Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7056,2,Mod(1,7056)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7056.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7056.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(56.3424436662\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\zeta_{8})^+\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: | \( x^{2} - 2 \) |
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 1176) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Root | \(-1.41421\) of defining polynomial | ||
Character | \(\chi\) | \(=\) | 7056.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0.585786 | 0.261972 | 0.130986 | − | 0.991384i | \(-0.458186\pi\) | ||||
0.130986 | + | 0.991384i | \(0.458186\pi\) | |||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 0 | 0 | ||||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | −0.828427 | −0.249780 | −0.124890 | − | 0.992171i | \(-0.539858\pi\) | ||||
−0.124890 | + | 0.992171i | \(0.539858\pi\) | |||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 1.41421 | 0.392232 | 0.196116 | − | 0.980581i | \(-0.437167\pi\) | ||||
0.196116 | + | 0.980581i | \(0.437167\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 2.24264 | 0.543920 | 0.271960 | − | 0.962309i | \(-0.412328\pi\) | ||||
0.271960 | + | 0.962309i | \(0.412328\pi\) | |||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 6.82843 | 1.56655 | 0.783274 | − | 0.621676i | \(-0.213548\pi\) | ||||
0.783274 | + | 0.621676i | \(0.213548\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.82843 | 1.00680 | 0.503398 | − | 0.864054i | \(-0.332083\pi\) | ||||
0.503398 | + | 0.864054i | \(0.332083\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | −4.65685 | −0.931371 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | −8.48528 | −1.57568 | −0.787839 | − | 0.615882i | \(-0.788800\pi\) | ||||
−0.787839 | + | 0.615882i | \(0.788800\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 5.17157 | 0.928842 | 0.464421 | − | 0.885615i | \(-0.346262\pi\) | ||||
0.464421 | + | 0.885615i | \(0.346262\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | 1.65685 | 0.272385 | 0.136193 | − | 0.990682i | \(-0.456513\pi\) | ||||
0.136193 | + | 0.990682i | \(0.456513\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −0.585786 | −0.0914845 | −0.0457422 | − | 0.998953i | \(-0.514565\pi\) | ||||
−0.0457422 | + | 0.998953i | \(0.514565\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | 8.00000 | 1.21999 | 0.609994 | − | 0.792406i | \(-0.291172\pi\) | ||||
0.609994 | + | 0.792406i | \(0.291172\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −6.82843 | −0.996028 | −0.498014 | − | 0.867169i | \(-0.665937\pi\) | ||||
−0.498014 | + | 0.867169i | \(0.665937\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 0 | 0 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 13.3137 | 1.82878 | 0.914389 | − | 0.404836i | \(-0.132671\pi\) | ||||
0.914389 | + | 0.404836i | \(0.132671\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | −0.485281 | −0.0654353 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | −5.17157 | −0.673281 | −0.336641 | − | 0.941633i | \(-0.609291\pi\) | ||||
−0.336641 | + | 0.941633i | \(0.609291\pi\) | |||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −13.8995 | −1.77965 | −0.889824 | − | 0.456304i | \(-0.849173\pi\) | ||||
−0.889824 | + | 0.456304i | \(0.849173\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0.828427 | 0.102754 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | 8.00000 | 0.977356 | 0.488678 | − | 0.872464i | \(-0.337479\pi\) | ||||
0.488678 | + | 0.872464i | \(0.337479\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −0.828427 | −0.0983162 | −0.0491581 | − | 0.998791i | \(-0.515654\pi\) | ||||
−0.0491581 | + | 0.998791i | \(0.515654\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 11.0711 | 1.29577 | 0.647885 | − | 0.761738i | \(-0.275654\pi\) | ||||
0.647885 | + | 0.761738i | \(0.275654\pi\) | |||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 2.34315 | 0.263624 | 0.131812 | − | 0.991275i | \(-0.457920\pi\) | ||||
0.131812 | + | 0.991275i | \(0.457920\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −15.3137 | −1.68090 | −0.840449 | − | 0.541891i | \(-0.817709\pi\) | ||||
−0.840449 | + | 0.541891i | \(0.817709\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 1.31371 | 0.142492 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | −10.7279 | −1.13716 | −0.568579 | − | 0.822629i | \(-0.692507\pi\) | ||||
−0.568579 | + | 0.822629i | \(0.692507\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 0 | 0 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 4.00000 | 0.410391 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 7.75736 | 0.787641 | 0.393820 | − | 0.919187i | \(-0.371153\pi\) | ||||
0.393820 | + | 0.919187i | \(0.371153\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | 3.41421 | 0.339727 | 0.169863 | − | 0.985468i | \(-0.445667\pi\) | ||||
0.169863 | + | 0.985468i | \(0.445667\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 10.8284 | 1.06696 | 0.533478 | − | 0.845814i | \(-0.320885\pi\) | ||||
0.533478 | + | 0.845814i | \(0.320885\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 14.4853 | 1.40035 | 0.700173 | − | 0.713974i | \(-0.253106\pi\) | ||||
0.700173 | + | 0.713974i | \(0.253106\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −11.3137 | −1.08366 | −0.541828 | − | 0.840489i | \(-0.682268\pi\) | ||||
−0.541828 | + | 0.840489i | \(0.682268\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | −6.00000 | −0.564433 | −0.282216 | − | 0.959351i | \(-0.591070\pi\) | ||||
−0.282216 | + | 0.959351i | \(0.591070\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 2.82843 | 0.263752 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −10.3137 | −0.937610 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | −5.65685 | −0.505964 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 15.3137 | 1.35887 | 0.679436 | − | 0.733735i | \(-0.262225\pi\) | ||||
0.679436 | + | 0.733735i | \(0.262225\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | 7.31371 | 0.639002 | 0.319501 | − | 0.947586i | \(-0.396485\pi\) | ||||
0.319501 | + | 0.947586i | \(0.396485\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 0 | 0 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | −4.48528 | −0.383203 | −0.191602 | − | 0.981473i | \(-0.561368\pi\) | ||||
−0.191602 | + | 0.981473i | \(0.561368\pi\) | |||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −1.65685 | −0.140533 | −0.0702663 | − | 0.997528i | \(-0.522385\pi\) | ||||
−0.0702663 | + | 0.997528i | \(0.522385\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | −1.17157 | −0.0979718 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | −4.97056 | −0.412783 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | 10.0000 | 0.819232 | 0.409616 | − | 0.912258i | \(-0.365663\pi\) | ||||
0.409616 | + | 0.912258i | \(0.365663\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | −9.65685 | −0.785864 | −0.392932 | − | 0.919568i | \(-0.628539\pi\) | ||||
−0.392932 | + | 0.919568i | \(0.628539\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 3.02944 | 0.243330 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 13.8995 | 1.10930 | 0.554650 | − | 0.832084i | \(-0.312852\pi\) | ||||
0.554650 | + | 0.832084i | \(0.312852\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 0 | 0 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | 13.6569 | 1.06969 | 0.534844 | − | 0.844951i | \(-0.320370\pi\) | ||||
0.534844 | + | 0.844951i | \(0.320370\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −1.17157 | −0.0906590 | −0.0453295 | − | 0.998972i | \(-0.514434\pi\) | ||||
−0.0453295 | + | 0.998972i | \(0.514434\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | −11.0000 | −0.846154 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −3.41421 | −0.259578 | −0.129789 | − | 0.991542i | \(-0.541430\pi\) | ||||
−0.129789 | + | 0.991542i | \(0.541430\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | 17.7990 | 1.33036 | 0.665179 | − | 0.746684i | \(-0.268355\pi\) | ||||
0.665179 | + | 0.746684i | \(0.268355\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 9.89949 | 0.735824 | 0.367912 | − | 0.929861i | \(-0.380073\pi\) | ||||
0.367912 | + | 0.929861i | \(0.380073\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0.970563 | 0.0713572 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | −1.85786 | −0.135860 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 15.1716 | 1.09778 | 0.548888 | − | 0.835896i | \(-0.315051\pi\) | ||||
0.548888 | + | 0.835896i | \(0.315051\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 24.6274 | 1.77272 | 0.886360 | − | 0.462996i | \(-0.153226\pi\) | ||||
0.886360 | + | 0.462996i | \(0.153226\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −2.00000 | −0.142494 | −0.0712470 | − | 0.997459i | \(-0.522698\pi\) | ||||
−0.0712470 | + | 0.997459i | \(0.522698\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | 5.65685 | 0.401004 | 0.200502 | − | 0.979693i | \(-0.435743\pi\) | ||||
0.200502 | + | 0.979693i | \(0.435743\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 0 | 0 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | −0.343146 | −0.0239663 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | −5.65685 | −0.391293 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | 14.3431 | 0.987423 | 0.493711 | − | 0.869626i | \(-0.335640\pi\) | ||||
0.493711 | + | 0.869626i | \(0.335640\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 4.68629 | 0.319602 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 0 | 0 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 3.17157 | 0.213343 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −13.6569 | −0.914531 | −0.457265 | − | 0.889330i | \(-0.651171\pi\) | ||||
−0.457265 | + | 0.889330i | \(0.651171\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | 19.7990 | 1.31411 | 0.657053 | − | 0.753845i | \(-0.271803\pi\) | ||||
0.657053 | + | 0.753845i | \(0.271803\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | −15.0711 | −0.995924 | −0.497962 | − | 0.867199i | \(-0.665918\pi\) | ||||
−0.497962 | + | 0.867199i | \(0.665918\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | 28.4853 | 1.86613 | 0.933066 | − | 0.359704i | \(-0.117122\pi\) | ||||
0.933066 | + | 0.359704i | \(0.117122\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | −4.00000 | −0.260931 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −3.17157 | −0.205152 | −0.102576 | − | 0.994725i | \(-0.532708\pi\) | ||||
−0.102576 | + | 0.994725i | \(0.532708\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 21.8995 | 1.41067 | 0.705335 | − | 0.708874i | \(-0.250796\pi\) | ||||
0.705335 | + | 0.708874i | \(0.250796\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 9.65685 | 0.614451 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −8.48528 | −0.535586 | −0.267793 | − | 0.963476i | \(-0.586294\pi\) | ||||
−0.267793 | + | 0.963476i | \(0.586294\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | −4.00000 | −0.251478 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | −30.2426 | −1.88648 | −0.943242 | − | 0.332106i | \(-0.892241\pi\) | ||||
−0.943242 | + | 0.332106i | \(0.892241\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | 0 | 0 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | 24.8284 | 1.53099 | 0.765493 | − | 0.643444i | \(-0.222495\pi\) | ||||
0.765493 | + | 0.643444i | \(0.222495\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 7.79899 | 0.479088 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | 30.0416 | 1.83167 | 0.915835 | − | 0.401554i | \(-0.131530\pi\) | ||||
0.915835 | + | 0.401554i | \(0.131530\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −13.1716 | −0.800116 | −0.400058 | − | 0.916490i | \(-0.631010\pi\) | ||||
−0.400058 | + | 0.916490i | \(0.631010\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 3.85786 | 0.232638 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −6.00000 | −0.360505 | −0.180253 | − | 0.983620i | \(-0.557691\pi\) | ||||
−0.180253 | + | 0.983620i | \(0.557691\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 12.4853 | 0.744809 | 0.372405 | − | 0.928070i | \(-0.378533\pi\) | ||||
0.372405 | + | 0.928070i | \(0.378533\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −14.8284 | −0.881458 | −0.440729 | − | 0.897640i | \(-0.645280\pi\) | ||||
−0.440729 | + | 0.897640i | \(0.645280\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | 0 | 0 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −11.9706 | −0.704151 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 1.07107 | 0.0625724 | 0.0312862 | − | 0.999510i | \(-0.490040\pi\) | ||||
0.0312862 | + | 0.999510i | \(0.490040\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | −3.02944 | −0.176381 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 6.82843 | 0.394898 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | 0 | 0 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | −8.14214 | −0.466217 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −11.5147 | −0.657180 | −0.328590 | − | 0.944473i | \(-0.606573\pi\) | ||||
−0.328590 | + | 0.944473i | \(0.606573\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 26.1421 | 1.48238 | 0.741192 | − | 0.671293i | \(-0.234261\pi\) | ||||
0.741192 | + | 0.671293i | \(0.234261\pi\) | |||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | 17.4142 | 0.984310 | 0.492155 | − | 0.870508i | \(-0.336209\pi\) | ||||
0.492155 | + | 0.870508i | \(0.336209\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | −21.3137 | −1.19710 | −0.598549 | − | 0.801087i | \(-0.704256\pi\) | ||||
−0.598549 | + | 0.801087i | \(0.704256\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 7.02944 | 0.393573 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 15.3137 | 0.852078 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | −6.58579 | −0.365314 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | 0 | 0 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | 8.68629 | 0.477442 | 0.238721 | − | 0.971088i | \(-0.423272\pi\) | ||||
0.238721 | + | 0.971088i | \(0.423272\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 4.68629 | 0.256039 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −16.9706 | −0.924445 | −0.462223 | − | 0.886764i | \(-0.652948\pi\) | ||||
−0.462223 | + | 0.886764i | \(0.652948\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | −4.28427 | −0.232006 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 0 | 0 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | −4.14214 | −0.222361 | −0.111181 | − | 0.993800i | \(-0.535463\pi\) | ||||
−0.111181 | + | 0.993800i | \(0.535463\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | −30.3848 | −1.62646 | −0.813230 | − | 0.581943i | \(-0.802293\pi\) | ||||
−0.813230 | + | 0.581943i | \(0.802293\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | −15.8995 | −0.846245 | −0.423122 | − | 0.906073i | \(-0.639066\pi\) | ||||
−0.423122 | + | 0.906073i | \(0.639066\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | −0.485281 | −0.0257561 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | −35.4558 | −1.87129 | −0.935644 | − | 0.352945i | \(-0.885180\pi\) | ||||
−0.935644 | + | 0.352945i | \(0.885180\pi\) | |||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 27.6274 | 1.45407 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 6.48528 | 0.339455 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 0 | 0 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 14.6863 | 0.760427 | 0.380214 | − | 0.924899i | \(-0.375850\pi\) | ||||
0.380214 | + | 0.924899i | \(0.375850\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | −12.0000 | −0.618031 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 0.686292 | 0.0352524 | 0.0176262 | − | 0.999845i | \(-0.494389\pi\) | ||||
0.0176262 | + | 0.999845i | \(0.494389\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −24.9706 | −1.27594 | −0.637968 | − | 0.770063i | \(-0.720225\pi\) | ||||
−0.637968 | + | 0.770063i | \(0.720225\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | 14.1421 | 0.717035 | 0.358517 | − | 0.933523i | \(-0.383282\pi\) | ||||
0.358517 | + | 0.933523i | \(0.383282\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 10.8284 | 0.547617 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 1.37258 | 0.0690621 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | −7.27208 | −0.364975 | −0.182488 | − | 0.983208i | \(-0.558415\pi\) | ||||
−0.182488 | + | 0.983208i | \(0.558415\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 12.4853 | 0.623485 | 0.311743 | − | 0.950167i | \(-0.399087\pi\) | ||||
0.311743 | + | 0.950167i | \(0.399087\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 7.31371 | 0.364322 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | −1.37258 | −0.0680364 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | −16.2426 | −0.803147 | −0.401573 | − | 0.915827i | \(-0.631537\pi\) | ||||
−0.401573 | + | 0.915827i | \(0.631537\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | −8.97056 | −0.440348 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | −10.8284 | −0.529003 | −0.264502 | − | 0.964385i | \(-0.585207\pi\) | ||||
−0.264502 | + | 0.964385i | \(0.585207\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | 6.68629 | 0.325870 | 0.162935 | − | 0.986637i | \(-0.447904\pi\) | ||||
0.162935 | + | 0.986637i | \(0.447904\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | −10.4437 | −0.506591 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | 0 | 0 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −30.4853 | −1.46842 | −0.734212 | − | 0.678920i | \(-0.762448\pi\) | ||||
−0.734212 | + | 0.678920i | \(0.762448\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | −26.3848 | −1.26797 | −0.633986 | − | 0.773345i | \(-0.718582\pi\) | ||||
−0.633986 | + | 0.773345i | \(0.718582\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 32.9706 | 1.57720 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −3.31371 | −0.158155 | −0.0790773 | − | 0.996868i | \(-0.525197\pi\) | ||||
−0.0790773 | + | 0.996868i | \(0.525197\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 38.4853 | 1.82849 | 0.914245 | − | 0.405161i | \(-0.132784\pi\) | ||||
0.914245 | + | 0.405161i | \(0.132784\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | −6.28427 | −0.297903 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 10.0000 | 0.471929 | 0.235965 | − | 0.971762i | \(-0.424175\pi\) | ||||
0.235965 | + | 0.971762i | \(0.424175\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0.485281 | 0.0228510 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | 20.6274 | 0.964910 | 0.482455 | − | 0.875921i | \(-0.339745\pi\) | ||||
0.482455 | + | 0.875921i | \(0.339745\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | 18.2426 | 0.849644 | 0.424822 | − | 0.905277i | \(-0.360337\pi\) | ||||
0.424822 | + | 0.905277i | \(0.360337\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −20.9706 | −0.974585 | −0.487292 | − | 0.873239i | \(-0.662015\pi\) | ||||
−0.487292 | + | 0.873239i | \(0.662015\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | 10.8284 | 0.501080 | 0.250540 | − | 0.968106i | \(-0.419392\pi\) | ||||
0.250540 | + | 0.968106i | \(0.419392\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | 0 | 0 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | −6.62742 | −0.304729 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | −31.7990 | −1.45904 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 43.1127 | 1.96987 | 0.984935 | − | 0.172926i | \(-0.0553223\pi\) | ||||
0.984935 | + | 0.172926i | \(0.0553223\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | 2.34315 | 0.106838 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 4.54416 | 0.206339 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 20.9706 | 0.950267 | 0.475133 | − | 0.879914i | \(-0.342400\pi\) | ||||
0.475133 | + | 0.879914i | \(0.342400\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 24.1421 | 1.08952 | 0.544760 | − | 0.838592i | \(-0.316621\pi\) | ||||
0.544760 | + | 0.838592i | \(0.316621\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | −19.0294 | −0.857043 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | 0 | 0 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 28.2843 | 1.26618 | 0.633089 | − | 0.774079i | \(-0.281787\pi\) | ||||
0.633089 | + | 0.774079i | \(0.281787\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | 14.6274 | 0.652204 | 0.326102 | − | 0.945335i | \(-0.394265\pi\) | ||||
0.326102 | + | 0.945335i | \(0.394265\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 2.00000 | 0.0889988 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 37.0711 | 1.64315 | 0.821573 | − | 0.570103i | \(-0.193097\pi\) | ||||
0.821573 | + | 0.570103i | \(0.193097\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 6.34315 | 0.279512 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 5.65685 | 0.248788 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | 30.7279 | 1.34621 | 0.673107 | − | 0.739545i | \(-0.264959\pi\) | ||||
0.673107 | + | 0.739545i | \(0.264959\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 9.65685 | 0.422265 | 0.211132 | − | 0.977457i | \(-0.432285\pi\) | ||||
0.211132 | + | 0.977457i | \(0.432285\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 11.5980 | 0.505216 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | 0.313708 | 0.0136395 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −0.828427 | −0.0358832 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 8.48528 | 0.366851 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | 36.6274 | 1.57474 | 0.787368 | − | 0.616483i | \(-0.211443\pi\) | ||||
0.787368 | + | 0.616483i | \(0.211443\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | −6.62742 | −0.283887 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | −28.9706 | −1.23869 | −0.619346 | − | 0.785118i | \(-0.712602\pi\) | ||||
−0.619346 | + | 0.785118i | \(0.712602\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | −57.9411 | −2.46837 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 0 | 0 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 23.9411 | 1.01442 | 0.507209 | − | 0.861823i | \(-0.330677\pi\) | ||||
0.507209 | + | 0.861823i | \(0.330677\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | 11.3137 | 0.478519 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −21.1716 | −0.892275 | −0.446138 | − | 0.894964i | \(-0.647201\pi\) | ||||
−0.446138 | + | 0.894964i | \(0.647201\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | −3.51472 | −0.147865 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −1.17157 | −0.0491149 | −0.0245574 | − | 0.999698i | \(-0.507818\pi\) | ||||
−0.0245574 | + | 0.999698i | \(0.507818\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | 16.2843 | 0.681476 | 0.340738 | − | 0.940158i | \(-0.389323\pi\) | ||||
0.340738 | + | 0.940158i | \(0.389323\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | −22.4853 | −0.937701 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | 6.58579 | 0.274170 | 0.137085 | − | 0.990559i | \(-0.456227\pi\) | ||||
0.137085 | + | 0.990559i | \(0.456227\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | 0 | 0 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | −11.0294 | −0.456793 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 21.1716 | 0.873844 | 0.436922 | − | 0.899499i | \(-0.356069\pi\) | ||||
0.436922 | + | 0.899499i | \(0.356069\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 35.3137 | 1.45508 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 14.9289 | 0.613058 | 0.306529 | − | 0.951861i | \(-0.400832\pi\) | ||||
0.306529 | + | 0.951861i | \(0.400832\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | −12.1421 | −0.496114 | −0.248057 | − | 0.968745i | \(-0.579792\pi\) | ||||
−0.248057 | + | 0.968745i | \(0.579792\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | 3.75736 | 0.153266 | 0.0766329 | − | 0.997059i | \(-0.475583\pi\) | ||||
0.0766329 | + | 0.997059i | \(0.475583\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | −6.04163 | −0.245627 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | −47.5980 | −1.93194 | −0.965971 | − | 0.258650i | \(-0.916722\pi\) | ||||
−0.965971 | + | 0.258650i | \(0.916722\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −9.65685 | −0.390675 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −13.6569 | −0.551595 | −0.275798 | − | 0.961216i | \(-0.588942\pi\) | ||||
−0.275798 | + | 0.961216i | \(0.588942\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 29.4558 | 1.18585 | 0.592924 | − | 0.805259i | \(-0.297974\pi\) | ||||
0.592924 | + | 0.805259i | \(0.297974\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 16.2843 | 0.654520 | 0.327260 | − | 0.944934i | \(-0.393875\pi\) | ||||
0.327260 | + | 0.944934i | \(0.393875\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 0 | 0 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 19.9706 | 0.798823 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 3.71573 | 0.148156 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −48.2843 | −1.92217 | −0.961083 | − | 0.276259i | \(-0.910905\pi\) | ||||
−0.961083 | + | 0.276259i | \(0.910905\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 8.97056 | 0.355986 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 0 | 0 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | −30.8284 | −1.21765 | −0.608825 | − | 0.793305i | \(-0.708359\pi\) | ||||
−0.608825 | + | 0.793305i | \(0.708359\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 36.4853 | 1.43884 | 0.719420 | − | 0.694576i | \(-0.244408\pi\) | ||||
0.719420 | + | 0.694576i | \(0.244408\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | −9.17157 | −0.360572 | −0.180286 | − | 0.983614i | \(-0.557702\pi\) | ||||
−0.180286 | + | 0.983614i | \(0.557702\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 4.28427 | 0.168172 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 2.82843 | 0.110685 | 0.0553425 | − | 0.998467i | \(-0.482375\pi\) | ||||
0.0553425 | + | 0.998467i | \(0.482375\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 4.28427 | 0.167400 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 42.4853 | 1.65499 | 0.827496 | − | 0.561472i | \(-0.189765\pi\) | ||||
0.827496 | + | 0.561472i | \(0.189765\pi\) | |||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −47.3553 | −1.84191 | −0.920955 | − | 0.389670i | \(-0.872589\pi\) | ||||
−0.920955 | + | 0.389670i | \(0.872589\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | −40.9706 | −1.58639 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 11.5147 | 0.444521 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | −7.31371 | −0.281923 | −0.140961 | − | 0.990015i | \(-0.545019\pi\) | ||||
−0.140961 | + | 0.990015i | \(0.545019\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | 29.5563 | 1.13594 | 0.567971 | − | 0.823048i | \(-0.307728\pi\) | ||||
0.567971 | + | 0.823048i | \(0.307728\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 0 | 0 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | −16.1421 | −0.617662 | −0.308831 | − | 0.951117i | \(-0.599938\pi\) | ||||
−0.308831 | + | 0.951117i | \(0.599938\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | −2.62742 | −0.100388 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 18.8284 | 0.717306 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | 28.0000 | 1.06517 | 0.532585 | − | 0.846376i | \(-0.321221\pi\) | ||||
0.532585 | + | 0.846376i | \(0.321221\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | −0.970563 | −0.0368155 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | −1.31371 | −0.0497603 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | 5.17157 | 0.195328 | 0.0976638 | − | 0.995219i | \(-0.468863\pi\) | ||||
0.0976638 | + | 0.995219i | \(0.468863\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | 11.3137 | 0.426705 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | 0 | 0 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | −8.00000 | −0.300446 | −0.150223 | − | 0.988652i | \(-0.547999\pi\) | ||||
−0.150223 | + | 0.988652i | \(0.547999\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 24.9706 | 0.935155 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | −0.686292 | −0.0256658 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | 4.68629 | 0.174769 | 0.0873846 | − | 0.996175i | \(-0.472149\pi\) | ||||
0.0873846 | + | 0.996175i | \(0.472149\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 0 | 0 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 39.5147 | 1.46754 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | 25.4558 | 0.944105 | 0.472052 | − | 0.881570i | \(-0.343513\pi\) | ||||
0.472052 | + | 0.881570i | \(0.343513\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 17.9411 | 0.663576 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −11.7574 | −0.434268 | −0.217134 | − | 0.976142i | \(-0.569671\pi\) | ||||
−0.217134 | + | 0.976142i | \(0.569671\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | −6.62742 | −0.244124 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −20.2843 | −0.746169 | −0.373084 | − | 0.927797i | \(-0.621700\pi\) | ||||
−0.373084 | + | 0.927797i | \(0.621700\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −11.1716 | −0.409845 | −0.204923 | − | 0.978778i | \(-0.565694\pi\) | ||||
−0.204923 | + | 0.978778i | \(0.565694\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 5.85786 | 0.214616 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 0 | 0 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | −29.6569 | −1.08219 | −0.541097 | − | 0.840960i | \(-0.681991\pi\) | ||||
−0.541097 | + | 0.840960i | \(0.681991\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | −5.65685 | −0.205874 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | −11.3137 | −0.411204 | −0.205602 | − | 0.978636i | \(-0.565915\pi\) | ||||
−0.205602 | + | 0.978636i | \(0.565915\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | −9.75736 | −0.353704 | −0.176852 | − | 0.984237i | \(-0.556591\pi\) | ||||
−0.176852 | + | 0.984237i | \(0.556591\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | 0 | 0 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | −7.31371 | −0.264083 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | −15.0711 | −0.543477 | −0.271738 | − | 0.962371i | \(-0.587599\pi\) | ||||
−0.271738 | + | 0.962371i | \(0.587599\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | −3.41421 | −0.122801 | −0.0614004 | − | 0.998113i | \(-0.519557\pi\) | ||||
−0.0614004 | + | 0.998113i | \(0.519557\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | −24.0833 | −0.865096 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −4.00000 | −0.143315 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0.686292 | 0.0245574 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 8.14214 | 0.290605 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −10.6274 | −0.378827 | −0.189413 | − | 0.981897i | \(-0.560659\pi\) | ||||
−0.189413 | + | 0.981897i | \(0.560659\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 0 | 0 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −19.6569 | −0.698035 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | −43.2132 | −1.53069 | −0.765345 | − | 0.643620i | \(-0.777432\pi\) | ||||
−0.765345 | + | 0.643620i | \(0.777432\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | −15.3137 | −0.541760 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | −9.17157 | −0.323658 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | 30.0000 | 1.05474 | 0.527372 | − | 0.849635i | \(-0.323177\pi\) | ||||
0.527372 | + | 0.849635i | \(0.323177\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −20.9706 | −0.736376 | −0.368188 | − | 0.929751i | \(-0.620022\pi\) | ||||
−0.368188 | + | 0.929751i | \(0.620022\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 8.00000 | 0.280228 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | 54.6274 | 1.91117 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −10.0000 | −0.349002 | −0.174501 | − | 0.984657i | \(-0.555831\pi\) | ||||
−0.174501 | + | 0.984657i | \(0.555831\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 2.34315 | 0.0816769 | 0.0408385 | − | 0.999166i | \(-0.486997\pi\) | ||||
0.0408385 | + | 0.999166i | \(0.486997\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −19.4558 | −0.676546 | −0.338273 | − | 0.941048i | \(-0.609843\pi\) | ||||
−0.338273 | + | 0.941048i | \(0.609843\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −3.27208 | −0.113644 | −0.0568220 | − | 0.998384i | \(-0.518097\pi\) | ||||
−0.0568220 | + | 0.998384i | \(0.518097\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | −0.686292 | −0.0237501 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −49.1716 | −1.69759 | −0.848796 | − | 0.528721i | \(-0.822672\pi\) | ||||
−0.848796 | + | 0.528721i | \(0.822672\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 43.0000 | 1.48276 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | −6.44365 | −0.221668 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | 0 | 0 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | 8.00000 | 0.274236 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | −36.0416 | −1.23404 | −0.617021 | − | 0.786947i | \(-0.711661\pi\) | ||||
−0.617021 | + | 0.786947i | \(0.711661\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −43.6985 | −1.49271 | −0.746356 | − | 0.665547i | \(-0.768198\pi\) | ||||
−0.746356 | + | 0.665547i | \(0.768198\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −38.8284 | −1.32481 | −0.662404 | − | 0.749146i | \(-0.730464\pi\) | ||||
−0.662404 | + | 0.749146i | \(0.730464\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | −29.5147 | −1.00469 | −0.502346 | − | 0.864666i | \(-0.667530\pi\) | ||||
−0.502346 | + | 0.864666i | \(0.667530\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | −2.00000 | −0.0680020 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | −1.94113 | −0.0658482 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | 11.3137 | 0.383350 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | 20.2843 | 0.684951 | 0.342476 | − | 0.939527i | \(-0.388735\pi\) | ||||
0.342476 | + | 0.939527i | \(0.388735\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | −25.0711 | −0.844666 | −0.422333 | − | 0.906441i | \(-0.638789\pi\) | ||||
−0.422333 | + | 0.906441i | \(0.638789\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −18.3431 | −0.617296 | −0.308648 | − | 0.951176i | \(-0.599877\pi\) | ||||
−0.308648 | + | 0.951176i | \(0.599877\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | −21.4558 | −0.720417 | −0.360208 | − | 0.932872i | \(-0.617294\pi\) | ||||
−0.360208 | + | 0.932872i | \(0.617294\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 0 | 0 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −46.6274 | −1.56033 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 10.4264 | 0.348516 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | −43.8823 | −1.46356 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 29.8579 | 0.994710 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 5.79899 | 0.192765 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 7.02944 | 0.233409 | 0.116704 | − | 0.993167i | \(-0.462767\pi\) | ||||
0.116704 | + | 0.993167i | \(0.462767\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −54.4853 | −1.80518 | −0.902589 | − | 0.430503i | \(-0.858336\pi\) | ||||
−0.902589 | + | 0.430503i | \(0.858336\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 12.6863 | 0.419855 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | 0 | 0 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 49.2548 | 1.62477 | 0.812384 | − | 0.583123i | \(-0.198170\pi\) | ||||
0.812384 | + | 0.583123i | \(0.198170\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −1.17157 | −0.0385628 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | −7.71573 | −0.253692 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | 60.8701 | 1.99708 | 0.998541 | − | 0.0540006i | \(-0.0171973\pi\) | ||||
0.998541 | + | 0.0540006i | \(0.0171973\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 0 | 0 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | −1.08831 | −0.0355916 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 6.10051 | 0.199295 | 0.0996474 | − | 0.995023i | \(-0.468229\pi\) | ||||
0.0996474 | + | 0.995023i | \(0.468229\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | −43.8995 | −1.43108 | −0.715541 | − | 0.698570i | \(-0.753820\pi\) | ||||
−0.715541 | + | 0.698570i | \(0.753820\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −2.82843 | −0.0921063 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | 20.1421 | 0.654531 | 0.327266 | − | 0.944932i | \(-0.393873\pi\) | ||||
0.327266 | + | 0.944932i | \(0.393873\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 15.6569 | 0.508243 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | 7.37258 | 0.238821 | 0.119411 | − | 0.992845i | \(-0.461899\pi\) | ||||
0.119411 | + | 0.992845i | \(0.461899\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 8.88730 | 0.287586 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | −4.25483 | −0.137253 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 14.4264 | 0.464402 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | 34.6274 | 1.11354 | 0.556771 | − | 0.830666i | \(-0.312040\pi\) | ||||
0.556771 | + | 0.830666i | \(0.312040\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | 57.2548 | 1.83740 | 0.918698 | − | 0.394962i | \(-0.129242\pi\) | ||||
0.918698 | + | 0.394962i | \(0.129242\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | 0 | 0 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | −21.8579 | −0.699295 | −0.349648 | − | 0.936881i | \(-0.613699\pi\) | ||||
−0.349648 | + | 0.936881i | \(0.613699\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 8.88730 | 0.284039 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | 14.6274 | 0.466542 | 0.233271 | − | 0.972412i | \(-0.425057\pi\) | ||||
0.233271 | + | 0.972412i | \(0.425057\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | −1.17157 | −0.0373294 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | 38.6274 | 1.22828 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | −23.3137 | −0.740584 | −0.370292 | − | 0.928915i | \(-0.620742\pi\) | ||||
−0.370292 | + | 0.928915i | \(0.620742\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 3.31371 | 0.105052 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | 34.5858 | 1.09534 | 0.547671 | − | 0.836693i | \(-0.315514\pi\) | ||||
0.547671 | + | 0.836693i | \(0.315514\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
Twists
By twisting character | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Type | Twist | Min | Dim | |
1.1 | even | 1 | trivial | 7056.2.a.cx.1.1 | 2 | ||
3.2 | odd | 2 | 2352.2.a.bd.1.2 | 2 | |||
4.3 | odd | 2 | 3528.2.a.bl.1.1 | 2 | |||
7.6 | odd | 2 | 7056.2.a.cg.1.2 | 2 | |||
12.11 | even | 2 | 1176.2.a.j.1.2 | ✓ | 2 | ||
21.2 | odd | 6 | 2352.2.q.bc.1537.1 | 4 | |||
21.5 | even | 6 | 2352.2.q.be.1537.2 | 4 | |||
21.11 | odd | 6 | 2352.2.q.bc.961.1 | 4 | |||
21.17 | even | 6 | 2352.2.q.be.961.2 | 4 | |||
21.20 | even | 2 | 2352.2.a.bb.1.1 | 2 | |||
24.5 | odd | 2 | 9408.2.a.ds.1.1 | 2 | |||
24.11 | even | 2 | 9408.2.a.ee.1.1 | 2 | |||
28.3 | even | 6 | 3528.2.s.bm.3313.1 | 4 | |||
28.11 | odd | 6 | 3528.2.s.bd.3313.2 | 4 | |||
28.19 | even | 6 | 3528.2.s.bm.361.1 | 4 | |||
28.23 | odd | 6 | 3528.2.s.bd.361.2 | 4 | |||
28.27 | even | 2 | 3528.2.a.bb.1.2 | 2 | |||
84.11 | even | 6 | 1176.2.q.o.961.1 | 4 | |||
84.23 | even | 6 | 1176.2.q.o.361.1 | 4 | |||
84.47 | odd | 6 | 1176.2.q.k.361.2 | 4 | |||
84.59 | odd | 6 | 1176.2.q.k.961.2 | 4 | |||
84.83 | odd | 2 | 1176.2.a.o.1.1 | yes | 2 | ||
168.83 | odd | 2 | 9408.2.a.dg.1.2 | 2 | |||
168.125 | even | 2 | 9408.2.a.du.1.2 | 2 |
By twisted newform | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Type | |
1176.2.a.j.1.2 | ✓ | 2 | 12.11 | even | 2 | ||
1176.2.a.o.1.1 | yes | 2 | 84.83 | odd | 2 | ||
1176.2.q.k.361.2 | 4 | 84.47 | odd | 6 | |||
1176.2.q.k.961.2 | 4 | 84.59 | odd | 6 | |||
1176.2.q.o.361.1 | 4 | 84.23 | even | 6 | |||
1176.2.q.o.961.1 | 4 | 84.11 | even | 6 | |||
2352.2.a.bb.1.1 | 2 | 21.20 | even | 2 | |||
2352.2.a.bd.1.2 | 2 | 3.2 | odd | 2 | |||
2352.2.q.bc.961.1 | 4 | 21.11 | odd | 6 | |||
2352.2.q.bc.1537.1 | 4 | 21.2 | odd | 6 | |||
2352.2.q.be.961.2 | 4 | 21.17 | even | 6 | |||
2352.2.q.be.1537.2 | 4 | 21.5 | even | 6 | |||
3528.2.a.bb.1.2 | 2 | 28.27 | even | 2 | |||
3528.2.a.bl.1.1 | 2 | 4.3 | odd | 2 | |||
3528.2.s.bd.361.2 | 4 | 28.23 | odd | 6 | |||
3528.2.s.bd.3313.2 | 4 | 28.11 | odd | 6 | |||
3528.2.s.bm.361.1 | 4 | 28.19 | even | 6 | |||
3528.2.s.bm.3313.1 | 4 | 28.3 | even | 6 | |||
7056.2.a.cg.1.2 | 2 | 7.6 | odd | 2 | |||
7056.2.a.cx.1.1 | 2 | 1.1 | even | 1 | trivial | ||
9408.2.a.dg.1.2 | 2 | 168.83 | odd | 2 | |||
9408.2.a.ds.1.1 | 2 | 24.5 | odd | 2 | |||
9408.2.a.du.1.2 | 2 | 168.125 | even | 2 | |||
9408.2.a.ee.1.1 | 2 | 24.11 | even | 2 |