Properties

Label 704.6.a.n.1.2
Level 704704
Weight 66
Character 704.1
Self dual yes
Analytic conductor 112.910112.910
Analytic rank 00
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [704,6,Mod(1,704)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(704, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("704.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 704=2611 704 = 2^{6} \cdot 11
Weight: k k == 6 6
Character orbit: [χ][\chi] == 704.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 112.910209148112.910209148
Analytic rank: 00
Dimension: 22
Coefficient field: Q(31)\Q(\sqrt{31})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x231 x^{2} - 31 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 22 2^{2}
Twist minimal: no (minimal twist has level 44)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.2
Root 5.567765.56776 of defining polynomial
Character χ\chi == 704.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+25.2711q3+55.5421q5+200.813q7+395.626q9+121.000q11727.355q13+1403.61q151108.74q171662.40q19+5074.76q21+2986.99q2340.0735q25+3857.03q27+1550.86q29+9511.56q31+3057.80q33+11153.6q35+9430.48q3718381.0q39+7371.29q41+8528.56q43+21973.9q45+30033.5q47+23518.9q4928019.0q5123965.7q53+6720.60q5542010.7q57+6965.57q5949080.3q61+79447.0q6340398.9q65+23928.7q67+75484.5q691881.22q7113674.6q731012.70q75+24298.4q77+11584.9q79+1334.00q81+55143.4q8361581.7q85+39191.8q872372.81q89146063.q91+240367.q9392333.4q957919.13q97+47870.8q99+O(q100)q+25.2711 q^{3} +55.5421 q^{5} +200.813 q^{7} +395.626 q^{9} +121.000 q^{11} -727.355 q^{13} +1403.61 q^{15} -1108.74 q^{17} -1662.40 q^{19} +5074.76 q^{21} +2986.99 q^{23} -40.0735 q^{25} +3857.03 q^{27} +1550.86 q^{29} +9511.56 q^{31} +3057.80 q^{33} +11153.6 q^{35} +9430.48 q^{37} -18381.0 q^{39} +7371.29 q^{41} +8528.56 q^{43} +21973.9 q^{45} +30033.5 q^{47} +23518.9 q^{49} -28019.0 q^{51} -23965.7 q^{53} +6720.60 q^{55} -42010.7 q^{57} +6965.57 q^{59} -49080.3 q^{61} +79447.0 q^{63} -40398.9 q^{65} +23928.7 q^{67} +75484.5 q^{69} -1881.22 q^{71} -13674.6 q^{73} -1012.70 q^{75} +24298.4 q^{77} +11584.9 q^{79} +1334.00 q^{81} +55143.4 q^{83} -61581.7 q^{85} +39191.8 q^{87} -2372.81 q^{89} -146063. q^{91} +240367. q^{93} -92333.4 q^{95} -7919.13 q^{97} +47870.8 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+6q3+22q5+268q7+524q9+242q111232q13+2050q15124q171944q19+3780q21+3346q232040q25+6066q27+6576q29+2498q31+726q33++63404q99+O(q100) 2 q + 6 q^{3} + 22 q^{5} + 268 q^{7} + 524 q^{9} + 242 q^{11} - 1232 q^{13} + 2050 q^{15} - 124 q^{17} - 1944 q^{19} + 3780 q^{21} + 3346 q^{23} - 2040 q^{25} + 6066 q^{27} + 6576 q^{29} + 2498 q^{31} + 726 q^{33}+ \cdots + 63404 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0 0
33 25.2711 1.62114 0.810570 0.585642i 0.199158π-0.199158\pi
0.810570 + 0.585642i 0.199158π0.199158\pi
44 0 0
55 55.5421 0.993568 0.496784 0.867874i 0.334514π-0.334514\pi
0.496784 + 0.867874i 0.334514π0.334514\pi
66 0 0
77 200.813 1.54898 0.774492 0.632583i 0.218005π-0.218005\pi
0.774492 + 0.632583i 0.218005π0.218005\pi
88 0 0
99 395.626 1.62809
1010 0 0
1111 121.000 0.301511
1212 0 0
1313 −727.355 −1.19368 −0.596840 0.802360i 0.703577π-0.703577\pi
−0.596840 + 0.802360i 0.703577π0.703577\pi
1414 0 0
1515 1403.61 1.61071
1616 0 0
1717 −1108.74 −0.930481 −0.465240 0.885184i 0.654032π-0.654032\pi
−0.465240 + 0.885184i 0.654032π0.654032\pi
1818 0 0
1919 −1662.40 −1.05646 −0.528229 0.849102i 0.677144π-0.677144\pi
−0.528229 + 0.849102i 0.677144π0.677144\pi
2020 0 0
2121 5074.76 2.51112
2222 0 0
2323 2986.99 1.17737 0.588687 0.808361i 0.299645π-0.299645\pi
0.588687 + 0.808361i 0.299645π0.299645\pi
2424 0 0
2525 −40.0735 −0.0128235
2626 0 0
2727 3857.03 1.01822
2828 0 0
2929 1550.86 0.342434 0.171217 0.985233i 0.445230π-0.445230\pi
0.171217 + 0.985233i 0.445230π0.445230\pi
3030 0 0
3131 9511.56 1.77766 0.888828 0.458241i 0.151520π-0.151520\pi
0.888828 + 0.458241i 0.151520π0.151520\pi
3232 0 0
3333 3057.80 0.488792
3434 0 0
3535 11153.6 1.53902
3636 0 0
3737 9430.48 1.13248 0.566239 0.824241i 0.308398π-0.308398\pi
0.566239 + 0.824241i 0.308398π0.308398\pi
3838 0 0
3939 −18381.0 −1.93512
4040 0 0
4141 7371.29 0.684832 0.342416 0.939548i 0.388755π-0.388755\pi
0.342416 + 0.939548i 0.388755π0.388755\pi
4242 0 0
4343 8528.56 0.703404 0.351702 0.936112i 0.385603π-0.385603\pi
0.351702 + 0.936112i 0.385603π0.385603\pi
4444 0 0
4545 21973.9 1.61762
4646 0 0
4747 30033.5 1.98318 0.991588 0.129436i 0.0413165π-0.0413165\pi
0.991588 + 0.129436i 0.0413165π0.0413165\pi
4848 0 0
4949 23518.9 1.39935
5050 0 0
5151 −28019.0 −1.50844
5252 0 0
5353 −23965.7 −1.17193 −0.585964 0.810337i 0.699284π-0.699284\pi
−0.585964 + 0.810337i 0.699284π0.699284\pi
5454 0 0
5555 6720.60 0.299572
5656 0 0
5757 −42010.7 −1.71267
5858 0 0
5959 6965.57 0.260511 0.130256 0.991480i 0.458420π-0.458420\pi
0.130256 + 0.991480i 0.458420π0.458420\pi
6060 0 0
6161 −49080.3 −1.68882 −0.844409 0.535699i 0.820048π-0.820048\pi
−0.844409 + 0.535699i 0.820048π0.820048\pi
6262 0 0
6363 79447.0 2.52189
6464 0 0
6565 −40398.9 −1.18600
6666 0 0
6767 23928.7 0.651228 0.325614 0.945503i 0.394429π-0.394429\pi
0.325614 + 0.945503i 0.394429π0.394429\pi
6868 0 0
6969 75484.5 1.90869
7070 0 0
7171 −1881.22 −0.0442889 −0.0221444 0.999755i 0.507049π-0.507049\pi
−0.0221444 + 0.999755i 0.507049π0.507049\pi
7272 0 0
7373 −13674.6 −0.300336 −0.150168 0.988661i 0.547981π-0.547981\pi
−0.150168 + 0.988661i 0.547981π0.547981\pi
7474 0 0
7575 −1012.70 −0.0207887
7676 0 0
7777 24298.4 0.467036
7878 0 0
7979 11584.9 0.208846 0.104423 0.994533i 0.466700π-0.466700\pi
0.104423 + 0.994533i 0.466700π0.466700\pi
8080 0 0
8181 1334.00 0.0225915
8282 0 0
8383 55143.4 0.878614 0.439307 0.898337i 0.355224π-0.355224\pi
0.439307 + 0.898337i 0.355224π0.355224\pi
8484 0 0
8585 −61581.7 −0.924495
8686 0 0
8787 39191.8 0.555133
8888 0 0
8989 −2372.81 −0.0317533 −0.0158766 0.999874i 0.505054π-0.505054\pi
−0.0158766 + 0.999874i 0.505054π0.505054\pi
9090 0 0
9191 −146063. −1.84899
9292 0 0
9393 240367. 2.88183
9494 0 0
9595 −92333.4 −1.04966
9696 0 0
9797 −7919.13 −0.0854571 −0.0427286 0.999087i 0.513605π-0.513605\pi
−0.0427286 + 0.999087i 0.513605π0.513605\pi
9898 0 0
9999 47870.8 0.490888
100100 0 0
101101 45021.1 0.439150 0.219575 0.975596i 0.429533π-0.429533\pi
0.219575 + 0.975596i 0.429533π0.429533\pi
102102 0 0
103103 −112625. −1.04603 −0.523013 0.852325i 0.675192π-0.675192\pi
−0.523013 + 0.852325i 0.675192π0.675192\pi
104104 0 0
105105 281863. 2.49497
106106 0 0
107107 207255. 1.75003 0.875015 0.484096i 0.160851π-0.160851\pi
0.875015 + 0.484096i 0.160851π0.160851\pi
108108 0 0
109109 −94995.8 −0.765840 −0.382920 0.923781i 0.625082π-0.625082\pi
−0.382920 + 0.923781i 0.625082π0.625082\pi
110110 0 0
111111 238318. 1.83590
112112 0 0
113113 84333.5 0.621304 0.310652 0.950524i 0.399453π-0.399453\pi
0.310652 + 0.950524i 0.399453π0.399453\pi
114114 0 0
115115 165904. 1.16980
116116 0 0
117117 −287761. −1.94342
118118 0 0
119119 −222650. −1.44130
120120 0 0
121121 14641.0 0.0909091
122122 0 0
123123 186280. 1.11021
124124 0 0
125125 −175795. −1.00631
126126 0 0
127127 33416.9 0.183847 0.0919236 0.995766i 0.470698π-0.470698\pi
0.0919236 + 0.995766i 0.470698π0.470698\pi
128128 0 0
129129 215526. 1.14032
130130 0 0
131131 −353269. −1.79857 −0.899286 0.437362i 0.855913π-0.855913\pi
−0.899286 + 0.437362i 0.855913π0.855913\pi
132132 0 0
133133 −333832. −1.63644
134134 0 0
135135 214228. 1.01167
136136 0 0
137137 −195043. −0.887829 −0.443915 0.896069i 0.646411π-0.646411\pi
−0.443915 + 0.896069i 0.646411π0.646411\pi
138138 0 0
139139 −297644. −1.30665 −0.653326 0.757077i 0.726627π-0.726627\pi
−0.653326 + 0.757077i 0.726627π0.726627\pi
140140 0 0
141141 758978. 3.21500
142142 0 0
143143 −88010.0 −0.359908
144144 0 0
145145 86137.9 0.340231
146146 0 0
147147 594348. 2.26855
148148 0 0
149149 −32976.3 −0.121685 −0.0608423 0.998147i 0.519379π-0.519379\pi
−0.0608423 + 0.998147i 0.519379π0.519379\pi
150150 0 0
151151 325852. 1.16299 0.581497 0.813548i 0.302467π-0.302467\pi
0.581497 + 0.813548i 0.302467π0.302467\pi
152152 0 0
153153 −438647. −1.51491
154154 0 0
155155 528292. 1.76622
156156 0 0
157157 362988. 1.17528 0.587642 0.809121i 0.300056π-0.300056\pi
0.587642 + 0.809121i 0.300056π0.300056\pi
158158 0 0
159159 −605639. −1.89986
160160 0 0
161161 599827. 1.82373
162162 0 0
163163 −597696. −1.76202 −0.881011 0.473095i 0.843137π-0.843137\pi
−0.881011 + 0.473095i 0.843137π0.843137\pi
164164 0 0
165165 169837. 0.485648
166166 0 0
167167 −474413. −1.31633 −0.658166 0.752873i 0.728667π-0.728667\pi
−0.658166 + 0.752873i 0.728667π0.728667\pi
168168 0 0
169169 157753. 0.424874
170170 0 0
171171 −657690. −1.72001
172172 0 0
173173 −48727.9 −0.123783 −0.0618917 0.998083i 0.519713π-0.519713\pi
−0.0618917 + 0.998083i 0.519713π0.519713\pi
174174 0 0
175175 −8047.28 −0.0198634
176176 0 0
177177 176027. 0.422325
178178 0 0
179179 −615070. −1.43480 −0.717401 0.696660i 0.754668π-0.754668\pi
−0.717401 + 0.696660i 0.754668π0.754668\pi
180180 0 0
181181 −101539. −0.230374 −0.115187 0.993344i 0.536747π-0.536747\pi
−0.115187 + 0.993344i 0.536747π0.536747\pi
182182 0 0
183183 −1.24031e6 −2.73781
184184 0 0
185185 523789. 1.12519
186186 0 0
187187 −134158. −0.280550
188188 0 0
189189 774542. 1.57721
190190 0 0
191191 41311.8 0.0819389 0.0409695 0.999160i 0.486955π-0.486955\pi
0.0409695 + 0.999160i 0.486955π0.486955\pi
192192 0 0
193193 −487524. −0.942111 −0.471056 0.882103i 0.656127π-0.656127\pi
−0.471056 + 0.882103i 0.656127π0.656127\pi
194194 0 0
195195 −1.02092e6 −1.92268
196196 0 0
197197 393575. 0.722539 0.361270 0.932461i 0.382343π-0.382343\pi
0.361270 + 0.932461i 0.382343π0.382343\pi
198198 0 0
199199 −295187. −0.528401 −0.264201 0.964468i 0.585108π-0.585108\pi
−0.264201 + 0.964468i 0.585108π0.585108\pi
200200 0 0
201201 604705. 1.05573
202202 0 0
203203 311433. 0.530425
204204 0 0
205205 409417. 0.680427
206206 0 0
207207 1.18173e6 1.91687
208208 0 0
209209 −201151. −0.318534
210210 0 0
211211 481974. 0.745276 0.372638 0.927977i 0.378453π-0.378453\pi
0.372638 + 0.927977i 0.378453π0.378453\pi
212212 0 0
213213 −47540.5 −0.0717984
214214 0 0
215215 473694. 0.698879
216216 0 0
217217 1.91005e6 2.75356
218218 0 0
219219 −345571. −0.486886
220220 0 0
221221 806448. 1.11070
222222 0 0
223223 233896. 0.314964 0.157482 0.987522i 0.449662π-0.449662\pi
0.157482 + 0.987522i 0.449662π0.449662\pi
224224 0 0
225225 −15854.1 −0.0208779
226226 0 0
227227 −1.10273e6 −1.42038 −0.710191 0.704009i 0.751391π-0.751391\pi
−0.710191 + 0.704009i 0.751391π0.751391\pi
228228 0 0
229229 −46621.7 −0.0587489 −0.0293744 0.999568i 0.509352π-0.509352\pi
−0.0293744 + 0.999568i 0.509352π0.509352\pi
230230 0 0
231231 614046. 0.757131
232232 0 0
233233 995577. 1.20139 0.600696 0.799477i 0.294890π-0.294890\pi
0.600696 + 0.799477i 0.294890π0.294890\pi
234234 0 0
235235 1.66812e6 1.97042
236236 0 0
237237 292764. 0.338568
238238 0 0
239239 −1.40120e6 −1.58674 −0.793372 0.608738i 0.791676π-0.791676\pi
−0.793372 + 0.608738i 0.791676π0.791676\pi
240240 0 0
241241 −1.51280e6 −1.67780 −0.838899 0.544287i 0.816800π-0.816800\pi
−0.838899 + 0.544287i 0.816800π0.816800\pi
242242 0 0
243243 −903546. −0.981601
244244 0 0
245245 1.30629e6 1.39035
246246 0 0
247247 1.20916e6 1.26107
248248 0 0
249249 1.39353e6 1.42436
250250 0 0
251251 −39179.9 −0.0392536 −0.0196268 0.999807i 0.506248π-0.506248\pi
−0.0196268 + 0.999807i 0.506248π0.506248\pi
252252 0 0
253253 361426. 0.354992
254254 0 0
255255 −1.55624e6 −1.49874
256256 0 0
257257 341829. 0.322831 0.161416 0.986887i 0.448394π-0.448394\pi
0.161416 + 0.986887i 0.448394π0.448394\pi
258258 0 0
259259 1.89376e6 1.75419
260260 0 0
261261 613560. 0.557514
262262 0 0
263263 −751539. −0.669980 −0.334990 0.942222i 0.608733π-0.608733\pi
−0.334990 + 0.942222i 0.608733π0.608733\pi
264264 0 0
265265 −1.33111e6 −1.16439
266266 0 0
267267 −59963.5 −0.0514765
268268 0 0
269269 50498.3 0.0425497 0.0212748 0.999774i 0.493228π-0.493228\pi
0.0212748 + 0.999774i 0.493228π0.493228\pi
270270 0 0
271271 447260. 0.369944 0.184972 0.982744i 0.440780π-0.440780\pi
0.184972 + 0.982744i 0.440780π0.440780\pi
272272 0 0
273273 −3.69115e6 −2.99748
274274 0 0
275275 −4848.89 −0.00386643
276276 0 0
277277 −363369. −0.284543 −0.142272 0.989828i 0.545441π-0.545441\pi
−0.142272 + 0.989828i 0.545441π0.545441\pi
278278 0 0
279279 3.76302e6 2.89419
280280 0 0
281281 607636. 0.459069 0.229535 0.973301i 0.426280π-0.426280\pi
0.229535 + 0.973301i 0.426280π0.426280\pi
282282 0 0
283283 1.08363e6 0.804293 0.402147 0.915575i 0.368264π-0.368264\pi
0.402147 + 0.915575i 0.368264π0.368264\pi
284284 0 0
285285 −2.33336e6 −1.70165
286286 0 0
287287 1.48025e6 1.06079
288288 0 0
289289 −190553. −0.134206
290290 0 0
291291 −200125. −0.138538
292292 0 0
293293 384971. 0.261974 0.130987 0.991384i 0.458185π-0.458185\pi
0.130987 + 0.991384i 0.458185π0.458185\pi
294294 0 0
295295 386882. 0.258836
296296 0 0
297297 466701. 0.307006
298298 0 0
299299 −2.17260e6 −1.40541
300300 0 0
301301 1.71265e6 1.08956
302302 0 0
303303 1.13773e6 0.711924
304304 0 0
305305 −2.72603e6 −1.67796
306306 0 0
307307 −76125.6 −0.0460983 −0.0230492 0.999734i 0.507337π-0.507337\pi
−0.0230492 + 0.999734i 0.507337π0.507337\pi
308308 0 0
309309 −2.84616e6 −1.69575
310310 0 0
311311 1.25747e6 0.737219 0.368610 0.929584i 0.379834π-0.379834\pi
0.368610 + 0.929584i 0.379834π0.379834\pi
312312 0 0
313313 −1.31816e6 −0.760516 −0.380258 0.924881i 0.624165π-0.624165\pi
−0.380258 + 0.924881i 0.624165π0.624165\pi
314314 0 0
315315 4.41265e6 2.50567
316316 0 0
317317 −2.56055e6 −1.43115 −0.715574 0.698536i 0.753835π-0.753835\pi
−0.715574 + 0.698536i 0.753835π0.753835\pi
318318 0 0
319319 187654. 0.103248
320320 0 0
321321 5.23755e6 2.83704
322322 0 0
323323 1.84317e6 0.983014
324324 0 0
325325 29147.7 0.0153072
326326 0 0
327327 −2.40064e6 −1.24153
328328 0 0
329329 6.03112e6 3.07191
330330 0 0
331331 355258. 0.178227 0.0891135 0.996021i 0.471597π-0.471597\pi
0.0891135 + 0.996021i 0.471597π0.471597\pi
332332 0 0
333333 3.73095e6 1.84378
334334 0 0
335335 1.32905e6 0.647039
336336 0 0
337337 −1.46585e6 −0.703095 −0.351548 0.936170i 0.614344π-0.614344\pi
−0.351548 + 0.936170i 0.614344π0.614344\pi
338338 0 0
339339 2.13120e6 1.00722
340340 0 0
341341 1.15090e6 0.535983
342342 0 0
343343 1.34784e6 0.618592
344344 0 0
345345 4.19257e6 1.89641
346346 0 0
347347 2.14456e6 0.956126 0.478063 0.878326i 0.341339π-0.341339\pi
0.478063 + 0.878326i 0.341339π0.341339\pi
348348 0 0
349349 3.12653e6 1.37404 0.687019 0.726640i 0.258919π-0.258919\pi
0.687019 + 0.726640i 0.258919π0.258919\pi
350350 0 0
351351 −2.80543e6 −1.21543
352352 0 0
353353 368782. 0.157519 0.0787594 0.996894i 0.474904π-0.474904\pi
0.0787594 + 0.996894i 0.474904π0.474904\pi
354354 0 0
355355 −104487. −0.0440040
356356 0 0
357357 −5.62659e6 −2.33655
358358 0 0
359359 −2.36501e6 −0.968496 −0.484248 0.874931i 0.660907π-0.660907\pi
−0.484248 + 0.874931i 0.660907π0.660907\pi
360360 0 0
361361 287484. 0.116104
362362 0 0
363363 369994. 0.147376
364364 0 0
365365 −759515. −0.298404
366366 0 0
367367 1.98689e6 0.770032 0.385016 0.922910i 0.374196π-0.374196\pi
0.385016 + 0.922910i 0.374196π0.374196\pi
368368 0 0
369369 2.91628e6 1.11497
370370 0 0
371371 −4.81263e6 −1.81530
372372 0 0
373373 −100049. −0.0372339 −0.0186170 0.999827i 0.505926π-0.505926\pi
−0.0186170 + 0.999827i 0.505926π0.505926\pi
374374 0 0
375375 −4.44252e6 −1.63137
376376 0 0
377377 −1.12802e6 −0.408757
378378 0 0
379379 −271345. −0.0970340 −0.0485170 0.998822i 0.515450π-0.515450\pi
−0.0485170 + 0.998822i 0.515450π0.515450\pi
380380 0 0
381381 844481. 0.298042
382382 0 0
383383 −3.35065e6 −1.16717 −0.583583 0.812054i 0.698350π-0.698350\pi
−0.583583 + 0.812054i 0.698350π0.698350\pi
384384 0 0
385385 1.34958e6 0.464032
386386 0 0
387387 3.37412e6 1.14521
388388 0 0
389389 1.57219e6 0.526782 0.263391 0.964689i 0.415159π-0.415159\pi
0.263391 + 0.964689i 0.415159π0.415159\pi
390390 0 0
391391 −3.31180e6 −1.09552
392392 0 0
393393 −8.92749e6 −2.91573
394394 0 0
395395 643452. 0.207503
396396 0 0
397397 2.94505e6 0.937813 0.468907 0.883248i 0.344648π-0.344648\pi
0.468907 + 0.883248i 0.344648π0.344648\pi
398398 0 0
399399 −8.43630e6 −2.65289
400400 0 0
401401 −480807. −0.149317 −0.0746586 0.997209i 0.523787π-0.523787\pi
−0.0746586 + 0.997209i 0.523787π0.523787\pi
402402 0 0
403403 −6.91829e6 −2.12195
404404 0 0
405405 74093.3 0.0224461
406406 0 0
407407 1.14109e6 0.341455
408408 0 0
409409 2.80073e6 0.827872 0.413936 0.910306i 0.364154π-0.364154\pi
0.413936 + 0.910306i 0.364154π0.364154\pi
410410 0 0
411411 −4.92895e6 −1.43930
412412 0 0
413413 1.39878e6 0.403528
414414 0 0
415415 3.06278e6 0.872963
416416 0 0
417417 −7.52177e6 −2.11826
418418 0 0
419419 4.58561e6 1.27603 0.638017 0.770022i 0.279755π-0.279755\pi
0.638017 + 0.770022i 0.279755π0.279755\pi
420420 0 0
421421 −3.65111e6 −1.00397 −0.501984 0.864877i 0.667396π-0.667396\pi
−0.501984 + 0.864877i 0.667396π0.667396\pi
422422 0 0
423423 1.18820e7 3.22879
424424 0 0
425425 44431.0 0.0119320
426426 0 0
427427 −9.85598e6 −2.61595
428428 0 0
429429 −2.22411e6 −0.583461
430430 0 0
431431 3.90343e6 1.01217 0.506085 0.862484i 0.331092π-0.331092\pi
0.506085 + 0.862484i 0.331092π0.331092\pi
432432 0 0
433433 −6.51560e6 −1.67007 −0.835035 0.550196i 0.814553π-0.814553\pi
−0.835035 + 0.550196i 0.814553π0.814553\pi
434434 0 0
435435 2.17680e6 0.551562
436436 0 0
437437 −4.96558e6 −1.24385
438438 0 0
439439 2.51459e6 0.622738 0.311369 0.950289i 0.399213π-0.399213\pi
0.311369 + 0.950289i 0.399213π0.399213\pi
440440 0 0
441441 9.30471e6 2.27828
442442 0 0
443443 −1.09010e6 −0.263910 −0.131955 0.991256i 0.542126π-0.542126\pi
−0.131955 + 0.991256i 0.542126π0.542126\pi
444444 0 0
445445 −131791. −0.0315490
446446 0 0
447447 −833345. −0.197268
448448 0 0
449449 −2.03880e6 −0.477265 −0.238633 0.971110i 0.576699π-0.576699\pi
−0.238633 + 0.971110i 0.576699π0.576699\pi
450450 0 0
451451 891927. 0.206485
452452 0 0
453453 8.23462e6 1.88538
454454 0 0
455455 −8.11262e6 −1.83710
456456 0 0
457457 −7.74124e6 −1.73388 −0.866942 0.498410i 0.833918π-0.833918\pi
−0.866942 + 0.498410i 0.833918π0.833918\pi
458458 0 0
459459 −4.27644e6 −0.947438
460460 0 0
461461 −5.59266e6 −1.22565 −0.612824 0.790219i 0.709967π-0.709967\pi
−0.612824 + 0.790219i 0.709967π0.709967\pi
462462 0 0
463463 −796538. −0.172685 −0.0863423 0.996266i 0.527518π-0.527518\pi
−0.0863423 + 0.996266i 0.527518π0.527518\pi
464464 0 0
465465 1.33505e7 2.86329
466466 0 0
467467 −1.88198e6 −0.399322 −0.199661 0.979865i 0.563984π-0.563984\pi
−0.199661 + 0.979865i 0.563984π0.563984\pi
468468 0 0
469469 4.80521e6 1.00874
470470 0 0
471471 9.17309e6 1.90530
472472 0 0
473473 1.03196e6 0.212084
474474 0 0
475475 66618.3 0.0135475
476476 0 0
477477 −9.48147e6 −1.90801
478478 0 0
479479 −7.39299e6 −1.47225 −0.736125 0.676846i 0.763346π-0.763346\pi
−0.736125 + 0.676846i 0.763346π0.763346\pi
480480 0 0
481481 −6.85931e6 −1.35182
482482 0 0
483483 1.51583e7 2.95653
484484 0 0
485485 −439845. −0.0849074
486486 0 0
487487 −2.44572e6 −0.467288 −0.233644 0.972322i 0.575065π-0.575065\pi
−0.233644 + 0.972322i 0.575065π0.575065\pi
488488 0 0
489489 −1.51044e7 −2.85648
490490 0 0
491491 −555739. −0.104032 −0.0520160 0.998646i 0.516565π-0.516565\pi
−0.0520160 + 0.998646i 0.516565π0.516565\pi
492492 0 0
493493 −1.71950e6 −0.318628
494494 0 0
495495 2.65884e6 0.487731
496496 0 0
497497 −377775. −0.0686028
498498 0 0
499499 −8.28233e6 −1.48902 −0.744511 0.667610i 0.767317π-0.767317\pi
−0.744511 + 0.667610i 0.767317π0.767317\pi
500500 0 0
501501 −1.19889e7 −2.13396
502502 0 0
503503 2.15819e6 0.380337 0.190169 0.981751i 0.439097π-0.439097\pi
0.190169 + 0.981751i 0.439097π0.439097\pi
504504 0 0
505505 2.50057e6 0.436325
506506 0 0
507507 3.98658e6 0.688780
508508 0 0
509509 7.95956e6 1.36174 0.680870 0.732404i 0.261602π-0.261602\pi
0.680870 + 0.732404i 0.261602π0.261602\pi
510510 0 0
511511 −2.74603e6 −0.465215
512512 0 0
513513 −6.41194e6 −1.07571
514514 0 0
515515 −6.25544e6 −1.03930
516516 0 0
517517 3.63405e6 0.597950
518518 0 0
519519 −1.23140e6 −0.200670
520520 0 0
521521 −3.85570e6 −0.622312 −0.311156 0.950359i 0.600716π-0.600716\pi
−0.311156 + 0.950359i 0.600716π0.600716\pi
522522 0 0
523523 −7.82125e6 −1.25032 −0.625161 0.780496i 0.714967π-0.714967\pi
−0.625161 + 0.780496i 0.714967π0.714967\pi
524524 0 0
525525 −203363. −0.0322014
526526 0 0
527527 −1.05458e7 −1.65407
528528 0 0
529529 2.48578e6 0.386210
530530 0 0
531531 2.75576e6 0.424136
532532 0 0
533533 −5.36155e6 −0.817471
534534 0 0
535535 1.15114e7 1.73877
536536 0 0
537537 −1.55435e7 −2.32601
538538 0 0
539539 2.84579e6 0.421921
540540 0 0
541541 −1.17121e6 −0.172044 −0.0860221 0.996293i 0.527416π-0.527416\pi
−0.0860221 + 0.996293i 0.527416π0.527416\pi
542542 0 0
543543 −2.56599e6 −0.373469
544544 0 0
545545 −5.27627e6 −0.760914
546546 0 0
547547 −4.98116e6 −0.711807 −0.355904 0.934523i 0.615827π-0.615827\pi
−0.355904 + 0.934523i 0.615827π0.615827\pi
548548 0 0
549549 −1.94175e7 −2.74955
550550 0 0
551551 −2.57815e6 −0.361767
552552 0 0
553553 2.32641e6 0.323499
554554 0 0
555555 1.32367e7 1.82409
556556 0 0
557557 7.59988e6 1.03793 0.518966 0.854795i 0.326317π-0.326317\pi
0.518966 + 0.854795i 0.326317π0.326317\pi
558558 0 0
559559 −6.20329e6 −0.839639
560560 0 0
561561 −3.39030e6 −0.454811
562562 0 0
563563 −4.85731e6 −0.645840 −0.322920 0.946426i 0.604664π-0.604664\pi
−0.322920 + 0.946426i 0.604664π0.604664\pi
564564 0 0
565565 4.68406e6 0.617308
566566 0 0
567567 267885. 0.0349938
568568 0 0
569569 4.86673e6 0.630169 0.315084 0.949064i 0.397967π-0.397967\pi
0.315084 + 0.949064i 0.397967π0.397967\pi
570570 0 0
571571 −647211. −0.0830722 −0.0415361 0.999137i 0.513225π-0.513225\pi
−0.0415361 + 0.999137i 0.513225π0.513225\pi
572572 0 0
573573 1.04399e6 0.132834
574574 0 0
575575 −119699. −0.0150981
576576 0 0
577577 6.28194e6 0.785515 0.392757 0.919642i 0.371521π-0.371521\pi
0.392757 + 0.919642i 0.371521π0.371521\pi
578578 0 0
579579 −1.23202e7 −1.52729
580580 0 0
581581 1.10735e7 1.36096
582582 0 0
583583 −2.89985e6 −0.353349
584584 0 0
585585 −1.59828e7 −1.93092
586586 0 0
587587 1.43029e7 1.71328 0.856638 0.515917i 0.172549π-0.172549\pi
0.856638 + 0.515917i 0.172549π0.172549\pi
588588 0 0
589589 −1.58120e7 −1.87802
590590 0 0
591591 9.94604e6 1.17134
592592 0 0
593593 1.11657e7 1.30392 0.651960 0.758254i 0.273947π-0.273947\pi
0.651960 + 0.758254i 0.273947π0.273947\pi
594594 0 0
595595 −1.23664e7 −1.43203
596596 0 0
597597 −7.45968e6 −0.856612
598598 0 0
599599 −2.22282e6 −0.253126 −0.126563 0.991959i 0.540395π-0.540395\pi
−0.126563 + 0.991959i 0.540395π0.540395\pi
600600 0 0
601601 1.25195e7 1.41384 0.706920 0.707294i 0.250084π-0.250084\pi
0.706920 + 0.707294i 0.250084π0.250084\pi
602602 0 0
603603 9.46684e6 1.06026
604604 0 0
605605 813192. 0.0903243
606606 0 0
607607 9.80774e6 1.08043 0.540216 0.841527i 0.318343π-0.318343\pi
0.540216 + 0.841527i 0.318343π0.318343\pi
608608 0 0
609609 7.87023e6 0.859893
610610 0 0
611611 −2.18450e7 −2.36728
612612 0 0
613613 1.04278e7 1.12084 0.560418 0.828210i 0.310641π-0.310641\pi
0.560418 + 0.828210i 0.310641π0.310641\pi
614614 0 0
615615 1.03464e7 1.10307
616616 0 0
617617 −1.83918e6 −0.194497 −0.0972483 0.995260i 0.531004π-0.531004\pi
−0.0972483 + 0.995260i 0.531004π0.531004\pi
618618 0 0
619619 −185199. −0.0194272 −0.00971362 0.999953i 0.503092π-0.503092\pi
−0.00971362 + 0.999953i 0.503092π0.503092\pi
620620 0 0
621621 1.15209e7 1.19883
622622 0 0
623623 −476492. −0.0491853
624624 0 0
625625 −9.63879e6 −0.987012
626626 0 0
627627 −5.08329e6 −0.516388
628628 0 0
629629 −1.04559e7 −1.05375
630630 0 0
631631 −6.47412e6 −0.647303 −0.323651 0.946176i 0.604910π-0.604910\pi
−0.323651 + 0.946176i 0.604910π0.604910\pi
632632 0 0
633633 1.21800e7 1.20820
634634 0 0
635635 1.85605e6 0.182665
636636 0 0
637637 −1.71066e7 −1.67038
638638 0 0
639639 −744262. −0.0721064
640640 0 0
641641 4.64672e6 0.446685 0.223343 0.974740i 0.428303π-0.428303\pi
0.223343 + 0.974740i 0.428303π0.428303\pi
642642 0 0
643643 1.28549e7 1.22614 0.613072 0.790027i 0.289933π-0.289933\pi
0.613072 + 0.790027i 0.289933π0.289933\pi
644644 0 0
645645 1.19708e7 1.13298
646646 0 0
647647 1.61104e7 1.51302 0.756510 0.653982i 0.226903π-0.226903\pi
0.756510 + 0.653982i 0.226903π0.226903\pi
648648 0 0
649649 842834. 0.0785471
650650 0 0
651651 4.82689e7 4.46391
652652 0 0
653653 −4.72189e6 −0.433344 −0.216672 0.976244i 0.569520π-0.569520\pi
−0.216672 + 0.976244i 0.569520π0.569520\pi
654654 0 0
655655 −1.96213e7 −1.78700
656656 0 0
657657 −5.41002e6 −0.488974
658658 0 0
659659 6.08366e6 0.545697 0.272848 0.962057i 0.412034π-0.412034\pi
0.272848 + 0.962057i 0.412034π0.412034\pi
660660 0 0
661661 −1.01649e6 −0.0904897 −0.0452448 0.998976i 0.514407π-0.514407\pi
−0.0452448 + 0.998976i 0.514407π0.514407\pi
662662 0 0
663663 2.03798e7 1.80059
664664 0 0
665665 −1.85418e7 −1.62591
666666 0 0
667667 4.63240e6 0.403173
668668 0 0
669669 5.91080e6 0.510600
670670 0 0
671671 −5.93872e6 −0.509198
672672 0 0
673673 1.00418e7 0.854619 0.427310 0.904105i 0.359461π-0.359461\pi
0.427310 + 0.904105i 0.359461π0.359461\pi
674674 0 0
675675 −154565. −0.0130572
676676 0 0
677677 −1.12734e7 −0.945331 −0.472665 0.881242i 0.656708π-0.656708\pi
−0.472665 + 0.881242i 0.656708π0.656708\pi
678678 0 0
679679 −1.59027e6 −0.132372
680680 0 0
681681 −2.78672e7 −2.30264
682682 0 0
683683 2.74328e6 0.225018 0.112509 0.993651i 0.464111π-0.464111\pi
0.112509 + 0.993651i 0.464111π0.464111\pi
684684 0 0
685685 −1.08331e7 −0.882119
686686 0 0
687687 −1.17818e6 −0.0952401
688688 0 0
689689 1.74316e7 1.39891
690690 0 0
691691 1.31710e7 1.04936 0.524680 0.851300i 0.324185π-0.324185\pi
0.524680 + 0.851300i 0.324185π0.324185\pi
692692 0 0
693693 9.61308e6 0.760378
694694 0 0
695695 −1.65318e7 −1.29825
696696 0 0
697697 −8.17285e6 −0.637223
698698 0 0
699699 2.51593e7 1.94763
700700 0 0
701701 −1.76568e7 −1.35712 −0.678558 0.734546i 0.737395π-0.737395\pi
−0.678558 + 0.734546i 0.737395π0.737395\pi
702702 0 0
703703 −1.56773e7 −1.19641
704704 0 0
705705 4.21552e7 3.19432
706706 0 0
707707 9.04084e6 0.680237
708708 0 0
709709 1.58423e7 1.18360 0.591798 0.806086i 0.298418π-0.298418\pi
0.591798 + 0.806086i 0.298418π0.298418\pi
710710 0 0
711711 4.58331e6 0.340020
712712 0 0
713713 2.84110e7 2.09297
714714 0 0
715715 −4.88826e6 −0.357593
716716 0 0
717717 −3.54099e7 −2.57233
718718 0 0
719719 1.10799e7 0.799305 0.399652 0.916667i 0.369131π-0.369131\pi
0.399652 + 0.916667i 0.369131π0.369131\pi
720720 0 0
721721 −2.26166e7 −1.62028
722722 0 0
723723 −3.82301e7 −2.71994
724724 0 0
725725 −62148.2 −0.00439121
726726 0 0
727727 −9.71158e6 −0.681481 −0.340741 0.940157i 0.610678π-0.610678\pi
−0.340741 + 0.940157i 0.610678π0.610678\pi
728728 0 0
729729 −2.31577e7 −1.61390
730730 0 0
731731 −9.45595e6 −0.654503
732732 0 0
733733 −2.45714e6 −0.168916 −0.0844580 0.996427i 0.526916π-0.526916\pi
−0.0844580 + 0.996427i 0.526916π0.526916\pi
734734 0 0
735735 3.30114e7 2.25395
736736 0 0
737737 2.89538e6 0.196353
738738 0 0
739739 −2.22772e6 −0.150055 −0.0750273 0.997181i 0.523904π-0.523904\pi
−0.0750273 + 0.997181i 0.523904π0.523904\pi
740740 0 0
741741 3.05567e7 2.04438
742742 0 0
743743 1.01867e7 0.676960 0.338480 0.940974i 0.390087π-0.390087\pi
0.338480 + 0.940974i 0.390087π0.390087\pi
744744 0 0
745745 −1.83157e6 −0.120902
746746 0 0
747747 2.18162e7 1.43046
748748 0 0
749749 4.16195e7 2.71077
750750 0 0
751751 6.45437e6 0.417594 0.208797 0.977959i 0.433045π-0.433045\pi
0.208797 + 0.977959i 0.433045π0.433045\pi
752752 0 0
753753 −990119. −0.0636355
754754 0 0
755755 1.80985e7 1.15551
756756 0 0
757757 1.46247e7 0.927571 0.463785 0.885948i 0.346491π-0.346491\pi
0.463785 + 0.885948i 0.346491π0.346491\pi
758758 0 0
759759 9.13362e6 0.575491
760760 0 0
761761 −2.73756e7 −1.71357 −0.856784 0.515675i 0.827541π-0.827541\pi
−0.856784 + 0.515675i 0.827541π0.827541\pi
762762 0 0
763763 −1.90764e7 −1.18627
764764 0 0
765765 −2.43634e7 −1.50516
766766 0 0
767767 −5.06644e6 −0.310967
768768 0 0
769769 −1.18927e7 −0.725213 −0.362607 0.931942i 0.618113π-0.618113\pi
−0.362607 + 0.931942i 0.618113π0.618113\pi
770770 0 0
771771 8.63837e6 0.523354
772772 0 0
773773 1.16963e7 0.704042 0.352021 0.935992i 0.385495π-0.385495\pi
0.352021 + 0.935992i 0.385495π0.385495\pi
774774 0 0
775775 −381161. −0.0227958
776776 0 0
777777 4.78574e7 2.84379
778778 0 0
779779 −1.22541e7 −0.723496
780780 0 0
781781 −227628. −0.0133536
782782 0 0
783783 5.98170e6 0.348675
784784 0 0
785785 2.01611e7 1.16772
786786 0 0
787787 −2.48828e6 −0.143206 −0.0716031 0.997433i 0.522811π-0.522811\pi
−0.0716031 + 0.997433i 0.522811π0.522811\pi
788788 0 0
789789 −1.89922e7 −1.08613
790790 0 0
791791 1.69353e7 0.962390
792792 0 0
793793 3.56988e7 2.01591
794794 0 0
795795 −3.36385e7 −1.88764
796796 0 0
797797 −2.98889e7 −1.66673 −0.833363 0.552726i 0.813588π-0.813588\pi
−0.833363 + 0.552726i 0.813588π0.813588\pi
798798 0 0
799799 −3.32993e7 −1.84531
800800 0 0
801801 −938747. −0.0516972
802802 0 0
803803 −1.65462e6 −0.0905546
804804 0 0
805805 3.33157e7 1.81200
806806 0 0
807807 1.27615e6 0.0689789
808808 0 0
809809 −2.61207e7 −1.40318 −0.701590 0.712581i 0.747526π-0.747526\pi
−0.701590 + 0.712581i 0.747526π0.747526\pi
810810 0 0
811811 −2.19410e7 −1.17140 −0.585699 0.810529i 0.699180π-0.699180\pi
−0.585699 + 0.810529i 0.699180π0.699180\pi
812812 0 0
813813 1.13027e7 0.599731
814814 0 0
815815 −3.31973e7 −1.75069
816816 0 0
817817 −1.41779e7 −0.743116
818818 0 0
819819 −5.77862e7 −3.01033
820820 0 0
821821 −4.75760e6 −0.246337 −0.123169 0.992386i 0.539306π-0.539306\pi
−0.123169 + 0.992386i 0.539306π0.539306\pi
822822 0 0
823823 6.19431e6 0.318782 0.159391 0.987216i 0.449047π-0.449047\pi
0.159391 + 0.987216i 0.449047π0.449047\pi
824824 0 0
825825 −122537. −0.00626803
826826 0 0
827827 1.41552e7 0.719699 0.359850 0.933010i 0.382828π-0.382828\pi
0.359850 + 0.933010i 0.382828π0.382828\pi
828828 0 0
829829 1.19032e7 0.601556 0.300778 0.953694i 0.402754π-0.402754\pi
0.300778 + 0.953694i 0.402754π0.402754\pi
830830 0 0
831831 −9.18271e6 −0.461284
832832 0 0
833833 −2.60764e7 −1.30207
834834 0 0
835835 −2.63499e7 −1.30786
836836 0 0
837837 3.66864e7 1.81005
838838 0 0
839839 3.80619e7 1.86675 0.933374 0.358904i 0.116850π-0.116850\pi
0.933374 + 0.358904i 0.116850π0.116850\pi
840840 0 0
841841 −1.81060e7 −0.882739
842842 0 0
843843 1.53556e7 0.744215
844844 0 0
845845 8.76192e6 0.422141
846846 0 0
847847 2.94011e6 0.140817
848848 0 0
849849 2.73844e7 1.30387
850850 0 0
851851 2.81688e7 1.33335
852852 0 0
853853 −8.91252e6 −0.419400 −0.209700 0.977766i 0.567249π-0.567249\pi
−0.209700 + 0.977766i 0.567249π0.567249\pi
854854 0 0
855855 −3.65295e7 −1.70895
856856 0 0
857857 2.38385e7 1.10873 0.554366 0.832273i 0.312961π-0.312961\pi
0.554366 + 0.832273i 0.312961π0.312961\pi
858858 0 0
859859 7.15819e6 0.330994 0.165497 0.986210i 0.447077π-0.447077\pi
0.165497 + 0.986210i 0.447077π0.447077\pi
860860 0 0
861861 3.74076e7 1.71970
862862 0 0
863863 2.33903e7 1.06908 0.534539 0.845144i 0.320485π-0.320485\pi
0.534539 + 0.845144i 0.320485π0.320485\pi
864864 0 0
865865 −2.70645e6 −0.122987
866866 0 0
867867 −4.81548e6 −0.217567
868868 0 0
869869 1.40178e6 0.0629694
870870 0 0
871871 −1.74047e7 −0.777358
872872 0 0
873873 −3.13302e6 −0.139132
874874 0 0
875875 −3.53019e7 −1.55876
876876 0 0
877877 4.19751e7 1.84286 0.921431 0.388543i 0.127021π-0.127021\pi
0.921431 + 0.388543i 0.127021π0.127021\pi
878878 0 0
879879 9.72862e6 0.424697
880880 0 0
881881 −7.55945e6 −0.328134 −0.164067 0.986449i 0.552461π-0.552461\pi
−0.164067 + 0.986449i 0.552461π0.552461\pi
882882 0 0
883883 2.89794e7 1.25080 0.625400 0.780304i 0.284936π-0.284936\pi
0.625400 + 0.780304i 0.284936π0.284936\pi
884884 0 0
885885 9.77693e6 0.419608
886886 0 0
887887 −4.19301e7 −1.78944 −0.894719 0.446629i 0.852624π-0.852624\pi
−0.894719 + 0.446629i 0.852624π0.852624\pi
888888 0 0
889889 6.71056e6 0.284776
890890 0 0
891891 161414. 0.00681158
892892 0 0
893893 −4.99278e7 −2.09514
894894 0 0
895895 −3.41623e7 −1.42557
896896 0 0
897897 −5.49040e7 −2.27836
898898 0 0
899899 1.47511e7 0.608730
900900 0 0
901901 2.65717e7 1.09046
902902 0 0
903903 4.32804e7 1.76633
904904 0 0
905905 −5.63966e6 −0.228893
906906 0 0
907907 7.79438e6 0.314603 0.157302 0.987551i 0.449721π-0.449721\pi
0.157302 + 0.987551i 0.449721π0.449721\pi
908908 0 0
909909 1.78116e7 0.714977
910910 0 0
911911 −2.09270e7 −0.835431 −0.417715 0.908578i 0.637169π-0.637169\pi
−0.417715 + 0.908578i 0.637169π0.637169\pi
912912 0 0
913913 6.67235e6 0.264912
914914 0 0
915915 −6.88895e7 −2.72020
916916 0 0
917917 −7.09411e7 −2.78596
918918 0 0
919919 6.21354e6 0.242689 0.121344 0.992610i 0.461279π-0.461279\pi
0.121344 + 0.992610i 0.461279π0.461279\pi
920920 0 0
921921 −1.92378e6 −0.0747318
922922 0 0
923923 1.36832e6 0.0528668
924924 0 0
925925 −377912. −0.0145223
926926 0 0
927927 −4.45575e7 −1.70303
928928 0 0
929929 1.86038e7 0.707234 0.353617 0.935390i 0.384952π-0.384952\pi
0.353617 + 0.935390i 0.384952π0.384952\pi
930930 0 0
931931 −3.90979e7 −1.47836
932932 0 0
933933 3.17776e7 1.19514
934934 0 0
935935 −7.45139e6 −0.278746
936936 0 0
937937 5.27518e7 1.96286 0.981428 0.191832i 0.0614429π-0.0614429\pi
0.981428 + 0.191832i 0.0614429π0.0614429\pi
938938 0 0
939939 −3.33114e7 −1.23290
940940 0 0
941941 −3.67919e7 −1.35450 −0.677249 0.735754i 0.736828π-0.736828\pi
−0.677249 + 0.735754i 0.736828π0.736828\pi
942942 0 0
943943 2.20180e7 0.806304
944944 0 0
945945 4.30197e7 1.56707
946946 0 0
947947 −3.70930e7 −1.34406 −0.672028 0.740526i 0.734576π-0.734576\pi
−0.672028 + 0.740526i 0.734576π0.734576\pi
948948 0 0
949949 9.94627e6 0.358505
950950 0 0
951951 −6.47078e7 −2.32009
952952 0 0
953953 −1.77859e7 −0.634373 −0.317187 0.948363i 0.602738π-0.602738\pi
−0.317187 + 0.948363i 0.602738π0.602738\pi
954954 0 0
955955 2.29454e6 0.0814119
956956 0 0
957957 4.74221e6 0.167379
958958 0 0
959959 −3.91673e7 −1.37523
960960 0 0
961961 6.18407e7 2.16006
962962 0 0
963963 8.19955e7 2.84921
964964 0 0
965965 −2.70781e7 −0.936051
966966 0 0
967967 −1.30531e7 −0.448897 −0.224448 0.974486i 0.572058π-0.572058\pi
−0.224448 + 0.974486i 0.572058π0.572058\pi
968968 0 0
969969 4.65789e7 1.59360
970970 0 0
971971 −1.33944e7 −0.455908 −0.227954 0.973672i 0.573204π-0.573204\pi
−0.227954 + 0.973672i 0.573204π0.573204\pi
972972 0 0
973973 −5.97708e7 −2.02398
974974 0 0
975975 736592. 0.0248151
976976 0 0
977977 −5.84912e7 −1.96044 −0.980221 0.197905i 0.936586π-0.936586\pi
−0.980221 + 0.197905i 0.936586π0.936586\pi
978978 0 0
979979 −287110. −0.00957397
980980 0 0
981981 −3.75828e7 −1.24686
982982 0 0
983983 2.61534e7 0.863265 0.431632 0.902050i 0.357938π-0.357938\pi
0.431632 + 0.902050i 0.357938π0.357938\pi
984984 0 0
985985 2.18600e7 0.717891
986986 0 0
987987 1.52413e8 4.97999
988988 0 0
989989 2.54747e7 0.828169
990990 0 0
991991 5.29034e7 1.71119 0.855597 0.517643i 0.173190π-0.173190\pi
0.855597 + 0.517643i 0.173190π0.173190\pi
992992 0 0
993993 8.97774e6 0.288931
994994 0 0
995995 −1.63953e7 −0.525002
996996 0 0
997997 4.23746e7 1.35011 0.675053 0.737769i 0.264121π-0.264121\pi
0.675053 + 0.737769i 0.264121π0.264121\pi
998998 0 0
999999 3.63736e7 1.15312
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 704.6.a.n.1.2 2
4.3 odd 2 704.6.a.m.1.1 2
8.3 odd 2 176.6.a.g.1.2 2
8.5 even 2 44.6.a.b.1.1 2
24.5 odd 2 396.6.a.f.1.2 2
40.13 odd 4 1100.6.b.c.749.1 4
40.29 even 2 1100.6.a.b.1.2 2
40.37 odd 4 1100.6.b.c.749.4 4
88.21 odd 2 484.6.a.d.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
44.6.a.b.1.1 2 8.5 even 2
176.6.a.g.1.2 2 8.3 odd 2
396.6.a.f.1.2 2 24.5 odd 2
484.6.a.d.1.1 2 88.21 odd 2
704.6.a.m.1.1 2 4.3 odd 2
704.6.a.n.1.2 2 1.1 even 1 trivial
1100.6.a.b.1.2 2 40.29 even 2
1100.6.b.c.749.1 4 40.13 odd 4
1100.6.b.c.749.4 4 40.37 odd 4