Properties

Label 7056.2.a.ck.1.2
Level $7056$
Weight $2$
Character 7056.1
Self dual yes
Analytic conductor $56.342$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7056,2,Mod(1,7056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7056.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 3528)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7056.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.82843 q^{5} -2.00000 q^{11} +5.65685 q^{13} +2.82843 q^{17} -5.65685 q^{19} -6.00000 q^{23} +3.00000 q^{25} -4.00000 q^{29} +5.65685 q^{31} -2.00000 q^{37} -2.82843 q^{41} +4.00000 q^{43} +11.3137 q^{47} +12.0000 q^{53} -5.65685 q^{55} +11.3137 q^{59} +5.65685 q^{61} +16.0000 q^{65} +12.0000 q^{67} +6.00000 q^{71} -8.00000 q^{79} -11.3137 q^{83} +8.00000 q^{85} +8.48528 q^{89} -16.0000 q^{95} -11.3137 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{11} - 12 q^{23} + 6 q^{25} - 8 q^{29} - 4 q^{37} + 8 q^{43} + 24 q^{53} + 32 q^{65} + 24 q^{67} + 12 q^{71} - 16 q^{79} + 16 q^{85} - 32 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 2.82843 1.26491 0.632456 0.774597i \(-0.282047\pi\)
0.632456 + 0.774597i \(0.282047\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 5.65685 1.56893 0.784465 0.620174i \(-0.212938\pi\)
0.784465 + 0.620174i \(0.212938\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.82843 0.685994 0.342997 0.939336i \(-0.388558\pi\)
0.342997 + 0.939336i \(0.388558\pi\)
\(18\) 0 0
\(19\) −5.65685 −1.29777 −0.648886 0.760886i \(-0.724765\pi\)
−0.648886 + 0.760886i \(0.724765\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −6.00000 −1.25109 −0.625543 0.780189i \(-0.715123\pi\)
−0.625543 + 0.780189i \(0.715123\pi\)
\(24\) 0 0
\(25\) 3.00000 0.600000
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −4.00000 −0.742781 −0.371391 0.928477i \(-0.621119\pi\)
−0.371391 + 0.928477i \(0.621119\pi\)
\(30\) 0 0
\(31\) 5.65685 1.01600 0.508001 0.861357i \(-0.330385\pi\)
0.508001 + 0.861357i \(0.330385\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −2.00000 −0.328798 −0.164399 0.986394i \(-0.552568\pi\)
−0.164399 + 0.986394i \(0.552568\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.82843 −0.441726 −0.220863 0.975305i \(-0.570887\pi\)
−0.220863 + 0.975305i \(0.570887\pi\)
\(42\) 0 0
\(43\) 4.00000 0.609994 0.304997 0.952353i \(-0.401344\pi\)
0.304997 + 0.952353i \(0.401344\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 11.3137 1.65027 0.825137 0.564933i \(-0.191098\pi\)
0.825137 + 0.564933i \(0.191098\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 12.0000 1.64833 0.824163 0.566352i \(-0.191646\pi\)
0.824163 + 0.566352i \(0.191646\pi\)
\(54\) 0 0
\(55\) −5.65685 −0.762770
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 11.3137 1.47292 0.736460 0.676481i \(-0.236496\pi\)
0.736460 + 0.676481i \(0.236496\pi\)
\(60\) 0 0
\(61\) 5.65685 0.724286 0.362143 0.932123i \(-0.382045\pi\)
0.362143 + 0.932123i \(0.382045\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 16.0000 1.98456
\(66\) 0 0
\(67\) 12.0000 1.46603 0.733017 0.680211i \(-0.238112\pi\)
0.733017 + 0.680211i \(0.238112\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 6.00000 0.712069 0.356034 0.934473i \(-0.384129\pi\)
0.356034 + 0.934473i \(0.384129\pi\)
\(72\) 0 0
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) −8.00000 −0.900070 −0.450035 0.893011i \(-0.648589\pi\)
−0.450035 + 0.893011i \(0.648589\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −11.3137 −1.24184 −0.620920 0.783874i \(-0.713241\pi\)
−0.620920 + 0.783874i \(0.713241\pi\)
\(84\) 0 0
\(85\) 8.00000 0.867722
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 8.48528 0.899438 0.449719 0.893170i \(-0.351524\pi\)
0.449719 + 0.893170i \(0.351524\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −16.0000 −1.64157
\(96\) 0 0
\(97\) −11.3137 −1.14873 −0.574367 0.818598i \(-0.694752\pi\)
−0.574367 + 0.818598i \(0.694752\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 8.48528 0.844317 0.422159 0.906522i \(-0.361273\pi\)
0.422159 + 0.906522i \(0.361273\pi\)
\(102\) 0 0
\(103\) 16.9706 1.67216 0.836080 0.548608i \(-0.184842\pi\)
0.836080 + 0.548608i \(0.184842\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) 14.0000 1.34096 0.670478 0.741929i \(-0.266089\pi\)
0.670478 + 0.741929i \(0.266089\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −8.00000 −0.752577 −0.376288 0.926503i \(-0.622800\pi\)
−0.376288 + 0.926503i \(0.622800\pi\)
\(114\) 0 0
\(115\) −16.9706 −1.58251
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) 16.0000 1.41977 0.709885 0.704317i \(-0.248747\pi\)
0.709885 + 0.704317i \(0.248747\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −11.3137 −0.988483 −0.494242 0.869325i \(-0.664554\pi\)
−0.494242 + 0.869325i \(0.664554\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 8.00000 0.683486 0.341743 0.939793i \(-0.388983\pi\)
0.341743 + 0.939793i \(0.388983\pi\)
\(138\) 0 0
\(139\) 11.3137 0.959616 0.479808 0.877373i \(-0.340706\pi\)
0.479808 + 0.877373i \(0.340706\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −11.3137 −0.946100
\(144\) 0 0
\(145\) −11.3137 −0.939552
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.0000 1.63846 0.819232 0.573462i \(-0.194400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 0 0
\(151\) 8.00000 0.651031 0.325515 0.945537i \(-0.394462\pi\)
0.325515 + 0.945537i \(0.394462\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 16.0000 1.28515
\(156\) 0 0
\(157\) −5.65685 −0.451466 −0.225733 0.974189i \(-0.572478\pi\)
−0.225733 + 0.974189i \(0.572478\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 4.00000 0.313304 0.156652 0.987654i \(-0.449930\pi\)
0.156652 + 0.987654i \(0.449930\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.6274 1.75096 0.875481 0.483252i \(-0.160545\pi\)
0.875481 + 0.483252i \(0.160545\pi\)
\(168\) 0 0
\(169\) 19.0000 1.46154
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −2.82843 −0.215041 −0.107521 0.994203i \(-0.534291\pi\)
−0.107521 + 0.994203i \(0.534291\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −22.0000 −1.64436 −0.822179 0.569230i \(-0.807242\pi\)
−0.822179 + 0.569230i \(0.807242\pi\)
\(180\) 0 0
\(181\) −16.9706 −1.26141 −0.630706 0.776022i \(-0.717235\pi\)
−0.630706 + 0.776022i \(0.717235\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) −5.65685 −0.415900
\(186\) 0 0
\(187\) −5.65685 −0.413670
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −18.0000 −1.30243 −0.651217 0.758891i \(-0.725741\pi\)
−0.651217 + 0.758891i \(0.725741\pi\)
\(192\) 0 0
\(193\) 22.0000 1.58359 0.791797 0.610784i \(-0.209146\pi\)
0.791797 + 0.610784i \(0.209146\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 4.00000 0.284988 0.142494 0.989796i \(-0.454488\pi\)
0.142494 + 0.989796i \(0.454488\pi\)
\(198\) 0 0
\(199\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −8.00000 −0.558744
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 11.3137 0.782586
\(210\) 0 0
\(211\) 4.00000 0.275371 0.137686 0.990476i \(-0.456034\pi\)
0.137686 + 0.990476i \(0.456034\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 11.3137 0.771589
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 16.0000 1.07628
\(222\) 0 0
\(223\) 11.3137 0.757622 0.378811 0.925474i \(-0.376333\pi\)
0.378811 + 0.925474i \(0.376333\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(228\) 0 0
\(229\) −16.9706 −1.12145 −0.560723 0.828003i \(-0.689477\pi\)
−0.560723 + 0.828003i \(0.689477\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 8.00000 0.524097 0.262049 0.965055i \(-0.415602\pi\)
0.262049 + 0.965055i \(0.415602\pi\)
\(234\) 0 0
\(235\) 32.0000 2.08745
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 2.00000 0.129369 0.0646846 0.997906i \(-0.479396\pi\)
0.0646846 + 0.997906i \(0.479396\pi\)
\(240\) 0 0
\(241\) 11.3137 0.728780 0.364390 0.931246i \(-0.381278\pi\)
0.364390 + 0.931246i \(0.381278\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −32.0000 −2.03611
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −22.6274 −1.42823 −0.714115 0.700028i \(-0.753171\pi\)
−0.714115 + 0.700028i \(0.753171\pi\)
\(252\) 0 0
\(253\) 12.0000 0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −25.4558 −1.58789 −0.793946 0.607988i \(-0.791977\pi\)
−0.793946 + 0.607988i \(0.791977\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 10.0000 0.616626 0.308313 0.951285i \(-0.400236\pi\)
0.308313 + 0.951285i \(0.400236\pi\)
\(264\) 0 0
\(265\) 33.9411 2.08499
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) −31.1127 −1.89697 −0.948487 0.316815i \(-0.897387\pi\)
−0.948487 + 0.316815i \(0.897387\pi\)
\(270\) 0 0
\(271\) −16.9706 −1.03089 −0.515444 0.856923i \(-0.672373\pi\)
−0.515444 + 0.856923i \(0.672373\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −6.00000 −0.361814
\(276\) 0 0
\(277\) 14.0000 0.841178 0.420589 0.907251i \(-0.361823\pi\)
0.420589 + 0.907251i \(0.361823\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −24.0000 −1.43172 −0.715860 0.698244i \(-0.753965\pi\)
−0.715860 + 0.698244i \(0.753965\pi\)
\(282\) 0 0
\(283\) 28.2843 1.68133 0.840663 0.541559i \(-0.182166\pi\)
0.840663 + 0.541559i \(0.182166\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −9.00000 −0.529412
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 19.7990 1.15667 0.578335 0.815800i \(-0.303703\pi\)
0.578335 + 0.815800i \(0.303703\pi\)
\(294\) 0 0
\(295\) 32.0000 1.86311
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −33.9411 −1.96287
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 16.0000 0.916157
\(306\) 0 0
\(307\) −16.9706 −0.968561 −0.484281 0.874913i \(-0.660919\pi\)
−0.484281 + 0.874913i \(0.660919\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −11.3137 −0.641542 −0.320771 0.947157i \(-0.603942\pi\)
−0.320771 + 0.947157i \(0.603942\pi\)
\(312\) 0 0
\(313\) 33.9411 1.91847 0.959233 0.282617i \(-0.0912024\pi\)
0.959233 + 0.282617i \(0.0912024\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0000 0.673987 0.336994 0.941507i \(-0.390590\pi\)
0.336994 + 0.941507i \(0.390590\pi\)
\(318\) 0 0
\(319\) 8.00000 0.447914
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −16.0000 −0.890264
\(324\) 0 0
\(325\) 16.9706 0.941357
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 20.0000 1.09930 0.549650 0.835395i \(-0.314761\pi\)
0.549650 + 0.835395i \(0.314761\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 33.9411 1.85440
\(336\) 0 0
\(337\) 2.00000 0.108947 0.0544735 0.998515i \(-0.482652\pi\)
0.0544735 + 0.998515i \(0.482652\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −11.3137 −0.612672
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 2.00000 0.107366 0.0536828 0.998558i \(-0.482904\pi\)
0.0536828 + 0.998558i \(0.482904\pi\)
\(348\) 0 0
\(349\) 16.9706 0.908413 0.454207 0.890896i \(-0.349923\pi\)
0.454207 + 0.890896i \(0.349923\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 2.82843 0.150542 0.0752710 0.997163i \(-0.476018\pi\)
0.0752710 + 0.997163i \(0.476018\pi\)
\(354\) 0 0
\(355\) 16.9706 0.900704
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 6.00000 0.316668 0.158334 0.987386i \(-0.449388\pi\)
0.158334 + 0.987386i \(0.449388\pi\)
\(360\) 0 0
\(361\) 13.0000 0.684211
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) −10.0000 −0.517780 −0.258890 0.965907i \(-0.583357\pi\)
−0.258890 + 0.965907i \(0.583357\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −22.6274 −1.16537
\(378\) 0 0
\(379\) 4.00000 0.205466 0.102733 0.994709i \(-0.467241\pi\)
0.102733 + 0.994709i \(0.467241\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −11.3137 −0.578103 −0.289052 0.957313i \(-0.593340\pi\)
−0.289052 + 0.957313i \(0.593340\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −28.0000 −1.41966 −0.709828 0.704375i \(-0.751227\pi\)
−0.709828 + 0.704375i \(0.751227\pi\)
\(390\) 0 0
\(391\) −16.9706 −0.858238
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) −22.6274 −1.13851
\(396\) 0 0
\(397\) 16.9706 0.851728 0.425864 0.904787i \(-0.359970\pi\)
0.425864 + 0.904787i \(0.359970\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −24.0000 −1.19850 −0.599251 0.800561i \(-0.704535\pi\)
−0.599251 + 0.800561i \(0.704535\pi\)
\(402\) 0 0
\(403\) 32.0000 1.59403
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) −33.9411 −1.67828 −0.839140 0.543915i \(-0.816941\pi\)
−0.839140 + 0.543915i \(0.816941\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −32.0000 −1.57082
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −11.3137 −0.552711 −0.276355 0.961056i \(-0.589127\pi\)
−0.276355 + 0.961056i \(0.589127\pi\)
\(420\) 0 0
\(421\) 30.0000 1.46211 0.731055 0.682318i \(-0.239028\pi\)
0.731055 + 0.682318i \(0.239028\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 8.48528 0.411597
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 0 0
\(433\) −11.3137 −0.543702 −0.271851 0.962339i \(-0.587636\pi\)
−0.271851 + 0.962339i \(0.587636\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 33.9411 1.62362
\(438\) 0 0
\(439\) −33.9411 −1.61992 −0.809961 0.586484i \(-0.800512\pi\)
−0.809961 + 0.586484i \(0.800512\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 2.00000 0.0950229 0.0475114 0.998871i \(-0.484871\pi\)
0.0475114 + 0.998871i \(0.484871\pi\)
\(444\) 0 0
\(445\) 24.0000 1.13771
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 32.0000 1.51017 0.755087 0.655625i \(-0.227595\pi\)
0.755087 + 0.655625i \(0.227595\pi\)
\(450\) 0 0
\(451\) 5.65685 0.266371
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 6.00000 0.280668 0.140334 0.990104i \(-0.455182\pi\)
0.140334 + 0.990104i \(0.455182\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −14.1421 −0.658665 −0.329332 0.944214i \(-0.606824\pi\)
−0.329332 + 0.944214i \(0.606824\pi\)
\(462\) 0 0
\(463\) 8.00000 0.371792 0.185896 0.982569i \(-0.440481\pi\)
0.185896 + 0.982569i \(0.440481\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −8.00000 −0.367840
\(474\) 0 0
\(475\) −16.9706 −0.778663
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 11.3137 0.516937 0.258468 0.966020i \(-0.416782\pi\)
0.258468 + 0.966020i \(0.416782\pi\)
\(480\) 0 0
\(481\) −11.3137 −0.515861
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −32.0000 −1.45305
\(486\) 0 0
\(487\) −24.0000 −1.08754 −0.543772 0.839233i \(-0.683004\pi\)
−0.543772 + 0.839233i \(0.683004\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 2.00000 0.0902587 0.0451294 0.998981i \(-0.485630\pi\)
0.0451294 + 0.998981i \(0.485630\pi\)
\(492\) 0 0
\(493\) −11.3137 −0.509544
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −11.3137 −0.504453 −0.252227 0.967668i \(-0.581163\pi\)
−0.252227 + 0.967668i \(0.581163\pi\)
\(504\) 0 0
\(505\) 24.0000 1.06799
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 2.82843 0.125368 0.0626839 0.998033i \(-0.480034\pi\)
0.0626839 + 0.998033i \(0.480034\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 48.0000 2.11513
\(516\) 0 0
\(517\) −22.6274 −0.995153
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −31.1127 −1.36307 −0.681536 0.731785i \(-0.738688\pi\)
−0.681536 + 0.731785i \(0.738688\pi\)
\(522\) 0 0
\(523\) 22.6274 0.989428 0.494714 0.869056i \(-0.335273\pi\)
0.494714 + 0.869056i \(0.335273\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 16.0000 0.696971
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −16.0000 −0.693037
\(534\) 0 0
\(535\) −50.9117 −2.20110
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) −10.0000 −0.429934 −0.214967 0.976621i \(-0.568964\pi\)
−0.214967 + 0.976621i \(0.568964\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 39.5980 1.69619
\(546\) 0 0
\(547\) 4.00000 0.171028 0.0855138 0.996337i \(-0.472747\pi\)
0.0855138 + 0.996337i \(0.472747\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 22.6274 0.963960
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) −12.0000 −0.508456 −0.254228 0.967144i \(-0.581821\pi\)
−0.254228 + 0.967144i \(0.581821\pi\)
\(558\) 0 0
\(559\) 22.6274 0.957038
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 33.9411 1.43045 0.715224 0.698895i \(-0.246325\pi\)
0.715224 + 0.698895i \(0.246325\pi\)
\(564\) 0 0
\(565\) −22.6274 −0.951943
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(570\) 0 0
\(571\) 44.0000 1.84134 0.920671 0.390339i \(-0.127642\pi\)
0.920671 + 0.390339i \(0.127642\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −18.0000 −0.750652
\(576\) 0 0
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −24.0000 −0.993978
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(588\) 0 0
\(589\) −32.0000 −1.31854
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.1421 0.580748 0.290374 0.956913i \(-0.406220\pi\)
0.290374 + 0.956913i \(0.406220\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 22.0000 0.898896 0.449448 0.893307i \(-0.351621\pi\)
0.449448 + 0.893307i \(0.351621\pi\)
\(600\) 0 0
\(601\) −22.6274 −0.922992 −0.461496 0.887142i \(-0.652687\pi\)
−0.461496 + 0.887142i \(0.652687\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −19.7990 −0.804943
\(606\) 0 0
\(607\) 11.3137 0.459209 0.229605 0.973284i \(-0.426257\pi\)
0.229605 + 0.973284i \(0.426257\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 64.0000 2.58916
\(612\) 0 0
\(613\) −6.00000 −0.242338 −0.121169 0.992632i \(-0.538664\pi\)
−0.121169 + 0.992632i \(0.538664\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 48.0000 1.93241 0.966204 0.257780i \(-0.0829910\pi\)
0.966204 + 0.257780i \(0.0829910\pi\)
\(618\) 0 0
\(619\) −11.3137 −0.454736 −0.227368 0.973809i \(-0.573012\pi\)
−0.227368 + 0.973809i \(0.573012\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) −31.0000 −1.24000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −5.65685 −0.225554
\(630\) 0 0
\(631\) 16.0000 0.636950 0.318475 0.947931i \(-0.396829\pi\)
0.318475 + 0.947931i \(0.396829\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 45.2548 1.79588
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −40.0000 −1.57991 −0.789953 0.613168i \(-0.789895\pi\)
−0.789953 + 0.613168i \(0.789895\pi\)
\(642\) 0 0
\(643\) 16.9706 0.669254 0.334627 0.942351i \(-0.391390\pi\)
0.334627 + 0.942351i \(0.391390\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 0 0
\(649\) −22.6274 −0.888204
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −20.0000 −0.782660 −0.391330 0.920250i \(-0.627985\pi\)
−0.391330 + 0.920250i \(0.627985\pi\)
\(654\) 0 0
\(655\) −32.0000 −1.25034
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 0 0
\(661\) 5.65685 0.220026 0.110013 0.993930i \(-0.464911\pi\)
0.110013 + 0.993930i \(0.464911\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −11.3137 −0.436761
\(672\) 0 0
\(673\) −6.00000 −0.231283 −0.115642 0.993291i \(-0.536892\pi\)
−0.115642 + 0.993291i \(0.536892\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 8.48528 0.326116 0.163058 0.986616i \(-0.447864\pi\)
0.163058 + 0.986616i \(0.447864\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −14.0000 −0.535695 −0.267848 0.963461i \(-0.586312\pi\)
−0.267848 + 0.963461i \(0.586312\pi\)
\(684\) 0 0
\(685\) 22.6274 0.864549
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 67.8823 2.58611
\(690\) 0 0
\(691\) 22.6274 0.860788 0.430394 0.902641i \(-0.358375\pi\)
0.430394 + 0.902641i \(0.358375\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 32.0000 1.21383
\(696\) 0 0
\(697\) −8.00000 −0.303022
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 4.00000 0.151078 0.0755390 0.997143i \(-0.475932\pi\)
0.0755390 + 0.997143i \(0.475932\pi\)
\(702\) 0 0
\(703\) 11.3137 0.426705
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) 38.0000 1.42712 0.713560 0.700594i \(-0.247082\pi\)
0.713560 + 0.700594i \(0.247082\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −33.9411 −1.27111
\(714\) 0 0
\(715\) −32.0000 −1.19673
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 11.3137 0.421930 0.210965 0.977494i \(-0.432339\pi\)
0.210965 + 0.977494i \(0.432339\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −12.0000 −0.445669
\(726\) 0 0
\(727\) 39.5980 1.46861 0.734304 0.678821i \(-0.237509\pi\)
0.734304 + 0.678821i \(0.237509\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 11.3137 0.418453
\(732\) 0 0
\(733\) 16.9706 0.626822 0.313411 0.949618i \(-0.398528\pi\)
0.313411 + 0.949618i \(0.398528\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −24.0000 −0.884051
\(738\) 0 0
\(739\) 36.0000 1.32428 0.662141 0.749380i \(-0.269648\pi\)
0.662141 + 0.749380i \(0.269648\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −26.0000 −0.953847 −0.476924 0.878945i \(-0.658248\pi\)
−0.476924 + 0.878945i \(0.658248\pi\)
\(744\) 0 0
\(745\) 56.5685 2.07251
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −48.0000 −1.75154 −0.875772 0.482724i \(-0.839647\pi\)
−0.875772 + 0.482724i \(0.839647\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 22.6274 0.823496
\(756\) 0 0
\(757\) 22.0000 0.799604 0.399802 0.916602i \(-0.369079\pi\)
0.399802 + 0.916602i \(0.369079\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 31.1127 1.12783 0.563917 0.825831i \(-0.309294\pi\)
0.563917 + 0.825831i \(0.309294\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 64.0000 2.31091
\(768\) 0 0
\(769\) −33.9411 −1.22395 −0.611974 0.790878i \(-0.709624\pi\)
−0.611974 + 0.790878i \(0.709624\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 31.1127 1.11905 0.559523 0.828815i \(-0.310984\pi\)
0.559523 + 0.828815i \(0.310984\pi\)
\(774\) 0 0
\(775\) 16.9706 0.609601
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 16.0000 0.573259
\(780\) 0 0
\(781\) −12.0000 −0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −16.0000 −0.571064
\(786\) 0 0
\(787\) 33.9411 1.20987 0.604935 0.796275i \(-0.293199\pi\)
0.604935 + 0.796275i \(0.293199\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 32.0000 1.13635
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −25.4558 −0.901692 −0.450846 0.892602i \(-0.648878\pi\)
−0.450846 + 0.892602i \(0.648878\pi\)
\(798\) 0 0
\(799\) 32.0000 1.13208
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(810\) 0 0
\(811\) 22.6274 0.794556 0.397278 0.917698i \(-0.369955\pi\)
0.397278 + 0.917698i \(0.369955\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 11.3137 0.396302
\(816\) 0 0
\(817\) −22.6274 −0.791633
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −36.0000 −1.25641 −0.628204 0.778048i \(-0.716210\pi\)
−0.628204 + 0.778048i \(0.716210\pi\)
\(822\) 0 0
\(823\) −32.0000 −1.11545 −0.557725 0.830026i \(-0.688326\pi\)
−0.557725 + 0.830026i \(0.688326\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −50.0000 −1.73867 −0.869335 0.494223i \(-0.835453\pi\)
−0.869335 + 0.494223i \(0.835453\pi\)
\(828\) 0 0
\(829\) −5.65685 −0.196471 −0.0982353 0.995163i \(-0.531320\pi\)
−0.0982353 + 0.995163i \(0.531320\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 64.0000 2.21481
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −45.2548 −1.56237 −0.781185 0.624299i \(-0.785385\pi\)
−0.781185 + 0.624299i \(0.785385\pi\)
\(840\) 0 0
\(841\) −13.0000 −0.448276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 53.7401 1.84872
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) 16.9706 0.581061 0.290531 0.956866i \(-0.406168\pi\)
0.290531 + 0.956866i \(0.406168\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −14.1421 −0.483086 −0.241543 0.970390i \(-0.577654\pi\)
−0.241543 + 0.970390i \(0.577654\pi\)
\(858\) 0 0
\(859\) −50.9117 −1.73708 −0.868542 0.495615i \(-0.834943\pi\)
−0.868542 + 0.495615i \(0.834943\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 18.0000 0.612727 0.306364 0.951915i \(-0.400888\pi\)
0.306364 + 0.951915i \(0.400888\pi\)
\(864\) 0 0
\(865\) −8.00000 −0.272008
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 16.0000 0.542763
\(870\) 0 0
\(871\) 67.8823 2.30010
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −46.0000 −1.55331 −0.776655 0.629926i \(-0.783085\pi\)
−0.776655 + 0.629926i \(0.783085\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −8.48528 −0.285876 −0.142938 0.989732i \(-0.545655\pi\)
−0.142938 + 0.989732i \(0.545655\pi\)
\(882\) 0 0
\(883\) −28.0000 −0.942275 −0.471138 0.882060i \(-0.656156\pi\)
−0.471138 + 0.882060i \(0.656156\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −45.2548 −1.51951 −0.759754 0.650210i \(-0.774681\pi\)
−0.759754 + 0.650210i \(0.774681\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −64.0000 −2.14168
\(894\) 0 0
\(895\) −62.2254 −2.07997
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −22.6274 −0.754667
\(900\) 0 0
\(901\) 33.9411 1.13074
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −48.0000 −1.59557
\(906\) 0 0
\(907\) −20.0000 −0.664089 −0.332045 0.943264i \(-0.607738\pi\)
−0.332045 + 0.943264i \(0.607738\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 46.0000 1.52405 0.762024 0.647549i \(-0.224206\pi\)
0.762024 + 0.647549i \(0.224206\pi\)
\(912\) 0 0
\(913\) 22.6274 0.748858
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −16.0000 −0.527791 −0.263896 0.964551i \(-0.585007\pi\)
−0.263896 + 0.964551i \(0.585007\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 33.9411 1.11719
\(924\) 0 0
\(925\) −6.00000 −0.197279
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −36.7696 −1.20637 −0.603185 0.797601i \(-0.706102\pi\)
−0.603185 + 0.797601i \(0.706102\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −16.0000 −0.523256
\(936\) 0 0
\(937\) 45.2548 1.47841 0.739205 0.673480i \(-0.235201\pi\)
0.739205 + 0.673480i \(0.235201\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −19.7990 −0.645429 −0.322714 0.946496i \(-0.604595\pi\)
−0.322714 + 0.946496i \(0.604595\pi\)
\(942\) 0 0
\(943\) 16.9706 0.552638
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) −42.0000 −1.36482 −0.682408 0.730971i \(-0.739067\pi\)
−0.682408 + 0.730971i \(0.739067\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 24.0000 0.777436 0.388718 0.921357i \(-0.372918\pi\)
0.388718 + 0.921357i \(0.372918\pi\)
\(954\) 0 0
\(955\) −50.9117 −1.64746
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) 1.00000 0.0322581
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 62.2254 2.00311
\(966\) 0 0
\(967\) −24.0000 −0.771788 −0.385894 0.922543i \(-0.626107\pi\)
−0.385894 + 0.922543i \(0.626107\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 22.6274 0.726148 0.363074 0.931760i \(-0.381727\pi\)
0.363074 + 0.931760i \(0.381727\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(978\) 0 0
\(979\) −16.9706 −0.542382
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 22.6274 0.721703 0.360851 0.932623i \(-0.382486\pi\)
0.360851 + 0.932623i \(0.382486\pi\)
\(984\) 0 0
\(985\) 11.3137 0.360485
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −24.0000 −0.763156
\(990\) 0 0
\(991\) −56.0000 −1.77890 −0.889449 0.457034i \(-0.848912\pi\)
−0.889449 + 0.457034i \(0.848912\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −39.5980 −1.25408 −0.627040 0.778987i \(-0.715734\pi\)
−0.627040 + 0.778987i \(0.715734\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.a.ck.1.2 2
3.2 odd 2 7056.2.a.cq.1.1 2
4.3 odd 2 3528.2.a.bi.1.2 yes 2
7.6 odd 2 inner 7056.2.a.ck.1.1 2
12.11 even 2 3528.2.a.bf.1.1 2
21.20 even 2 7056.2.a.cq.1.2 2
28.3 even 6 3528.2.s.bf.3313.2 4
28.11 odd 6 3528.2.s.bf.3313.1 4
28.19 even 6 3528.2.s.bf.361.2 4
28.23 odd 6 3528.2.s.bf.361.1 4
28.27 even 2 3528.2.a.bi.1.1 yes 2
84.11 even 6 3528.2.s.bi.3313.2 4
84.23 even 6 3528.2.s.bi.361.2 4
84.47 odd 6 3528.2.s.bi.361.1 4
84.59 odd 6 3528.2.s.bi.3313.1 4
84.83 odd 2 3528.2.a.bf.1.2 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
3528.2.a.bf.1.1 2 12.11 even 2
3528.2.a.bf.1.2 yes 2 84.83 odd 2
3528.2.a.bi.1.1 yes 2 28.27 even 2
3528.2.a.bi.1.2 yes 2 4.3 odd 2
3528.2.s.bf.361.1 4 28.23 odd 6
3528.2.s.bf.361.2 4 28.19 even 6
3528.2.s.bf.3313.1 4 28.11 odd 6
3528.2.s.bf.3313.2 4 28.3 even 6
3528.2.s.bi.361.1 4 84.47 odd 6
3528.2.s.bi.361.2 4 84.23 even 6
3528.2.s.bi.3313.1 4 84.59 odd 6
3528.2.s.bi.3313.2 4 84.11 even 6
7056.2.a.ck.1.1 2 7.6 odd 2 inner
7056.2.a.ck.1.2 2 1.1 even 1 trivial
7056.2.a.cq.1.1 2 3.2 odd 2
7056.2.a.cq.1.2 2 21.20 even 2