Properties

Label 704.6.a.m
Level $704$
Weight $6$
Character orbit 704.a
Self dual yes
Analytic conductor $112.910$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,6,Mod(1,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 704 = 2^{6} \cdot 11 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(112.910209148\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{31}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 44)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = 4\sqrt{31}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta - 3) q^{3} + ( - 2 \beta + 11) q^{5} + (3 \beta - 134) q^{7} + ( - 6 \beta + 262) q^{9} - 121 q^{11} + (5 \beta - 616) q^{13} + (17 \beta - 1025) q^{15} + (47 \beta - 62) q^{17} + ( - 31 \beta + 972) q^{19}+ \cdots + (726 \beta - 31702) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{3} + 22 q^{5} - 268 q^{7} + 524 q^{9} - 242 q^{11} - 1232 q^{13} - 2050 q^{15} - 124 q^{17} + 1944 q^{19} + 3780 q^{21} - 3346 q^{23} - 2040 q^{25} - 6066 q^{27} + 6576 q^{29} - 2498 q^{31} + 726 q^{33}+ \cdots - 63404 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−5.56776
5.56776
0 −25.2711 0 55.5421 0 −200.813 0 395.626 0
1.2 0 19.2711 0 −33.5421 0 −67.1868 0 128.374 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(11\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 704.6.a.m 2
4.b odd 2 1 704.6.a.n 2
8.b even 2 1 176.6.a.g 2
8.d odd 2 1 44.6.a.b 2
24.f even 2 1 396.6.a.f 2
40.e odd 2 1 1100.6.a.b 2
40.k even 4 2 1100.6.b.c 4
88.g even 2 1 484.6.a.d 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
44.6.a.b 2 8.d odd 2 1
176.6.a.g 2 8.b even 2 1
396.6.a.f 2 24.f even 2 1
484.6.a.d 2 88.g even 2 1
704.6.a.m 2 1.a even 1 1 trivial
704.6.a.n 2 4.b odd 2 1
1100.6.a.b 2 40.e odd 2 1
1100.6.b.c 4 40.k even 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{2} + 6T_{3} - 487 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(704))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} + 6T - 487 \) Copy content Toggle raw display
$5$ \( T^{2} - 22T - 1863 \) Copy content Toggle raw display
$7$ \( T^{2} + 268T + 13492 \) Copy content Toggle raw display
$11$ \( (T + 121)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 1232 T + 367056 \) Copy content Toggle raw display
$17$ \( T^{2} + 124 T - 1091820 \) Copy content Toggle raw display
$19$ \( T^{2} - 1944 T + 468128 \) Copy content Toggle raw display
$23$ \( T^{2} + 3346 T + 1072353 \) Copy content Toggle raw display
$29$ \( T^{2} - 6576 T + 7793280 \) Copy content Toggle raw display
$31$ \( T^{2} + 2498 T - 66709935 \) Copy content Toggle raw display
$37$ \( T^{2} - 14674 T + 49448913 \) Copy content Toggle raw display
$41$ \( T^{2} + 6504 T - 102278880 \) Copy content Toggle raw display
$43$ \( T^{2} - 11628 T - 171906460 \) Copy content Toggle raw display
$47$ \( T^{2} + 36816 T + 203702400 \) Copy content Toggle raw display
$53$ \( T^{2} - 3292 T - 653250684 \) Copy content Toggle raw display
$59$ \( T^{2} - 12126 T - 132983631 \) Copy content Toggle raw display
$61$ \( T^{2} + \cdots + 1180267472 \) Copy content Toggle raw display
$67$ \( T^{2} + \cdots - 1274510455 \) Copy content Toggle raw display
$71$ \( T^{2} - 46122 T + 83226825 \) Copy content Toggle raw display
$73$ \( T^{2} - 8240 T - 299672496 \) Copy content Toggle raw display
$79$ \( T^{2} - 14780 T - 305436284 \) Copy content Toggle raw display
$83$ \( T^{2} + \cdots + 1070918340 \) Copy content Toggle raw display
$89$ \( T^{2} + 33698 T + 74328801 \) Copy content Toggle raw display
$97$ \( T^{2} + \cdots - 1061806063 \) Copy content Toggle raw display
show more
show less