25 \beta_{7} - 4 \beta_{6} - 4 \beta_{5} + 603 \beta_{4} + 310 \beta_{2} + \cdots + 9895 \) Copy content Toggle raw display
\(\nu^{11}\)\(=\) \( ( - 527 \beta_{15} + 773 \beta_{14} - 968 \beta_{13} + 1748 \beta_{11} + 45 \beta_{10} + \cdots + 1891 \beta_{3} ) / 2 \) Copy content Toggle raw display
\(\nu^{12}\)\(=\) \( - 1992 \beta_{12} + 2380 \beta_{9} + 88 \beta_{7} + 1880 \beta_{6} + 1880 \beta_{5} + 3088 \beta_{4} + \cdots + 17952 \) Copy content Toggle raw display
\(\nu^{13}\)\(=\) \( - 4849 \beta_{15} - 1727 \beta_{14} - 5760 \beta_{13} - 3992 \beta_{11} - 745 \beta_{10} + \cdots + 3673 \beta_{3} \) Copy content Toggle raw display
\(\nu^{14}\)\(=\) \( - 960 \beta_{12} + 7892 \beta_{9} - 3372 \beta_{7} - 20224 \beta_{6} - 20224 \beta_{5} - 404 \beta_{4} + \cdots - 886404 \) Copy content Toggle raw display
\(\nu^{15}\)\(=\) \( - 33028 \beta_{15} - 24208 \beta_{14} - 6672 \beta_{13} + 34904 \beta_{11} + 15204 \beta_{10} + \cdots - 10148 \beta_{3} \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/704\mathbb{Z}\right)^\times\).

\(n\) \(133\) \(321\) \(639\)
\(\chi(n)\) \(1\) \(-1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
703.1
−2.78722 + 0.481028i
2.78722 0.481028i
−0.337894 + 2.80817i
0.337894 2.80817i
−1.06306 2.62105i
1.06306 + 2.62105i
2.34246 + 1.58521i
−2.34246 1.58521i
2.34246 1.58521i
−2.34246 + 1.58521i
−1.06306 + 2.62105i
1.06306 2.62105i
−0.337894 2.80817i
0.337894 + 2.80817i
−2.78722 0.481028i
2.78722 + 0.481028i
0 8.15553i 0 7.84961 0 −6.08360 0 −39.5127 0
703.2 0 8.15553i 0 7.84961 0 6.08360 0 −39.5127 0
703.3 0 7.66734i 0 −15.8563 0 −24.1286 0 −31.7881 0
703.4 0 7.66734i 0 −15.8563 0 24.1286 0 −31.7881 0
703.5 0 3.80457i 0 15.3983 0 −27.1053 0 12.5252 0
703.6 0 3.80457i 0 15.3983 0 27.1053 0 12.5252 0
703.7 0 1.10653i 0 −6.39165 0 −11.9207 0 25.7756 0
703.8 0 1.10653i 0 −6.39165 0 11.9207 0 25.7756 0
703.9 0 1.10653i 0 −6.39165 0 −11.9207 0 25.7756 0
703.10 0 1.10653i 0 −6.39165 0 11.9207 0 25.7756 0
703.11 0 3.80457i 0 15.3983 0 −27.1053 0 12.5252 0
703.12 0 3.80457i 0 15.3983 0 27.1053 0 12.5252 0
703.13 0 7.66734i 0 −15.8563 0 −24.1286 0 −31.7881 0
703.14 0 7.66734i 0 −15.8563 0 24.1286 0 −31.7881 0
703.15 0 8.15553i 0 7.84961 0 −6.08360 0 −39.5127 0
703.16 0 8.15553i 0 7.84961 0 6.08360 0 −39.5127 0
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 703.16
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner
11.b odd 2 1 inner
44.c even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.4.e.f 16
4.b odd 2 1 inner 704.4.e.f 16
8.b even 2 1 44.4.c.a 16
8.d odd 2 1 44.4.c.a 16
11.b odd 2 1 inner 704.4.e.f 16
24.f even 2 1 396.4.h.b 16
24.h odd 2 1 396.4.h.b 16
44.c even 2 1 inner 704.4.e.f 16
88.b odd 2 1 44.4.c.a 16
88.g even 2 1 44.4.c.a 16
264.m even 2 1 396.4.h.b 16
264.p odd 2 1 396.4.h.b 16
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.4.c.a 16 8.b even 2 1
44.4.c.a 16 8.d odd 2 1
44.4.c.a 16 88.b odd 2 1
44.4.c.a 16 88.g even 2 1
396.4.h.b 16 24.f even 2 1
396.4.h.b 16 24.h odd 2 1
396.4.h.b 16 264.m even 2 1
396.4.h.b 16 264.p odd 2 1
704.4.e.f 16 1.a even 1 1 trivial
704.4.e.f 16 4.b odd 2 1 inner
704.4.e.f 16 11.b odd 2 1 inner
704.4.e.f 16 44.c even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{4}^{\mathrm{new}}(704, [\chi])\):

\( T_{3}^{8} + 141T_{3}^{6} + 5895T_{3}^{4} + 63607T_{3}^{2} + 69300 \) Copy content Toggle raw display
\( T_{7}^{8} - 1496T_{7}^{6} + 668864T_{7}^{4} - 83538432T_{7}^{2} + 2249555968 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{16} \) Copy content Toggle raw display
$3$ \( (T^{8} + 141 T^{6} + \cdots + 69300)^{2} \) Copy content Toggle raw display
$5$ \( (T^{4} - T^{3} + \cdots + 12250)^{4} \) Copy content Toggle raw display
$7$ \( (T^{8} - 1496 T^{6} + \cdots + 2249555968)^{2} \) Copy content Toggle raw display
$11$ \( T^{16} + \cdots + 98\!\cdots\!41 \) Copy content Toggle raw display
$13$ \( (T^{8} + 7384 T^{6} + \cdots + 192669474816)^{2} \) Copy content Toggle raw display
$17$ \( (T^{8} + \cdots + 19002976763904)^{2} \) Copy content Toggle raw display
$19$ \( (T^{8} + \cdots + 550422481100800)^{2} \) Copy content Toggle raw display
$23$ \( (T^{8} + \cdots + 86\!\cdots\!00)^{2} \) Copy content Toggle raw display
$29$ \( (T^{8} + \cdots + 58\!\cdots\!00)^{2} \) Copy content Toggle raw display
$31$ \( (T^{8} + \cdots + 171617000277492)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} - 5 T^{3} + \cdots - 29264670)^{4} \) Copy content Toggle raw display
$41$ \( (T^{8} + \cdots + 22\!\cdots\!00)^{2} \) Copy content Toggle raw display
$43$ \( (T^{8} + \cdots + 66\!\cdots\!08)^{2} \) Copy content Toggle raw display
$47$ \( (T^{8} + \cdots + 28\!\cdots\!00)^{2} \) Copy content Toggle raw display
$53$ \( (T^{4} + 336 T^{3} + \cdots + 45417040)^{4} \) Copy content Toggle raw display
$59$ \( (T^{8} + \cdots + 95\!\cdots\!00)^{2} \) Copy content Toggle raw display
$61$ \( (T^{8} + \cdots + 18\!\cdots\!00)^{2} \) Copy content Toggle raw display
$67$ \( (T^{8} + \cdots + 15\!\cdots\!00)^{2} \) Copy content Toggle raw display
$71$ \( (T^{8} + \cdots + 30\!\cdots\!00)^{2} \) Copy content Toggle raw display
$73$ \( (T^{8} + \cdots + 38\!\cdots\!96)^{2} \) Copy content Toggle raw display
$79$ \( (T^{8} + \cdots + 15\!\cdots\!00)^{2} \) Copy content Toggle raw display
$83$ \( (T^{8} + \cdots + 88\!\cdots\!28)^{2} \) Copy content Toggle raw display
$89$ \( (T^{4} - 63 T^{3} + \cdots - 26023111450)^{4} \) Copy content Toggle raw display
$97$ \( (T^{4} + 1001 T^{3} + \cdots + 171117066190)^{4} \) Copy content Toggle raw display
show more
show less