Properties

Label 7056.2.a.cx.1.1
Level $7056$
Weight $2$
Character 7056.1
Self dual yes
Analytic conductor $56.342$
Analytic rank $0$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7056,2,Mod(1,7056)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7056, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7056.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7056 = 2^{4} \cdot 3^{2} \cdot 7^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7056.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.3424436662\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{8})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 1176)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.41421\) of defining polynomial
Character \(\chi\) \(=\) 7056.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+0.585786 q^{5} -0.828427 q^{11} +1.41421 q^{13} +2.24264 q^{17} +6.82843 q^{19} +4.82843 q^{23} -4.65685 q^{25} -8.48528 q^{29} +5.17157 q^{31} +1.65685 q^{37} -0.585786 q^{41} +8.00000 q^{43} -6.82843 q^{47} +13.3137 q^{53} -0.485281 q^{55} -5.17157 q^{59} -13.8995 q^{61} +0.828427 q^{65} +8.00000 q^{67} -0.828427 q^{71} +11.0711 q^{73} +2.34315 q^{79} -15.3137 q^{83} +1.31371 q^{85} -10.7279 q^{89} +4.00000 q^{95} +7.75736 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{5} + 4 q^{11} - 4 q^{17} + 8 q^{19} + 4 q^{23} + 2 q^{25} + 16 q^{31} - 8 q^{37} - 4 q^{41} + 16 q^{43} - 8 q^{47} + 4 q^{53} + 16 q^{55} - 16 q^{59} - 8 q^{61} - 4 q^{65} + 16 q^{67} + 4 q^{71}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0.585786 0.261972 0.130986 0.991384i \(-0.458186\pi\)
0.130986 + 0.991384i \(0.458186\pi\)
\(6\) 0 0
\(7\) 0 0
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −0.828427 −0.249780 −0.124890 0.992171i \(-0.539858\pi\)
−0.124890 + 0.992171i \(0.539858\pi\)
\(12\) 0 0
\(13\) 1.41421 0.392232 0.196116 0.980581i \(-0.437167\pi\)
0.196116 + 0.980581i \(0.437167\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.24264 0.543920 0.271960 0.962309i \(-0.412328\pi\)
0.271960 + 0.962309i \(0.412328\pi\)
\(18\) 0 0
\(19\) 6.82843 1.56655 0.783274 0.621676i \(-0.213548\pi\)
0.783274 + 0.621676i \(0.213548\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.82843 1.00680 0.503398 0.864054i \(-0.332083\pi\)
0.503398 + 0.864054i \(0.332083\pi\)
\(24\) 0 0
\(25\) −4.65685 −0.931371
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −8.48528 −1.57568 −0.787839 0.615882i \(-0.788800\pi\)
−0.787839 + 0.615882i \(0.788800\pi\)
\(30\) 0 0
\(31\) 5.17157 0.928842 0.464421 0.885615i \(-0.346262\pi\)
0.464421 + 0.885615i \(0.346262\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 1.65685 0.272385 0.136193 0.990682i \(-0.456513\pi\)
0.136193 + 0.990682i \(0.456513\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −0.585786 −0.0914845 −0.0457422 0.998953i \(-0.514565\pi\)
−0.0457422 + 0.998953i \(0.514565\pi\)
\(42\) 0 0
\(43\) 8.00000 1.21999 0.609994 0.792406i \(-0.291172\pi\)
0.609994 + 0.792406i \(0.291172\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.82843 −0.996028 −0.498014 0.867169i \(-0.665937\pi\)
−0.498014 + 0.867169i \(0.665937\pi\)
\(48\) 0 0
\(49\) 0 0
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 13.3137 1.82878 0.914389 0.404836i \(-0.132671\pi\)
0.914389 + 0.404836i \(0.132671\pi\)
\(54\) 0 0
\(55\) −0.485281 −0.0654353
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −5.17157 −0.673281 −0.336641 0.941633i \(-0.609291\pi\)
−0.336641 + 0.941633i \(0.609291\pi\)
\(60\) 0 0
\(61\) −13.8995 −1.77965 −0.889824 0.456304i \(-0.849173\pi\)
−0.889824 + 0.456304i \(0.849173\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0.828427 0.102754
\(66\) 0 0
\(67\) 8.00000 0.977356 0.488678 0.872464i \(-0.337479\pi\)
0.488678 + 0.872464i \(0.337479\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.828427 −0.0983162 −0.0491581 0.998791i \(-0.515654\pi\)
−0.0491581 + 0.998791i \(0.515654\pi\)
\(72\) 0 0
\(73\) 11.0711 1.29577 0.647885 0.761738i \(-0.275654\pi\)
0.647885 + 0.761738i \(0.275654\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 0 0
\(78\) 0 0
\(79\) 2.34315 0.263624 0.131812 0.991275i \(-0.457920\pi\)
0.131812 + 0.991275i \(0.457920\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −15.3137 −1.68090 −0.840449 0.541891i \(-0.817709\pi\)
−0.840449 + 0.541891i \(0.817709\pi\)
\(84\) 0 0
\(85\) 1.31371 0.142492
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) −10.7279 −1.13716 −0.568579 0.822629i \(-0.692507\pi\)
−0.568579 + 0.822629i \(0.692507\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 4.00000 0.410391
\(96\) 0 0
\(97\) 7.75736 0.787641 0.393820 0.919187i \(-0.371153\pi\)
0.393820 + 0.919187i \(0.371153\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 3.41421 0.339727 0.169863 0.985468i \(-0.445667\pi\)
0.169863 + 0.985468i \(0.445667\pi\)
\(102\) 0 0
\(103\) 10.8284 1.06696 0.533478 0.845814i \(-0.320885\pi\)
0.533478 + 0.845814i \(0.320885\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) 14.4853 1.40035 0.700173 0.713974i \(-0.253106\pi\)
0.700173 + 0.713974i \(0.253106\pi\)
\(108\) 0 0
\(109\) −11.3137 −1.08366 −0.541828 0.840489i \(-0.682268\pi\)
−0.541828 + 0.840489i \(0.682268\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) −6.00000 −0.564433 −0.282216 0.959351i \(-0.591070\pi\)
−0.282216 + 0.959351i \(0.591070\pi\)
\(114\) 0 0
\(115\) 2.82843 0.263752
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −10.3137 −0.937610
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) −5.65685 −0.505964
\(126\) 0 0
\(127\) 15.3137 1.35887 0.679436 0.733735i \(-0.262225\pi\)
0.679436 + 0.733735i \(0.262225\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 7.31371 0.639002 0.319501 0.947586i \(-0.396485\pi\)
0.319501 + 0.947586i \(0.396485\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −4.48528 −0.383203 −0.191602 0.981473i \(-0.561368\pi\)
−0.191602 + 0.981473i \(0.561368\pi\)
\(138\) 0 0
\(139\) −1.65685 −0.140533 −0.0702663 0.997528i \(-0.522385\pi\)
−0.0702663 + 0.997528i \(0.522385\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −1.17157 −0.0979718
\(144\) 0 0
\(145\) −4.97056 −0.412783
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 10.0000 0.819232 0.409616 0.912258i \(-0.365663\pi\)
0.409616 + 0.912258i \(0.365663\pi\)
\(150\) 0 0
\(151\) −9.65685 −0.785864 −0.392932 0.919568i \(-0.628539\pi\)
−0.392932 + 0.919568i \(0.628539\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 3.02944 0.243330
\(156\) 0 0
\(157\) 13.8995 1.10930 0.554650 0.832084i \(-0.312852\pi\)
0.554650 + 0.832084i \(0.312852\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 0 0
\(162\) 0 0
\(163\) 13.6569 1.06969 0.534844 0.844951i \(-0.320370\pi\)
0.534844 + 0.844951i \(0.320370\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −1.17157 −0.0906590 −0.0453295 0.998972i \(-0.514434\pi\)
−0.0453295 + 0.998972i \(0.514434\pi\)
\(168\) 0 0
\(169\) −11.0000 −0.846154
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −3.41421 −0.259578 −0.129789 0.991542i \(-0.541430\pi\)
−0.129789 + 0.991542i \(0.541430\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 17.7990 1.33036 0.665179 0.746684i \(-0.268355\pi\)
0.665179 + 0.746684i \(0.268355\pi\)
\(180\) 0 0
\(181\) 9.89949 0.735824 0.367912 0.929861i \(-0.380073\pi\)
0.367912 + 0.929861i \(0.380073\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0.970563 0.0713572
\(186\) 0 0
\(187\) −1.85786 −0.135860
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 15.1716 1.09778 0.548888 0.835896i \(-0.315051\pi\)
0.548888 + 0.835896i \(0.315051\pi\)
\(192\) 0 0
\(193\) 24.6274 1.77272 0.886360 0.462996i \(-0.153226\pi\)
0.886360 + 0.462996i \(0.153226\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −2.00000 −0.142494 −0.0712470 0.997459i \(-0.522698\pi\)
−0.0712470 + 0.997459i \(0.522698\pi\)
\(198\) 0 0
\(199\) 5.65685 0.401004 0.200502 0.979693i \(-0.435743\pi\)
0.200502 + 0.979693i \(0.435743\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 0 0
\(204\) 0 0
\(205\) −0.343146 −0.0239663
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −5.65685 −0.391293
\(210\) 0 0
\(211\) 14.3431 0.987423 0.493711 0.869626i \(-0.335640\pi\)
0.493711 + 0.869626i \(0.335640\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 4.68629 0.319602
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 3.17157 0.213343
\(222\) 0 0
\(223\) −13.6569 −0.914531 −0.457265 0.889330i \(-0.651171\pi\)
−0.457265 + 0.889330i \(0.651171\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 19.7990 1.31411 0.657053 0.753845i \(-0.271803\pi\)
0.657053 + 0.753845i \(0.271803\pi\)
\(228\) 0 0
\(229\) −15.0711 −0.995924 −0.497962 0.867199i \(-0.665918\pi\)
−0.497962 + 0.867199i \(0.665918\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 28.4853 1.86613 0.933066 0.359704i \(-0.117122\pi\)
0.933066 + 0.359704i \(0.117122\pi\)
\(234\) 0 0
\(235\) −4.00000 −0.260931
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −3.17157 −0.205152 −0.102576 0.994725i \(-0.532708\pi\)
−0.102576 + 0.994725i \(0.532708\pi\)
\(240\) 0 0
\(241\) 21.8995 1.41067 0.705335 0.708874i \(-0.250796\pi\)
0.705335 + 0.708874i \(0.250796\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 9.65685 0.614451
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.48528 −0.535586 −0.267793 0.963476i \(-0.586294\pi\)
−0.267793 + 0.963476i \(0.586294\pi\)
\(252\) 0 0
\(253\) −4.00000 −0.251478
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −30.2426 −1.88648 −0.943242 0.332106i \(-0.892241\pi\)
−0.943242 + 0.332106i \(0.892241\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 24.8284 1.53099 0.765493 0.643444i \(-0.222495\pi\)
0.765493 + 0.643444i \(0.222495\pi\)
\(264\) 0 0
\(265\) 7.79899 0.479088
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.0416 1.83167 0.915835 0.401554i \(-0.131530\pi\)
0.915835 + 0.401554i \(0.131530\pi\)
\(270\) 0 0
\(271\) −13.1716 −0.800116 −0.400058 0.916490i \(-0.631010\pi\)
−0.400058 + 0.916490i \(0.631010\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 3.85786 0.232638
\(276\) 0 0
\(277\) −6.00000 −0.360505 −0.180253 0.983620i \(-0.557691\pi\)
−0.180253 + 0.983620i \(0.557691\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.4853 0.744809 0.372405 0.928070i \(-0.378533\pi\)
0.372405 + 0.928070i \(0.378533\pi\)
\(282\) 0 0
\(283\) −14.8284 −0.881458 −0.440729 0.897640i \(-0.645280\pi\)
−0.440729 + 0.897640i \(0.645280\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) 0 0
\(289\) −11.9706 −0.704151
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.07107 0.0625724 0.0312862 0.999510i \(-0.490040\pi\)
0.0312862 + 0.999510i \(0.490040\pi\)
\(294\) 0 0
\(295\) −3.02944 −0.176381
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 6.82843 0.394898
\(300\) 0 0
\(301\) 0 0
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −8.14214 −0.466217
\(306\) 0 0
\(307\) −11.5147 −0.657180 −0.328590 0.944473i \(-0.606573\pi\)
−0.328590 + 0.944473i \(0.606573\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 26.1421 1.48238 0.741192 0.671293i \(-0.234261\pi\)
0.741192 + 0.671293i \(0.234261\pi\)
\(312\) 0 0
\(313\) 17.4142 0.984310 0.492155 0.870508i \(-0.336209\pi\)
0.492155 + 0.870508i \(0.336209\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −21.3137 −1.19710 −0.598549 0.801087i \(-0.704256\pi\)
−0.598549 + 0.801087i \(0.704256\pi\)
\(318\) 0 0
\(319\) 7.02944 0.393573
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 15.3137 0.852078
\(324\) 0 0
\(325\) −6.58579 −0.365314
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 8.68629 0.477442 0.238721 0.971088i \(-0.423272\pi\)
0.238721 + 0.971088i \(0.423272\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 4.68629 0.256039
\(336\) 0 0
\(337\) −16.9706 −0.924445 −0.462223 0.886764i \(-0.652948\pi\)
−0.462223 + 0.886764i \(0.652948\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −4.28427 −0.232006
\(342\) 0 0
\(343\) 0 0
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −4.14214 −0.222361 −0.111181 0.993800i \(-0.535463\pi\)
−0.111181 + 0.993800i \(0.535463\pi\)
\(348\) 0 0
\(349\) −30.3848 −1.62646 −0.813230 0.581943i \(-0.802293\pi\)
−0.813230 + 0.581943i \(0.802293\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −15.8995 −0.846245 −0.423122 0.906073i \(-0.639066\pi\)
−0.423122 + 0.906073i \(0.639066\pi\)
\(354\) 0 0
\(355\) −0.485281 −0.0257561
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −35.4558 −1.87129 −0.935644 0.352945i \(-0.885180\pi\)
−0.935644 + 0.352945i \(0.885180\pi\)
\(360\) 0 0
\(361\) 27.6274 1.45407
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 6.48528 0.339455
\(366\) 0 0
\(367\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 14.6863 0.760427 0.380214 0.924899i \(-0.375850\pi\)
0.380214 + 0.924899i \(0.375850\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 0.686292 0.0352524 0.0176262 0.999845i \(-0.494389\pi\)
0.0176262 + 0.999845i \(0.494389\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −24.9706 −1.27594 −0.637968 0.770063i \(-0.720225\pi\)
−0.637968 + 0.770063i \(0.720225\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 14.1421 0.717035 0.358517 0.933523i \(-0.383282\pi\)
0.358517 + 0.933523i \(0.383282\pi\)
\(390\) 0 0
\(391\) 10.8284 0.547617
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 1.37258 0.0690621
\(396\) 0 0
\(397\) −7.27208 −0.364975 −0.182488 0.983208i \(-0.558415\pi\)
−0.182488 + 0.983208i \(0.558415\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 12.4853 0.623485 0.311743 0.950167i \(-0.399087\pi\)
0.311743 + 0.950167i \(0.399087\pi\)
\(402\) 0 0
\(403\) 7.31371 0.364322
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −1.37258 −0.0680364
\(408\) 0 0
\(409\) −16.2426 −0.803147 −0.401573 0.915827i \(-0.631537\pi\)
−0.401573 + 0.915827i \(0.631537\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0 0
\(415\) −8.97056 −0.440348
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −10.8284 −0.529003 −0.264502 0.964385i \(-0.585207\pi\)
−0.264502 + 0.964385i \(0.585207\pi\)
\(420\) 0 0
\(421\) 6.68629 0.325870 0.162935 0.986637i \(-0.447904\pi\)
0.162935 + 0.986637i \(0.447904\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) −10.4437 −0.506591
\(426\) 0 0
\(427\) 0 0
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −30.4853 −1.46842 −0.734212 0.678920i \(-0.762448\pi\)
−0.734212 + 0.678920i \(0.762448\pi\)
\(432\) 0 0
\(433\) −26.3848 −1.26797 −0.633986 0.773345i \(-0.718582\pi\)
−0.633986 + 0.773345i \(0.718582\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 32.9706 1.57720
\(438\) 0 0
\(439\) −3.31371 −0.158155 −0.0790773 0.996868i \(-0.525197\pi\)
−0.0790773 + 0.996868i \(0.525197\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) 38.4853 1.82849 0.914245 0.405161i \(-0.132784\pi\)
0.914245 + 0.405161i \(0.132784\pi\)
\(444\) 0 0
\(445\) −6.28427 −0.297903
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 10.0000 0.471929 0.235965 0.971762i \(-0.424175\pi\)
0.235965 + 0.971762i \(0.424175\pi\)
\(450\) 0 0
\(451\) 0.485281 0.0228510
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 20.6274 0.964910 0.482455 0.875921i \(-0.339745\pi\)
0.482455 + 0.875921i \(0.339745\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 18.2426 0.849644 0.424822 0.905277i \(-0.360337\pi\)
0.424822 + 0.905277i \(0.360337\pi\)
\(462\) 0 0
\(463\) −20.9706 −0.974585 −0.487292 0.873239i \(-0.662015\pi\)
−0.487292 + 0.873239i \(0.662015\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 10.8284 0.501080 0.250540 0.968106i \(-0.419392\pi\)
0.250540 + 0.968106i \(0.419392\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −6.62742 −0.304729
\(474\) 0 0
\(475\) −31.7990 −1.45904
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 43.1127 1.96987 0.984935 0.172926i \(-0.0553223\pi\)
0.984935 + 0.172926i \(0.0553223\pi\)
\(480\) 0 0
\(481\) 2.34315 0.106838
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 4.54416 0.206339
\(486\) 0 0
\(487\) 20.9706 0.950267 0.475133 0.879914i \(-0.342400\pi\)
0.475133 + 0.879914i \(0.342400\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 24.1421 1.08952 0.544760 0.838592i \(-0.316621\pi\)
0.544760 + 0.838592i \(0.316621\pi\)
\(492\) 0 0
\(493\) −19.0294 −0.857043
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 0 0
\(498\) 0 0
\(499\) 28.2843 1.26618 0.633089 0.774079i \(-0.281787\pi\)
0.633089 + 0.774079i \(0.281787\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 14.6274 0.652204 0.326102 0.945335i \(-0.394265\pi\)
0.326102 + 0.945335i \(0.394265\pi\)
\(504\) 0 0
\(505\) 2.00000 0.0889988
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 37.0711 1.64315 0.821573 0.570103i \(-0.193097\pi\)
0.821573 + 0.570103i \(0.193097\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 6.34315 0.279512
\(516\) 0 0
\(517\) 5.65685 0.248788
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 30.7279 1.34621 0.673107 0.739545i \(-0.264959\pi\)
0.673107 + 0.739545i \(0.264959\pi\)
\(522\) 0 0
\(523\) 9.65685 0.422265 0.211132 0.977457i \(-0.432285\pi\)
0.211132 + 0.977457i \(0.432285\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 11.5980 0.505216
\(528\) 0 0
\(529\) 0.313708 0.0136395
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −0.828427 −0.0358832
\(534\) 0 0
\(535\) 8.48528 0.366851
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0 0
\(540\) 0 0
\(541\) 36.6274 1.57474 0.787368 0.616483i \(-0.211443\pi\)
0.787368 + 0.616483i \(0.211443\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) −6.62742 −0.283887
\(546\) 0 0
\(547\) −28.9706 −1.23869 −0.619346 0.785118i \(-0.712602\pi\)
−0.619346 + 0.785118i \(0.712602\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −57.9411 −2.46837
\(552\) 0 0
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 23.9411 1.01442 0.507209 0.861823i \(-0.330677\pi\)
0.507209 + 0.861823i \(0.330677\pi\)
\(558\) 0 0
\(559\) 11.3137 0.478519
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) −21.1716 −0.892275 −0.446138 0.894964i \(-0.647201\pi\)
−0.446138 + 0.894964i \(0.647201\pi\)
\(564\) 0 0
\(565\) −3.51472 −0.147865
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −1.17157 −0.0491149 −0.0245574 0.999698i \(-0.507818\pi\)
−0.0245574 + 0.999698i \(0.507818\pi\)
\(570\) 0 0
\(571\) 16.2843 0.681476 0.340738 0.940158i \(-0.389323\pi\)
0.340738 + 0.940158i \(0.389323\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −22.4853 −0.937701
\(576\) 0 0
\(577\) 6.58579 0.274170 0.137085 0.990559i \(-0.456227\pi\)
0.137085 + 0.990559i \(0.456227\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −11.0294 −0.456793
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 21.1716 0.873844 0.436922 0.899499i \(-0.356069\pi\)
0.436922 + 0.899499i \(0.356069\pi\)
\(588\) 0 0
\(589\) 35.3137 1.45508
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 14.9289 0.613058 0.306529 0.951861i \(-0.400832\pi\)
0.306529 + 0.951861i \(0.400832\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −12.1421 −0.496114 −0.248057 0.968745i \(-0.579792\pi\)
−0.248057 + 0.968745i \(0.579792\pi\)
\(600\) 0 0
\(601\) 3.75736 0.153266 0.0766329 0.997059i \(-0.475583\pi\)
0.0766329 + 0.997059i \(0.475583\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) −6.04163 −0.245627
\(606\) 0 0
\(607\) −47.5980 −1.93194 −0.965971 0.258650i \(-0.916722\pi\)
−0.965971 + 0.258650i \(0.916722\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) −9.65685 −0.390675
\(612\) 0 0
\(613\) −13.6569 −0.551595 −0.275798 0.961216i \(-0.588942\pi\)
−0.275798 + 0.961216i \(0.588942\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 29.4558 1.18585 0.592924 0.805259i \(-0.297974\pi\)
0.592924 + 0.805259i \(0.297974\pi\)
\(618\) 0 0
\(619\) 16.2843 0.654520 0.327260 0.944934i \(-0.393875\pi\)
0.327260 + 0.944934i \(0.393875\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 19.9706 0.798823
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 3.71573 0.148156
\(630\) 0 0
\(631\) −48.2843 −1.92217 −0.961083 0.276259i \(-0.910905\pi\)
−0.961083 + 0.276259i \(0.910905\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 8.97056 0.355986
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −30.8284 −1.21765 −0.608825 0.793305i \(-0.708359\pi\)
−0.608825 + 0.793305i \(0.708359\pi\)
\(642\) 0 0
\(643\) 36.4853 1.43884 0.719420 0.694576i \(-0.244408\pi\)
0.719420 + 0.694576i \(0.244408\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −9.17157 −0.360572 −0.180286 0.983614i \(-0.557702\pi\)
−0.180286 + 0.983614i \(0.557702\pi\)
\(648\) 0 0
\(649\) 4.28427 0.168172
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 2.82843 0.110685 0.0553425 0.998467i \(-0.482375\pi\)
0.0553425 + 0.998467i \(0.482375\pi\)
\(654\) 0 0
\(655\) 4.28427 0.167400
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 42.4853 1.65499 0.827496 0.561472i \(-0.189765\pi\)
0.827496 + 0.561472i \(0.189765\pi\)
\(660\) 0 0
\(661\) −47.3553 −1.84191 −0.920955 0.389670i \(-0.872589\pi\)
−0.920955 + 0.389670i \(0.872589\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −40.9706 −1.58639
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 11.5147 0.444521
\(672\) 0 0
\(673\) −7.31371 −0.281923 −0.140961 0.990015i \(-0.545019\pi\)
−0.140961 + 0.990015i \(0.545019\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 29.5563 1.13594 0.567971 0.823048i \(-0.307728\pi\)
0.567971 + 0.823048i \(0.307728\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −16.1421 −0.617662 −0.308831 0.951117i \(-0.599938\pi\)
−0.308831 + 0.951117i \(0.599938\pi\)
\(684\) 0 0
\(685\) −2.62742 −0.100388
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 18.8284 0.717306
\(690\) 0 0
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) −0.970563 −0.0368155
\(696\) 0 0
\(697\) −1.31371 −0.0497603
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 5.17157 0.195328 0.0976638 0.995219i \(-0.468863\pi\)
0.0976638 + 0.995219i \(0.468863\pi\)
\(702\) 0 0
\(703\) 11.3137 0.426705
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −8.00000 −0.300446 −0.150223 0.988652i \(-0.547999\pi\)
−0.150223 + 0.988652i \(0.547999\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 24.9706 0.935155
\(714\) 0 0
\(715\) −0.686292 −0.0256658
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 4.68629 0.174769 0.0873846 0.996175i \(-0.472149\pi\)
0.0873846 + 0.996175i \(0.472149\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 39.5147 1.46754
\(726\) 0 0
\(727\) 25.4558 0.944105 0.472052 0.881570i \(-0.343513\pi\)
0.472052 + 0.881570i \(0.343513\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 17.9411 0.663576
\(732\) 0 0
\(733\) −11.7574 −0.434268 −0.217134 0.976142i \(-0.569671\pi\)
−0.217134 + 0.976142i \(0.569671\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −6.62742 −0.244124
\(738\) 0 0
\(739\) −20.2843 −0.746169 −0.373084 0.927797i \(-0.621700\pi\)
−0.373084 + 0.927797i \(0.621700\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −11.1716 −0.409845 −0.204923 0.978778i \(-0.565694\pi\)
−0.204923 + 0.978778i \(0.565694\pi\)
\(744\) 0 0
\(745\) 5.85786 0.214616
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 0 0
\(750\) 0 0
\(751\) −29.6569 −1.08219 −0.541097 0.840960i \(-0.681991\pi\)
−0.541097 + 0.840960i \(0.681991\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) −5.65685 −0.205874
\(756\) 0 0
\(757\) −11.3137 −0.411204 −0.205602 0.978636i \(-0.565915\pi\)
−0.205602 + 0.978636i \(0.565915\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −9.75736 −0.353704 −0.176852 0.984237i \(-0.556591\pi\)
−0.176852 + 0.984237i \(0.556591\pi\)
\(762\) 0 0
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −7.31371 −0.264083
\(768\) 0 0
\(769\) −15.0711 −0.543477 −0.271738 0.962371i \(-0.587599\pi\)
−0.271738 + 0.962371i \(0.587599\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −3.41421 −0.122801 −0.0614004 0.998113i \(-0.519557\pi\)
−0.0614004 + 0.998113i \(0.519557\pi\)
\(774\) 0 0
\(775\) −24.0833 −0.865096
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −4.00000 −0.143315
\(780\) 0 0
\(781\) 0.686292 0.0245574
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 8.14214 0.290605
\(786\) 0 0
\(787\) −10.6274 −0.378827 −0.189413 0.981897i \(-0.560659\pi\)
−0.189413 + 0.981897i \(0.560659\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −19.6569 −0.698035
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −43.2132 −1.53069 −0.765345 0.643620i \(-0.777432\pi\)
−0.765345 + 0.643620i \(0.777432\pi\)
\(798\) 0 0
\(799\) −15.3137 −0.541760
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −9.17157 −0.323658
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 30.0000 1.05474 0.527372 0.849635i \(-0.323177\pi\)
0.527372 + 0.849635i \(0.323177\pi\)
\(810\) 0 0
\(811\) −20.9706 −0.736376 −0.368188 0.929751i \(-0.620022\pi\)
−0.368188 + 0.929751i \(0.620022\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 8.00000 0.280228
\(816\) 0 0
\(817\) 54.6274 1.91117
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −10.0000 −0.349002 −0.174501 0.984657i \(-0.555831\pi\)
−0.174501 + 0.984657i \(0.555831\pi\)
\(822\) 0 0
\(823\) 2.34315 0.0816769 0.0408385 0.999166i \(-0.486997\pi\)
0.0408385 + 0.999166i \(0.486997\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −19.4558 −0.676546 −0.338273 0.941048i \(-0.609843\pi\)
−0.338273 + 0.941048i \(0.609843\pi\)
\(828\) 0 0
\(829\) −3.27208 −0.113644 −0.0568220 0.998384i \(-0.518097\pi\)
−0.0568220 + 0.998384i \(0.518097\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −0.686292 −0.0237501
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −49.1716 −1.69759 −0.848796 0.528721i \(-0.822672\pi\)
−0.848796 + 0.528721i \(0.822672\pi\)
\(840\) 0 0
\(841\) 43.0000 1.48276
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −6.44365 −0.221668
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.00000 0.274236
\(852\) 0 0
\(853\) −36.0416 −1.23404 −0.617021 0.786947i \(-0.711661\pi\)
−0.617021 + 0.786947i \(0.711661\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −43.6985 −1.49271 −0.746356 0.665547i \(-0.768198\pi\)
−0.746356 + 0.665547i \(0.768198\pi\)
\(858\) 0 0
\(859\) −38.8284 −1.32481 −0.662404 0.749146i \(-0.730464\pi\)
−0.662404 + 0.749146i \(0.730464\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −29.5147 −1.00469 −0.502346 0.864666i \(-0.667530\pi\)
−0.502346 + 0.864666i \(0.667530\pi\)
\(864\) 0 0
\(865\) −2.00000 −0.0680020
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −1.94113 −0.0658482
\(870\) 0 0
\(871\) 11.3137 0.383350
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 20.2843 0.684951 0.342476 0.939527i \(-0.388735\pi\)
0.342476 + 0.939527i \(0.388735\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −25.0711 −0.844666 −0.422333 0.906441i \(-0.638789\pi\)
−0.422333 + 0.906441i \(0.638789\pi\)
\(882\) 0 0
\(883\) −18.3431 −0.617296 −0.308648 0.951176i \(-0.599877\pi\)
−0.308648 + 0.951176i \(0.599877\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −21.4558 −0.720417 −0.360208 0.932872i \(-0.617294\pi\)
−0.360208 + 0.932872i \(0.617294\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −46.6274 −1.56033
\(894\) 0 0
\(895\) 10.4264 0.348516
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −43.8823 −1.46356
\(900\) 0 0
\(901\) 29.8579 0.994710
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 5.79899 0.192765
\(906\) 0 0
\(907\) 7.02944 0.233409 0.116704 0.993167i \(-0.462767\pi\)
0.116704 + 0.993167i \(0.462767\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −54.4853 −1.80518 −0.902589 0.430503i \(-0.858336\pi\)
−0.902589 + 0.430503i \(0.858336\pi\)
\(912\) 0 0
\(913\) 12.6863 0.419855
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) 49.2548 1.62477 0.812384 0.583123i \(-0.198170\pi\)
0.812384 + 0.583123i \(0.198170\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) −1.17157 −0.0385628
\(924\) 0 0
\(925\) −7.71573 −0.253692
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 60.8701 1.99708 0.998541 0.0540006i \(-0.0171973\pi\)
0.998541 + 0.0540006i \(0.0171973\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −1.08831 −0.0355916
\(936\) 0 0
\(937\) 6.10051 0.199295 0.0996474 0.995023i \(-0.468229\pi\)
0.0996474 + 0.995023i \(0.468229\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −43.8995 −1.43108 −0.715541 0.698570i \(-0.753820\pi\)
−0.715541 + 0.698570i \(0.753820\pi\)
\(942\) 0 0
\(943\) −2.82843 −0.0921063
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 20.1421 0.654531 0.327266 0.944932i \(-0.393873\pi\)
0.327266 + 0.944932i \(0.393873\pi\)
\(948\) 0 0
\(949\) 15.6569 0.508243
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 7.37258 0.238821 0.119411 0.992845i \(-0.461899\pi\)
0.119411 + 0.992845i \(0.461899\pi\)
\(954\) 0 0
\(955\) 8.88730 0.287586
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −4.25483 −0.137253
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 14.4264 0.464402
\(966\) 0 0
\(967\) 34.6274 1.11354 0.556771 0.830666i \(-0.312040\pi\)
0.556771 + 0.830666i \(0.312040\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 57.2548 1.83740 0.918698 0.394962i \(-0.129242\pi\)
0.918698 + 0.394962i \(0.129242\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −21.8579 −0.699295 −0.349648 0.936881i \(-0.613699\pi\)
−0.349648 + 0.936881i \(0.613699\pi\)
\(978\) 0 0
\(979\) 8.88730 0.284039
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 14.6274 0.466542 0.233271 0.972412i \(-0.425057\pi\)
0.233271 + 0.972412i \(0.425057\pi\)
\(984\) 0 0
\(985\) −1.17157 −0.0373294
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 38.6274 1.22828
\(990\) 0 0
\(991\) −23.3137 −0.740584 −0.370292 0.928915i \(-0.620742\pi\)
−0.370292 + 0.928915i \(0.620742\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 3.31371 0.105052
\(996\) 0 0
\(997\) 34.5858 1.09534 0.547671 0.836693i \(-0.315514\pi\)
0.547671 + 0.836693i \(0.315514\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7056.2.a.cx.1.1 2
3.2 odd 2 2352.2.a.bd.1.2 2
4.3 odd 2 3528.2.a.bl.1.1 2
7.6 odd 2 7056.2.a.cg.1.2 2
12.11 even 2 1176.2.a.j.1.2 2
21.2 odd 6 2352.2.q.bc.1537.1 4
21.5 even 6 2352.2.q.be.1537.2 4
21.11 odd 6 2352.2.q.bc.961.1 4
21.17 even 6 2352.2.q.be.961.2 4
21.20 even 2 2352.2.a.bb.1.1 2
24.5 odd 2 9408.2.a.ds.1.1 2
24.11 even 2 9408.2.a.ee.1.1 2
28.3 even 6 3528.2.s.bm.3313.1 4
28.11 odd 6 3528.2.s.bd.3313.2 4
28.19 even 6 3528.2.s.bm.361.1 4
28.23 odd 6 3528.2.s.bd.361.2 4
28.27 even 2 3528.2.a.bb.1.2 2
84.11 even 6 1176.2.q.o.961.1 4
84.23 even 6 1176.2.q.o.361.1 4
84.47 odd 6 1176.2.q.k.361.2 4
84.59 odd 6 1176.2.q.k.961.2 4
84.83 odd 2 1176.2.a.o.1.1 yes 2
168.83 odd 2 9408.2.a.dg.1.2 2
168.125 even 2 9408.2.a.du.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1176.2.a.j.1.2 2 12.11 even 2
1176.2.a.o.1.1 yes 2 84.83 odd 2
1176.2.q.k.361.2 4 84.47 odd 6
1176.2.q.k.961.2 4 84.59 odd 6
1176.2.q.o.361.1 4 84.23 even 6
1176.2.q.o.961.1 4 84.11 even 6
2352.2.a.bb.1.1 2 21.20 even 2
2352.2.a.bd.1.2 2 3.2 odd 2
2352.2.q.bc.961.1 4 21.11 odd 6
2352.2.q.bc.1537.1 4 21.2 odd 6
2352.2.q.be.961.2 4 21.17 even 6
2352.2.q.be.1537.2 4 21.5 even 6
3528.2.a.bb.1.2 2 28.27 even 2
3528.2.a.bl.1.1 2 4.3 odd 2
3528.2.s.bd.361.2 4 28.23 odd 6
3528.2.s.bd.3313.2 4 28.11 odd 6
3528.2.s.bm.361.1 4 28.19 even 6
3528.2.s.bm.3313.1 4 28.3 even 6
7056.2.a.cg.1.2 2 7.6 odd 2
7056.2.a.cx.1.1 2 1.1 even 1 trivial
9408.2.a.dg.1.2 2 168.83 odd 2
9408.2.a.ds.1.1 2 24.5 odd 2
9408.2.a.du.1.2 2 168.125 even 2
9408.2.a.ee.1.1 2 24.11 even 2