Properties

Label 7098.2.a.w.1.1
Level $7098$
Weight $2$
Character 7098.1
Self dual yes
Analytic conductor $56.678$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7098,2,Mod(1,7098)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7098, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7098.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7098 = 2 \cdot 3 \cdot 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7098.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(56.6778153547\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 546)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Character \(\chi\) \(=\) 7098.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000 q^{2} +1.00000 q^{3} +1.00000 q^{4} -3.00000 q^{5} +1.00000 q^{6} -1.00000 q^{7} +1.00000 q^{8} +1.00000 q^{9} -3.00000 q^{10} -3.00000 q^{11} +1.00000 q^{12} -1.00000 q^{14} -3.00000 q^{15} +1.00000 q^{16} -3.00000 q^{17} +1.00000 q^{18} +7.00000 q^{19} -3.00000 q^{20} -1.00000 q^{21} -3.00000 q^{22} +9.00000 q^{23} +1.00000 q^{24} +4.00000 q^{25} +1.00000 q^{27} -1.00000 q^{28} -9.00000 q^{29} -3.00000 q^{30} +4.00000 q^{31} +1.00000 q^{32} -3.00000 q^{33} -3.00000 q^{34} +3.00000 q^{35} +1.00000 q^{36} +7.00000 q^{37} +7.00000 q^{38} -3.00000 q^{40} -12.0000 q^{41} -1.00000 q^{42} -1.00000 q^{43} -3.00000 q^{44} -3.00000 q^{45} +9.00000 q^{46} +1.00000 q^{48} +1.00000 q^{49} +4.00000 q^{50} -3.00000 q^{51} -6.00000 q^{53} +1.00000 q^{54} +9.00000 q^{55} -1.00000 q^{56} +7.00000 q^{57} -9.00000 q^{58} -12.0000 q^{59} -3.00000 q^{60} -1.00000 q^{61} +4.00000 q^{62} -1.00000 q^{63} +1.00000 q^{64} -3.00000 q^{66} -14.0000 q^{67} -3.00000 q^{68} +9.00000 q^{69} +3.00000 q^{70} -12.0000 q^{71} +1.00000 q^{72} +7.00000 q^{73} +7.00000 q^{74} +4.00000 q^{75} +7.00000 q^{76} +3.00000 q^{77} -10.0000 q^{79} -3.00000 q^{80} +1.00000 q^{81} -12.0000 q^{82} +6.00000 q^{83} -1.00000 q^{84} +9.00000 q^{85} -1.00000 q^{86} -9.00000 q^{87} -3.00000 q^{88} +6.00000 q^{89} -3.00000 q^{90} +9.00000 q^{92} +4.00000 q^{93} -21.0000 q^{95} +1.00000 q^{96} +10.0000 q^{97} +1.00000 q^{98} -3.00000 q^{99} +O(q^{100})\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 0.707107
\(3\) 1.00000 0.577350
\(4\) 1.00000 0.500000
\(5\) −3.00000 −1.34164 −0.670820 0.741620i \(-0.734058\pi\)
−0.670820 + 0.741620i \(0.734058\pi\)
\(6\) 1.00000 0.408248
\(7\) −1.00000 −0.377964
\(8\) 1.00000 0.353553
\(9\) 1.00000 0.333333
\(10\) −3.00000 −0.948683
\(11\) −3.00000 −0.904534 −0.452267 0.891883i \(-0.649385\pi\)
−0.452267 + 0.891883i \(0.649385\pi\)
\(12\) 1.00000 0.288675
\(13\) 0 0
\(14\) −1.00000 −0.267261
\(15\) −3.00000 −0.774597
\(16\) 1.00000 0.250000
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 1.00000 0.235702
\(19\) 7.00000 1.60591 0.802955 0.596040i \(-0.203260\pi\)
0.802955 + 0.596040i \(0.203260\pi\)
\(20\) −3.00000 −0.670820
\(21\) −1.00000 −0.218218
\(22\) −3.00000 −0.639602
\(23\) 9.00000 1.87663 0.938315 0.345782i \(-0.112386\pi\)
0.938315 + 0.345782i \(0.112386\pi\)
\(24\) 1.00000 0.204124
\(25\) 4.00000 0.800000
\(26\) 0 0
\(27\) 1.00000 0.192450
\(28\) −1.00000 −0.188982
\(29\) −9.00000 −1.67126 −0.835629 0.549294i \(-0.814897\pi\)
−0.835629 + 0.549294i \(0.814897\pi\)
\(30\) −3.00000 −0.547723
\(31\) 4.00000 0.718421 0.359211 0.933257i \(-0.383046\pi\)
0.359211 + 0.933257i \(0.383046\pi\)
\(32\) 1.00000 0.176777
\(33\) −3.00000 −0.522233
\(34\) −3.00000 −0.514496
\(35\) 3.00000 0.507093
\(36\) 1.00000 0.166667
\(37\) 7.00000 1.15079 0.575396 0.817875i \(-0.304848\pi\)
0.575396 + 0.817875i \(0.304848\pi\)
\(38\) 7.00000 1.13555
\(39\) 0 0
\(40\) −3.00000 −0.474342
\(41\) −12.0000 −1.87409 −0.937043 0.349215i \(-0.886448\pi\)
−0.937043 + 0.349215i \(0.886448\pi\)
\(42\) −1.00000 −0.154303
\(43\) −1.00000 −0.152499 −0.0762493 0.997089i \(-0.524294\pi\)
−0.0762493 + 0.997089i \(0.524294\pi\)
\(44\) −3.00000 −0.452267
\(45\) −3.00000 −0.447214
\(46\) 9.00000 1.32698
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) 1.00000 0.144338
\(49\) 1.00000 0.142857
\(50\) 4.00000 0.565685
\(51\) −3.00000 −0.420084
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 1.00000 0.136083
\(55\) 9.00000 1.21356
\(56\) −1.00000 −0.133631
\(57\) 7.00000 0.927173
\(58\) −9.00000 −1.18176
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) −3.00000 −0.387298
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 4.00000 0.508001
\(63\) −1.00000 −0.125988
\(64\) 1.00000 0.125000
\(65\) 0 0
\(66\) −3.00000 −0.369274
\(67\) −14.0000 −1.71037 −0.855186 0.518321i \(-0.826557\pi\)
−0.855186 + 0.518321i \(0.826557\pi\)
\(68\) −3.00000 −0.363803
\(69\) 9.00000 1.08347
\(70\) 3.00000 0.358569
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 1.00000 0.117851
\(73\) 7.00000 0.819288 0.409644 0.912245i \(-0.365653\pi\)
0.409644 + 0.912245i \(0.365653\pi\)
\(74\) 7.00000 0.813733
\(75\) 4.00000 0.461880
\(76\) 7.00000 0.802955
\(77\) 3.00000 0.341882
\(78\) 0 0
\(79\) −10.0000 −1.12509 −0.562544 0.826767i \(-0.690177\pi\)
−0.562544 + 0.826767i \(0.690177\pi\)
\(80\) −3.00000 −0.335410
\(81\) 1.00000 0.111111
\(82\) −12.0000 −1.32518
\(83\) 6.00000 0.658586 0.329293 0.944228i \(-0.393190\pi\)
0.329293 + 0.944228i \(0.393190\pi\)
\(84\) −1.00000 −0.109109
\(85\) 9.00000 0.976187
\(86\) −1.00000 −0.107833
\(87\) −9.00000 −0.964901
\(88\) −3.00000 −0.319801
\(89\) 6.00000 0.635999 0.317999 0.948091i \(-0.396989\pi\)
0.317999 + 0.948091i \(0.396989\pi\)
\(90\) −3.00000 −0.316228
\(91\) 0 0
\(92\) 9.00000 0.938315
\(93\) 4.00000 0.414781
\(94\) 0 0
\(95\) −21.0000 −2.15455
\(96\) 1.00000 0.102062
\(97\) 10.0000 1.01535 0.507673 0.861550i \(-0.330506\pi\)
0.507673 + 0.861550i \(0.330506\pi\)
\(98\) 1.00000 0.101015
\(99\) −3.00000 −0.301511
\(100\) 4.00000 0.400000
\(101\) 12.0000 1.19404 0.597022 0.802225i \(-0.296350\pi\)
0.597022 + 0.802225i \(0.296350\pi\)
\(102\) −3.00000 −0.297044
\(103\) −13.0000 −1.28093 −0.640464 0.767988i \(-0.721258\pi\)
−0.640464 + 0.767988i \(0.721258\pi\)
\(104\) 0 0
\(105\) 3.00000 0.292770
\(106\) −6.00000 −0.582772
\(107\) −6.00000 −0.580042 −0.290021 0.957020i \(-0.593662\pi\)
−0.290021 + 0.957020i \(0.593662\pi\)
\(108\) 1.00000 0.0962250
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 9.00000 0.858116
\(111\) 7.00000 0.664411
\(112\) −1.00000 −0.0944911
\(113\) −18.0000 −1.69330 −0.846649 0.532152i \(-0.821383\pi\)
−0.846649 + 0.532152i \(0.821383\pi\)
\(114\) 7.00000 0.655610
\(115\) −27.0000 −2.51776
\(116\) −9.00000 −0.835629
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 3.00000 0.275010
\(120\) −3.00000 −0.273861
\(121\) −2.00000 −0.181818
\(122\) −1.00000 −0.0905357
\(123\) −12.0000 −1.08200
\(124\) 4.00000 0.359211
\(125\) 3.00000 0.268328
\(126\) −1.00000 −0.0890871
\(127\) 2.00000 0.177471 0.0887357 0.996055i \(-0.471717\pi\)
0.0887357 + 0.996055i \(0.471717\pi\)
\(128\) 1.00000 0.0883883
\(129\) −1.00000 −0.0880451
\(130\) 0 0
\(131\) −15.0000 −1.31056 −0.655278 0.755388i \(-0.727449\pi\)
−0.655278 + 0.755388i \(0.727449\pi\)
\(132\) −3.00000 −0.261116
\(133\) −7.00000 −0.606977
\(134\) −14.0000 −1.20942
\(135\) −3.00000 −0.258199
\(136\) −3.00000 −0.257248
\(137\) −9.00000 −0.768922 −0.384461 0.923141i \(-0.625613\pi\)
−0.384461 + 0.923141i \(0.625613\pi\)
\(138\) 9.00000 0.766131
\(139\) −4.00000 −0.339276 −0.169638 0.985506i \(-0.554260\pi\)
−0.169638 + 0.985506i \(0.554260\pi\)
\(140\) 3.00000 0.253546
\(141\) 0 0
\(142\) −12.0000 −1.00702
\(143\) 0 0
\(144\) 1.00000 0.0833333
\(145\) 27.0000 2.24223
\(146\) 7.00000 0.579324
\(147\) 1.00000 0.0824786
\(148\) 7.00000 0.575396
\(149\) 12.0000 0.983078 0.491539 0.870855i \(-0.336434\pi\)
0.491539 + 0.870855i \(0.336434\pi\)
\(150\) 4.00000 0.326599
\(151\) −17.0000 −1.38344 −0.691720 0.722166i \(-0.743147\pi\)
−0.691720 + 0.722166i \(0.743147\pi\)
\(152\) 7.00000 0.567775
\(153\) −3.00000 −0.242536
\(154\) 3.00000 0.241747
\(155\) −12.0000 −0.963863
\(156\) 0 0
\(157\) −13.0000 −1.03751 −0.518756 0.854922i \(-0.673605\pi\)
−0.518756 + 0.854922i \(0.673605\pi\)
\(158\) −10.0000 −0.795557
\(159\) −6.00000 −0.475831
\(160\) −3.00000 −0.237171
\(161\) −9.00000 −0.709299
\(162\) 1.00000 0.0785674
\(163\) −2.00000 −0.156652 −0.0783260 0.996928i \(-0.524958\pi\)
−0.0783260 + 0.996928i \(0.524958\pi\)
\(164\) −12.0000 −0.937043
\(165\) 9.00000 0.700649
\(166\) 6.00000 0.465690
\(167\) −3.00000 −0.232147 −0.116073 0.993241i \(-0.537031\pi\)
−0.116073 + 0.993241i \(0.537031\pi\)
\(168\) −1.00000 −0.0771517
\(169\) 0 0
\(170\) 9.00000 0.690268
\(171\) 7.00000 0.535303
\(172\) −1.00000 −0.0762493
\(173\) −6.00000 −0.456172 −0.228086 0.973641i \(-0.573247\pi\)
−0.228086 + 0.973641i \(0.573247\pi\)
\(174\) −9.00000 −0.682288
\(175\) −4.00000 −0.302372
\(176\) −3.00000 −0.226134
\(177\) −12.0000 −0.901975
\(178\) 6.00000 0.449719
\(179\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(180\) −3.00000 −0.223607
\(181\) 2.00000 0.148659 0.0743294 0.997234i \(-0.476318\pi\)
0.0743294 + 0.997234i \(0.476318\pi\)
\(182\) 0 0
\(183\) −1.00000 −0.0739221
\(184\) 9.00000 0.663489
\(185\) −21.0000 −1.54395
\(186\) 4.00000 0.293294
\(187\) 9.00000 0.658145
\(188\) 0 0
\(189\) −1.00000 −0.0727393
\(190\) −21.0000 −1.52350
\(191\) −15.0000 −1.08536 −0.542681 0.839939i \(-0.682591\pi\)
−0.542681 + 0.839939i \(0.682591\pi\)
\(192\) 1.00000 0.0721688
\(193\) 4.00000 0.287926 0.143963 0.989583i \(-0.454015\pi\)
0.143963 + 0.989583i \(0.454015\pi\)
\(194\) 10.0000 0.717958
\(195\) 0 0
\(196\) 1.00000 0.0714286
\(197\) 12.0000 0.854965 0.427482 0.904024i \(-0.359401\pi\)
0.427482 + 0.904024i \(0.359401\pi\)
\(198\) −3.00000 −0.213201
\(199\) −7.00000 −0.496217 −0.248108 0.968732i \(-0.579809\pi\)
−0.248108 + 0.968732i \(0.579809\pi\)
\(200\) 4.00000 0.282843
\(201\) −14.0000 −0.987484
\(202\) 12.0000 0.844317
\(203\) 9.00000 0.631676
\(204\) −3.00000 −0.210042
\(205\) 36.0000 2.51435
\(206\) −13.0000 −0.905753
\(207\) 9.00000 0.625543
\(208\) 0 0
\(209\) −21.0000 −1.45260
\(210\) 3.00000 0.207020
\(211\) 5.00000 0.344214 0.172107 0.985078i \(-0.444942\pi\)
0.172107 + 0.985078i \(0.444942\pi\)
\(212\) −6.00000 −0.412082
\(213\) −12.0000 −0.822226
\(214\) −6.00000 −0.410152
\(215\) 3.00000 0.204598
\(216\) 1.00000 0.0680414
\(217\) −4.00000 −0.271538
\(218\) −11.0000 −0.745014
\(219\) 7.00000 0.473016
\(220\) 9.00000 0.606780
\(221\) 0 0
\(222\) 7.00000 0.469809
\(223\) −26.0000 −1.74109 −0.870544 0.492090i \(-0.836233\pi\)
−0.870544 + 0.492090i \(0.836233\pi\)
\(224\) −1.00000 −0.0668153
\(225\) 4.00000 0.266667
\(226\) −18.0000 −1.19734
\(227\) 18.0000 1.19470 0.597351 0.801980i \(-0.296220\pi\)
0.597351 + 0.801980i \(0.296220\pi\)
\(228\) 7.00000 0.463586
\(229\) −14.0000 −0.925146 −0.462573 0.886581i \(-0.653074\pi\)
−0.462573 + 0.886581i \(0.653074\pi\)
\(230\) −27.0000 −1.78033
\(231\) 3.00000 0.197386
\(232\) −9.00000 −0.590879
\(233\) 24.0000 1.57229 0.786146 0.618041i \(-0.212073\pi\)
0.786146 + 0.618041i \(0.212073\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) −12.0000 −0.781133
\(237\) −10.0000 −0.649570
\(238\) 3.00000 0.194461
\(239\) −24.0000 −1.55243 −0.776215 0.630468i \(-0.782863\pi\)
−0.776215 + 0.630468i \(0.782863\pi\)
\(240\) −3.00000 −0.193649
\(241\) 10.0000 0.644157 0.322078 0.946713i \(-0.395619\pi\)
0.322078 + 0.946713i \(0.395619\pi\)
\(242\) −2.00000 −0.128565
\(243\) 1.00000 0.0641500
\(244\) −1.00000 −0.0640184
\(245\) −3.00000 −0.191663
\(246\) −12.0000 −0.765092
\(247\) 0 0
\(248\) 4.00000 0.254000
\(249\) 6.00000 0.380235
\(250\) 3.00000 0.189737
\(251\) 21.0000 1.32551 0.662754 0.748837i \(-0.269387\pi\)
0.662754 + 0.748837i \(0.269387\pi\)
\(252\) −1.00000 −0.0629941
\(253\) −27.0000 −1.69748
\(254\) 2.00000 0.125491
\(255\) 9.00000 0.563602
\(256\) 1.00000 0.0625000
\(257\) −18.0000 −1.12281 −0.561405 0.827541i \(-0.689739\pi\)
−0.561405 + 0.827541i \(0.689739\pi\)
\(258\) −1.00000 −0.0622573
\(259\) −7.00000 −0.434959
\(260\) 0 0
\(261\) −9.00000 −0.557086
\(262\) −15.0000 −0.926703
\(263\) 12.0000 0.739952 0.369976 0.929041i \(-0.379366\pi\)
0.369976 + 0.929041i \(0.379366\pi\)
\(264\) −3.00000 −0.184637
\(265\) 18.0000 1.10573
\(266\) −7.00000 −0.429198
\(267\) 6.00000 0.367194
\(268\) −14.0000 −0.855186
\(269\) 6.00000 0.365826 0.182913 0.983129i \(-0.441447\pi\)
0.182913 + 0.983129i \(0.441447\pi\)
\(270\) −3.00000 −0.182574
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) −3.00000 −0.181902
\(273\) 0 0
\(274\) −9.00000 −0.543710
\(275\) −12.0000 −0.723627
\(276\) 9.00000 0.541736
\(277\) 26.0000 1.56219 0.781094 0.624413i \(-0.214662\pi\)
0.781094 + 0.624413i \(0.214662\pi\)
\(278\) −4.00000 −0.239904
\(279\) 4.00000 0.239474
\(280\) 3.00000 0.179284
\(281\) 6.00000 0.357930 0.178965 0.983855i \(-0.442725\pi\)
0.178965 + 0.983855i \(0.442725\pi\)
\(282\) 0 0
\(283\) −4.00000 −0.237775 −0.118888 0.992908i \(-0.537933\pi\)
−0.118888 + 0.992908i \(0.537933\pi\)
\(284\) −12.0000 −0.712069
\(285\) −21.0000 −1.24393
\(286\) 0 0
\(287\) 12.0000 0.708338
\(288\) 1.00000 0.0589256
\(289\) −8.00000 −0.470588
\(290\) 27.0000 1.58549
\(291\) 10.0000 0.586210
\(292\) 7.00000 0.409644
\(293\) 18.0000 1.05157 0.525786 0.850617i \(-0.323771\pi\)
0.525786 + 0.850617i \(0.323771\pi\)
\(294\) 1.00000 0.0583212
\(295\) 36.0000 2.09600
\(296\) 7.00000 0.406867
\(297\) −3.00000 −0.174078
\(298\) 12.0000 0.695141
\(299\) 0 0
\(300\) 4.00000 0.230940
\(301\) 1.00000 0.0576390
\(302\) −17.0000 −0.978240
\(303\) 12.0000 0.689382
\(304\) 7.00000 0.401478
\(305\) 3.00000 0.171780
\(306\) −3.00000 −0.171499
\(307\) 16.0000 0.913168 0.456584 0.889680i \(-0.349073\pi\)
0.456584 + 0.889680i \(0.349073\pi\)
\(308\) 3.00000 0.170941
\(309\) −13.0000 −0.739544
\(310\) −12.0000 −0.681554
\(311\) 18.0000 1.02069 0.510343 0.859971i \(-0.329518\pi\)
0.510343 + 0.859971i \(0.329518\pi\)
\(312\) 0 0
\(313\) 8.00000 0.452187 0.226093 0.974106i \(-0.427405\pi\)
0.226093 + 0.974106i \(0.427405\pi\)
\(314\) −13.0000 −0.733632
\(315\) 3.00000 0.169031
\(316\) −10.0000 −0.562544
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) −6.00000 −0.336463
\(319\) 27.0000 1.51171
\(320\) −3.00000 −0.167705
\(321\) −6.00000 −0.334887
\(322\) −9.00000 −0.501550
\(323\) −21.0000 −1.16847
\(324\) 1.00000 0.0555556
\(325\) 0 0
\(326\) −2.00000 −0.110770
\(327\) −11.0000 −0.608301
\(328\) −12.0000 −0.662589
\(329\) 0 0
\(330\) 9.00000 0.495434
\(331\) 10.0000 0.549650 0.274825 0.961494i \(-0.411380\pi\)
0.274825 + 0.961494i \(0.411380\pi\)
\(332\) 6.00000 0.329293
\(333\) 7.00000 0.383598
\(334\) −3.00000 −0.164153
\(335\) 42.0000 2.29471
\(336\) −1.00000 −0.0545545
\(337\) −13.0000 −0.708155 −0.354078 0.935216i \(-0.615205\pi\)
−0.354078 + 0.935216i \(0.615205\pi\)
\(338\) 0 0
\(339\) −18.0000 −0.977626
\(340\) 9.00000 0.488094
\(341\) −12.0000 −0.649836
\(342\) 7.00000 0.378517
\(343\) −1.00000 −0.0539949
\(344\) −1.00000 −0.0539164
\(345\) −27.0000 −1.45363
\(346\) −6.00000 −0.322562
\(347\) 12.0000 0.644194 0.322097 0.946707i \(-0.395612\pi\)
0.322097 + 0.946707i \(0.395612\pi\)
\(348\) −9.00000 −0.482451
\(349\) −26.0000 −1.39175 −0.695874 0.718164i \(-0.744983\pi\)
−0.695874 + 0.718164i \(0.744983\pi\)
\(350\) −4.00000 −0.213809
\(351\) 0 0
\(352\) −3.00000 −0.159901
\(353\) 6.00000 0.319348 0.159674 0.987170i \(-0.448956\pi\)
0.159674 + 0.987170i \(0.448956\pi\)
\(354\) −12.0000 −0.637793
\(355\) 36.0000 1.91068
\(356\) 6.00000 0.317999
\(357\) 3.00000 0.158777
\(358\) 0 0
\(359\) −24.0000 −1.26667 −0.633336 0.773877i \(-0.718315\pi\)
−0.633336 + 0.773877i \(0.718315\pi\)
\(360\) −3.00000 −0.158114
\(361\) 30.0000 1.57895
\(362\) 2.00000 0.105118
\(363\) −2.00000 −0.104973
\(364\) 0 0
\(365\) −21.0000 −1.09919
\(366\) −1.00000 −0.0522708
\(367\) 8.00000 0.417597 0.208798 0.977959i \(-0.433045\pi\)
0.208798 + 0.977959i \(0.433045\pi\)
\(368\) 9.00000 0.469157
\(369\) −12.0000 −0.624695
\(370\) −21.0000 −1.09174
\(371\) 6.00000 0.311504
\(372\) 4.00000 0.207390
\(373\) −4.00000 −0.207112 −0.103556 0.994624i \(-0.533022\pi\)
−0.103556 + 0.994624i \(0.533022\pi\)
\(374\) 9.00000 0.465379
\(375\) 3.00000 0.154919
\(376\) 0 0
\(377\) 0 0
\(378\) −1.00000 −0.0514344
\(379\) 16.0000 0.821865 0.410932 0.911666i \(-0.365203\pi\)
0.410932 + 0.911666i \(0.365203\pi\)
\(380\) −21.0000 −1.07728
\(381\) 2.00000 0.102463
\(382\) −15.0000 −0.767467
\(383\) 21.0000 1.07305 0.536525 0.843884i \(-0.319737\pi\)
0.536525 + 0.843884i \(0.319737\pi\)
\(384\) 1.00000 0.0510310
\(385\) −9.00000 −0.458682
\(386\) 4.00000 0.203595
\(387\) −1.00000 −0.0508329
\(388\) 10.0000 0.507673
\(389\) −30.0000 −1.52106 −0.760530 0.649303i \(-0.775061\pi\)
−0.760530 + 0.649303i \(0.775061\pi\)
\(390\) 0 0
\(391\) −27.0000 −1.36545
\(392\) 1.00000 0.0505076
\(393\) −15.0000 −0.756650
\(394\) 12.0000 0.604551
\(395\) 30.0000 1.50946
\(396\) −3.00000 −0.150756
\(397\) 34.0000 1.70641 0.853206 0.521575i \(-0.174655\pi\)
0.853206 + 0.521575i \(0.174655\pi\)
\(398\) −7.00000 −0.350878
\(399\) −7.00000 −0.350438
\(400\) 4.00000 0.200000
\(401\) −18.0000 −0.898877 −0.449439 0.893311i \(-0.648376\pi\)
−0.449439 + 0.893311i \(0.648376\pi\)
\(402\) −14.0000 −0.698257
\(403\) 0 0
\(404\) 12.0000 0.597022
\(405\) −3.00000 −0.149071
\(406\) 9.00000 0.446663
\(407\) −21.0000 −1.04093
\(408\) −3.00000 −0.148522
\(409\) 13.0000 0.642809 0.321404 0.946942i \(-0.395845\pi\)
0.321404 + 0.946942i \(0.395845\pi\)
\(410\) 36.0000 1.77791
\(411\) −9.00000 −0.443937
\(412\) −13.0000 −0.640464
\(413\) 12.0000 0.590481
\(414\) 9.00000 0.442326
\(415\) −18.0000 −0.883585
\(416\) 0 0
\(417\) −4.00000 −0.195881
\(418\) −21.0000 −1.02714
\(419\) 3.00000 0.146560 0.0732798 0.997311i \(-0.476653\pi\)
0.0732798 + 0.997311i \(0.476653\pi\)
\(420\) 3.00000 0.146385
\(421\) 10.0000 0.487370 0.243685 0.969854i \(-0.421644\pi\)
0.243685 + 0.969854i \(0.421644\pi\)
\(422\) 5.00000 0.243396
\(423\) 0 0
\(424\) −6.00000 −0.291386
\(425\) −12.0000 −0.582086
\(426\) −12.0000 −0.581402
\(427\) 1.00000 0.0483934
\(428\) −6.00000 −0.290021
\(429\) 0 0
\(430\) 3.00000 0.144673
\(431\) −18.0000 −0.867029 −0.433515 0.901146i \(-0.642727\pi\)
−0.433515 + 0.901146i \(0.642727\pi\)
\(432\) 1.00000 0.0481125
\(433\) −16.0000 −0.768911 −0.384455 0.923144i \(-0.625611\pi\)
−0.384455 + 0.923144i \(0.625611\pi\)
\(434\) −4.00000 −0.192006
\(435\) 27.0000 1.29455
\(436\) −11.0000 −0.526804
\(437\) 63.0000 3.01370
\(438\) 7.00000 0.334473
\(439\) −1.00000 −0.0477274 −0.0238637 0.999715i \(-0.507597\pi\)
−0.0238637 + 0.999715i \(0.507597\pi\)
\(440\) 9.00000 0.429058
\(441\) 1.00000 0.0476190
\(442\) 0 0
\(443\) 18.0000 0.855206 0.427603 0.903967i \(-0.359358\pi\)
0.427603 + 0.903967i \(0.359358\pi\)
\(444\) 7.00000 0.332205
\(445\) −18.0000 −0.853282
\(446\) −26.0000 −1.23114
\(447\) 12.0000 0.567581
\(448\) −1.00000 −0.0472456
\(449\) −21.0000 −0.991051 −0.495526 0.868593i \(-0.665025\pi\)
−0.495526 + 0.868593i \(0.665025\pi\)
\(450\) 4.00000 0.188562
\(451\) 36.0000 1.69517
\(452\) −18.0000 −0.846649
\(453\) −17.0000 −0.798730
\(454\) 18.0000 0.844782
\(455\) 0 0
\(456\) 7.00000 0.327805
\(457\) 28.0000 1.30978 0.654892 0.755722i \(-0.272714\pi\)
0.654892 + 0.755722i \(0.272714\pi\)
\(458\) −14.0000 −0.654177
\(459\) −3.00000 −0.140028
\(460\) −27.0000 −1.25888
\(461\) −33.0000 −1.53696 −0.768482 0.639872i \(-0.778987\pi\)
−0.768482 + 0.639872i \(0.778987\pi\)
\(462\) 3.00000 0.139573
\(463\) −41.0000 −1.90543 −0.952716 0.303863i \(-0.901724\pi\)
−0.952716 + 0.303863i \(0.901724\pi\)
\(464\) −9.00000 −0.417815
\(465\) −12.0000 −0.556487
\(466\) 24.0000 1.11178
\(467\) −3.00000 −0.138823 −0.0694117 0.997588i \(-0.522112\pi\)
−0.0694117 + 0.997588i \(0.522112\pi\)
\(468\) 0 0
\(469\) 14.0000 0.646460
\(470\) 0 0
\(471\) −13.0000 −0.599008
\(472\) −12.0000 −0.552345
\(473\) 3.00000 0.137940
\(474\) −10.0000 −0.459315
\(475\) 28.0000 1.28473
\(476\) 3.00000 0.137505
\(477\) −6.00000 −0.274721
\(478\) −24.0000 −1.09773
\(479\) 15.0000 0.685367 0.342684 0.939451i \(-0.388664\pi\)
0.342684 + 0.939451i \(0.388664\pi\)
\(480\) −3.00000 −0.136931
\(481\) 0 0
\(482\) 10.0000 0.455488
\(483\) −9.00000 −0.409514
\(484\) −2.00000 −0.0909091
\(485\) −30.0000 −1.36223
\(486\) 1.00000 0.0453609
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) −1.00000 −0.0452679
\(489\) −2.00000 −0.0904431
\(490\) −3.00000 −0.135526
\(491\) 30.0000 1.35388 0.676941 0.736038i \(-0.263305\pi\)
0.676941 + 0.736038i \(0.263305\pi\)
\(492\) −12.0000 −0.541002
\(493\) 27.0000 1.21602
\(494\) 0 0
\(495\) 9.00000 0.404520
\(496\) 4.00000 0.179605
\(497\) 12.0000 0.538274
\(498\) 6.00000 0.268866
\(499\) −32.0000 −1.43252 −0.716258 0.697835i \(-0.754147\pi\)
−0.716258 + 0.697835i \(0.754147\pi\)
\(500\) 3.00000 0.134164
\(501\) −3.00000 −0.134030
\(502\) 21.0000 0.937276
\(503\) −6.00000 −0.267527 −0.133763 0.991013i \(-0.542706\pi\)
−0.133763 + 0.991013i \(0.542706\pi\)
\(504\) −1.00000 −0.0445435
\(505\) −36.0000 −1.60198
\(506\) −27.0000 −1.20030
\(507\) 0 0
\(508\) 2.00000 0.0887357
\(509\) −9.00000 −0.398918 −0.199459 0.979906i \(-0.563918\pi\)
−0.199459 + 0.979906i \(0.563918\pi\)
\(510\) 9.00000 0.398527
\(511\) −7.00000 −0.309662
\(512\) 1.00000 0.0441942
\(513\) 7.00000 0.309058
\(514\) −18.0000 −0.793946
\(515\) 39.0000 1.71855
\(516\) −1.00000 −0.0440225
\(517\) 0 0
\(518\) −7.00000 −0.307562
\(519\) −6.00000 −0.263371
\(520\) 0 0
\(521\) −33.0000 −1.44576 −0.722878 0.690976i \(-0.757181\pi\)
−0.722878 + 0.690976i \(0.757181\pi\)
\(522\) −9.00000 −0.393919
\(523\) −16.0000 −0.699631 −0.349816 0.936819i \(-0.613756\pi\)
−0.349816 + 0.936819i \(0.613756\pi\)
\(524\) −15.0000 −0.655278
\(525\) −4.00000 −0.174574
\(526\) 12.0000 0.523225
\(527\) −12.0000 −0.522728
\(528\) −3.00000 −0.130558
\(529\) 58.0000 2.52174
\(530\) 18.0000 0.781870
\(531\) −12.0000 −0.520756
\(532\) −7.00000 −0.303488
\(533\) 0 0
\(534\) 6.00000 0.259645
\(535\) 18.0000 0.778208
\(536\) −14.0000 −0.604708
\(537\) 0 0
\(538\) 6.00000 0.258678
\(539\) −3.00000 −0.129219
\(540\) −3.00000 −0.129099
\(541\) −11.0000 −0.472927 −0.236463 0.971640i \(-0.575988\pi\)
−0.236463 + 0.971640i \(0.575988\pi\)
\(542\) −2.00000 −0.0859074
\(543\) 2.00000 0.0858282
\(544\) −3.00000 −0.128624
\(545\) 33.0000 1.41356
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) −9.00000 −0.384461
\(549\) −1.00000 −0.0426790
\(550\) −12.0000 −0.511682
\(551\) −63.0000 −2.68389
\(552\) 9.00000 0.383065
\(553\) 10.0000 0.425243
\(554\) 26.0000 1.10463
\(555\) −21.0000 −0.891400
\(556\) −4.00000 −0.169638
\(557\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(558\) 4.00000 0.169334
\(559\) 0 0
\(560\) 3.00000 0.126773
\(561\) 9.00000 0.379980
\(562\) 6.00000 0.253095
\(563\) −15.0000 −0.632175 −0.316087 0.948730i \(-0.602369\pi\)
−0.316087 + 0.948730i \(0.602369\pi\)
\(564\) 0 0
\(565\) 54.0000 2.27180
\(566\) −4.00000 −0.168133
\(567\) −1.00000 −0.0419961
\(568\) −12.0000 −0.503509
\(569\) 6.00000 0.251533 0.125767 0.992060i \(-0.459861\pi\)
0.125767 + 0.992060i \(0.459861\pi\)
\(570\) −21.0000 −0.879593
\(571\) 32.0000 1.33916 0.669579 0.742741i \(-0.266474\pi\)
0.669579 + 0.742741i \(0.266474\pi\)
\(572\) 0 0
\(573\) −15.0000 −0.626634
\(574\) 12.0000 0.500870
\(575\) 36.0000 1.50130
\(576\) 1.00000 0.0416667
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) −8.00000 −0.332756
\(579\) 4.00000 0.166234
\(580\) 27.0000 1.12111
\(581\) −6.00000 −0.248922
\(582\) 10.0000 0.414513
\(583\) 18.0000 0.745484
\(584\) 7.00000 0.289662
\(585\) 0 0
\(586\) 18.0000 0.743573
\(587\) 18.0000 0.742940 0.371470 0.928445i \(-0.378854\pi\)
0.371470 + 0.928445i \(0.378854\pi\)
\(588\) 1.00000 0.0412393
\(589\) 28.0000 1.15372
\(590\) 36.0000 1.48210
\(591\) 12.0000 0.493614
\(592\) 7.00000 0.287698
\(593\) −6.00000 −0.246390 −0.123195 0.992382i \(-0.539314\pi\)
−0.123195 + 0.992382i \(0.539314\pi\)
\(594\) −3.00000 −0.123091
\(595\) −9.00000 −0.368964
\(596\) 12.0000 0.491539
\(597\) −7.00000 −0.286491
\(598\) 0 0
\(599\) −9.00000 −0.367730 −0.183865 0.982952i \(-0.558861\pi\)
−0.183865 + 0.982952i \(0.558861\pi\)
\(600\) 4.00000 0.163299
\(601\) 8.00000 0.326327 0.163163 0.986599i \(-0.447830\pi\)
0.163163 + 0.986599i \(0.447830\pi\)
\(602\) 1.00000 0.0407570
\(603\) −14.0000 −0.570124
\(604\) −17.0000 −0.691720
\(605\) 6.00000 0.243935
\(606\) 12.0000 0.487467
\(607\) 23.0000 0.933541 0.466771 0.884378i \(-0.345417\pi\)
0.466771 + 0.884378i \(0.345417\pi\)
\(608\) 7.00000 0.283887
\(609\) 9.00000 0.364698
\(610\) 3.00000 0.121466
\(611\) 0 0
\(612\) −3.00000 −0.121268
\(613\) −11.0000 −0.444286 −0.222143 0.975014i \(-0.571305\pi\)
−0.222143 + 0.975014i \(0.571305\pi\)
\(614\) 16.0000 0.645707
\(615\) 36.0000 1.45166
\(616\) 3.00000 0.120873
\(617\) −27.0000 −1.08698 −0.543490 0.839416i \(-0.682897\pi\)
−0.543490 + 0.839416i \(0.682897\pi\)
\(618\) −13.0000 −0.522937
\(619\) −17.0000 −0.683288 −0.341644 0.939829i \(-0.610984\pi\)
−0.341644 + 0.939829i \(0.610984\pi\)
\(620\) −12.0000 −0.481932
\(621\) 9.00000 0.361158
\(622\) 18.0000 0.721734
\(623\) −6.00000 −0.240385
\(624\) 0 0
\(625\) −29.0000 −1.16000
\(626\) 8.00000 0.319744
\(627\) −21.0000 −0.838659
\(628\) −13.0000 −0.518756
\(629\) −21.0000 −0.837325
\(630\) 3.00000 0.119523
\(631\) −29.0000 −1.15447 −0.577236 0.816577i \(-0.695869\pi\)
−0.577236 + 0.816577i \(0.695869\pi\)
\(632\) −10.0000 −0.397779
\(633\) 5.00000 0.198732
\(634\) 0 0
\(635\) −6.00000 −0.238103
\(636\) −6.00000 −0.237915
\(637\) 0 0
\(638\) 27.0000 1.06894
\(639\) −12.0000 −0.474713
\(640\) −3.00000 −0.118585
\(641\) 18.0000 0.710957 0.355479 0.934684i \(-0.384318\pi\)
0.355479 + 0.934684i \(0.384318\pi\)
\(642\) −6.00000 −0.236801
\(643\) 49.0000 1.93237 0.966186 0.257847i \(-0.0830131\pi\)
0.966186 + 0.257847i \(0.0830131\pi\)
\(644\) −9.00000 −0.354650
\(645\) 3.00000 0.118125
\(646\) −21.0000 −0.826234
\(647\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(648\) 1.00000 0.0392837
\(649\) 36.0000 1.41312
\(650\) 0 0
\(651\) −4.00000 −0.156772
\(652\) −2.00000 −0.0783260
\(653\) 9.00000 0.352197 0.176099 0.984373i \(-0.443652\pi\)
0.176099 + 0.984373i \(0.443652\pi\)
\(654\) −11.0000 −0.430134
\(655\) 45.0000 1.75830
\(656\) −12.0000 −0.468521
\(657\) 7.00000 0.273096
\(658\) 0 0
\(659\) 6.00000 0.233727 0.116863 0.993148i \(-0.462716\pi\)
0.116863 + 0.993148i \(0.462716\pi\)
\(660\) 9.00000 0.350325
\(661\) −14.0000 −0.544537 −0.272268 0.962221i \(-0.587774\pi\)
−0.272268 + 0.962221i \(0.587774\pi\)
\(662\) 10.0000 0.388661
\(663\) 0 0
\(664\) 6.00000 0.232845
\(665\) 21.0000 0.814345
\(666\) 7.00000 0.271244
\(667\) −81.0000 −3.13633
\(668\) −3.00000 −0.116073
\(669\) −26.0000 −1.00522
\(670\) 42.0000 1.62260
\(671\) 3.00000 0.115814
\(672\) −1.00000 −0.0385758
\(673\) −1.00000 −0.0385472 −0.0192736 0.999814i \(-0.506135\pi\)
−0.0192736 + 0.999814i \(0.506135\pi\)
\(674\) −13.0000 −0.500741
\(675\) 4.00000 0.153960
\(676\) 0 0
\(677\) 18.0000 0.691796 0.345898 0.938272i \(-0.387574\pi\)
0.345898 + 0.938272i \(0.387574\pi\)
\(678\) −18.0000 −0.691286
\(679\) −10.0000 −0.383765
\(680\) 9.00000 0.345134
\(681\) 18.0000 0.689761
\(682\) −12.0000 −0.459504
\(683\) −33.0000 −1.26271 −0.631355 0.775494i \(-0.717501\pi\)
−0.631355 + 0.775494i \(0.717501\pi\)
\(684\) 7.00000 0.267652
\(685\) 27.0000 1.03162
\(686\) −1.00000 −0.0381802
\(687\) −14.0000 −0.534133
\(688\) −1.00000 −0.0381246
\(689\) 0 0
\(690\) −27.0000 −1.02787
\(691\) 28.0000 1.06517 0.532585 0.846376i \(-0.321221\pi\)
0.532585 + 0.846376i \(0.321221\pi\)
\(692\) −6.00000 −0.228086
\(693\) 3.00000 0.113961
\(694\) 12.0000 0.455514
\(695\) 12.0000 0.455186
\(696\) −9.00000 −0.341144
\(697\) 36.0000 1.36360
\(698\) −26.0000 −0.984115
\(699\) 24.0000 0.907763
\(700\) −4.00000 −0.151186
\(701\) −18.0000 −0.679851 −0.339925 0.940452i \(-0.610402\pi\)
−0.339925 + 0.940452i \(0.610402\pi\)
\(702\) 0 0
\(703\) 49.0000 1.84807
\(704\) −3.00000 −0.113067
\(705\) 0 0
\(706\) 6.00000 0.225813
\(707\) −12.0000 −0.451306
\(708\) −12.0000 −0.450988
\(709\) 10.0000 0.375558 0.187779 0.982211i \(-0.439871\pi\)
0.187779 + 0.982211i \(0.439871\pi\)
\(710\) 36.0000 1.35106
\(711\) −10.0000 −0.375029
\(712\) 6.00000 0.224860
\(713\) 36.0000 1.34821
\(714\) 3.00000 0.112272
\(715\) 0 0
\(716\) 0 0
\(717\) −24.0000 −0.896296
\(718\) −24.0000 −0.895672
\(719\) 18.0000 0.671287 0.335643 0.941989i \(-0.391046\pi\)
0.335643 + 0.941989i \(0.391046\pi\)
\(720\) −3.00000 −0.111803
\(721\) 13.0000 0.484145
\(722\) 30.0000 1.11648
\(723\) 10.0000 0.371904
\(724\) 2.00000 0.0743294
\(725\) −36.0000 −1.33701
\(726\) −2.00000 −0.0742270
\(727\) −1.00000 −0.0370879 −0.0185440 0.999828i \(-0.505903\pi\)
−0.0185440 + 0.999828i \(0.505903\pi\)
\(728\) 0 0
\(729\) 1.00000 0.0370370
\(730\) −21.0000 −0.777245
\(731\) 3.00000 0.110959
\(732\) −1.00000 −0.0369611
\(733\) −32.0000 −1.18195 −0.590973 0.806691i \(-0.701256\pi\)
−0.590973 + 0.806691i \(0.701256\pi\)
\(734\) 8.00000 0.295285
\(735\) −3.00000 −0.110657
\(736\) 9.00000 0.331744
\(737\) 42.0000 1.54709
\(738\) −12.0000 −0.441726
\(739\) 34.0000 1.25071 0.625355 0.780340i \(-0.284954\pi\)
0.625355 + 0.780340i \(0.284954\pi\)
\(740\) −21.0000 −0.771975
\(741\) 0 0
\(742\) 6.00000 0.220267
\(743\) −30.0000 −1.10059 −0.550297 0.834969i \(-0.685485\pi\)
−0.550297 + 0.834969i \(0.685485\pi\)
\(744\) 4.00000 0.146647
\(745\) −36.0000 −1.31894
\(746\) −4.00000 −0.146450
\(747\) 6.00000 0.219529
\(748\) 9.00000 0.329073
\(749\) 6.00000 0.219235
\(750\) 3.00000 0.109545
\(751\) −4.00000 −0.145962 −0.0729810 0.997333i \(-0.523251\pi\)
−0.0729810 + 0.997333i \(0.523251\pi\)
\(752\) 0 0
\(753\) 21.0000 0.765283
\(754\) 0 0
\(755\) 51.0000 1.85608
\(756\) −1.00000 −0.0363696
\(757\) 38.0000 1.38113 0.690567 0.723269i \(-0.257361\pi\)
0.690567 + 0.723269i \(0.257361\pi\)
\(758\) 16.0000 0.581146
\(759\) −27.0000 −0.980038
\(760\) −21.0000 −0.761750
\(761\) 12.0000 0.435000 0.217500 0.976060i \(-0.430210\pi\)
0.217500 + 0.976060i \(0.430210\pi\)
\(762\) 2.00000 0.0724524
\(763\) 11.0000 0.398227
\(764\) −15.0000 −0.542681
\(765\) 9.00000 0.325396
\(766\) 21.0000 0.758761
\(767\) 0 0
\(768\) 1.00000 0.0360844
\(769\) 13.0000 0.468792 0.234396 0.972141i \(-0.424689\pi\)
0.234396 + 0.972141i \(0.424689\pi\)
\(770\) −9.00000 −0.324337
\(771\) −18.0000 −0.648254
\(772\) 4.00000 0.143963
\(773\) −33.0000 −1.18693 −0.593464 0.804861i \(-0.702240\pi\)
−0.593464 + 0.804861i \(0.702240\pi\)
\(774\) −1.00000 −0.0359443
\(775\) 16.0000 0.574737
\(776\) 10.0000 0.358979
\(777\) −7.00000 −0.251124
\(778\) −30.0000 −1.07555
\(779\) −84.0000 −3.00961
\(780\) 0 0
\(781\) 36.0000 1.28818
\(782\) −27.0000 −0.965518
\(783\) −9.00000 −0.321634
\(784\) 1.00000 0.0357143
\(785\) 39.0000 1.39197
\(786\) −15.0000 −0.535032
\(787\) 31.0000 1.10503 0.552515 0.833503i \(-0.313668\pi\)
0.552515 + 0.833503i \(0.313668\pi\)
\(788\) 12.0000 0.427482
\(789\) 12.0000 0.427211
\(790\) 30.0000 1.06735
\(791\) 18.0000 0.640006
\(792\) −3.00000 −0.106600
\(793\) 0 0
\(794\) 34.0000 1.20661
\(795\) 18.0000 0.638394
\(796\) −7.00000 −0.248108
\(797\) 36.0000 1.27519 0.637593 0.770374i \(-0.279930\pi\)
0.637593 + 0.770374i \(0.279930\pi\)
\(798\) −7.00000 −0.247797
\(799\) 0 0
\(800\) 4.00000 0.141421
\(801\) 6.00000 0.212000
\(802\) −18.0000 −0.635602
\(803\) −21.0000 −0.741074
\(804\) −14.0000 −0.493742
\(805\) 27.0000 0.951625
\(806\) 0 0
\(807\) 6.00000 0.211210
\(808\) 12.0000 0.422159
\(809\) 54.0000 1.89854 0.949269 0.314464i \(-0.101825\pi\)
0.949269 + 0.314464i \(0.101825\pi\)
\(810\) −3.00000 −0.105409
\(811\) 43.0000 1.50993 0.754967 0.655763i \(-0.227653\pi\)
0.754967 + 0.655763i \(0.227653\pi\)
\(812\) 9.00000 0.315838
\(813\) −2.00000 −0.0701431
\(814\) −21.0000 −0.736050
\(815\) 6.00000 0.210171
\(816\) −3.00000 −0.105021
\(817\) −7.00000 −0.244899
\(818\) 13.0000 0.454534
\(819\) 0 0
\(820\) 36.0000 1.25717
\(821\) −24.0000 −0.837606 −0.418803 0.908077i \(-0.637550\pi\)
−0.418803 + 0.908077i \(0.637550\pi\)
\(822\) −9.00000 −0.313911
\(823\) −40.0000 −1.39431 −0.697156 0.716919i \(-0.745552\pi\)
−0.697156 + 0.716919i \(0.745552\pi\)
\(824\) −13.0000 −0.452876
\(825\) −12.0000 −0.417786
\(826\) 12.0000 0.417533
\(827\) −27.0000 −0.938882 −0.469441 0.882964i \(-0.655545\pi\)
−0.469441 + 0.882964i \(0.655545\pi\)
\(828\) 9.00000 0.312772
\(829\) −25.0000 −0.868286 −0.434143 0.900844i \(-0.642949\pi\)
−0.434143 + 0.900844i \(0.642949\pi\)
\(830\) −18.0000 −0.624789
\(831\) 26.0000 0.901930
\(832\) 0 0
\(833\) −3.00000 −0.103944
\(834\) −4.00000 −0.138509
\(835\) 9.00000 0.311458
\(836\) −21.0000 −0.726300
\(837\) 4.00000 0.138260
\(838\) 3.00000 0.103633
\(839\) 12.0000 0.414286 0.207143 0.978311i \(-0.433583\pi\)
0.207143 + 0.978311i \(0.433583\pi\)
\(840\) 3.00000 0.103510
\(841\) 52.0000 1.79310
\(842\) 10.0000 0.344623
\(843\) 6.00000 0.206651
\(844\) 5.00000 0.172107
\(845\) 0 0
\(846\) 0 0
\(847\) 2.00000 0.0687208
\(848\) −6.00000 −0.206041
\(849\) −4.00000 −0.137280
\(850\) −12.0000 −0.411597
\(851\) 63.0000 2.15961
\(852\) −12.0000 −0.411113
\(853\) −44.0000 −1.50653 −0.753266 0.657716i \(-0.771523\pi\)
−0.753266 + 0.657716i \(0.771523\pi\)
\(854\) 1.00000 0.0342193
\(855\) −21.0000 −0.718185
\(856\) −6.00000 −0.205076
\(857\) 42.0000 1.43469 0.717346 0.696717i \(-0.245357\pi\)
0.717346 + 0.696717i \(0.245357\pi\)
\(858\) 0 0
\(859\) −4.00000 −0.136478 −0.0682391 0.997669i \(-0.521738\pi\)
−0.0682391 + 0.997669i \(0.521738\pi\)
\(860\) 3.00000 0.102299
\(861\) 12.0000 0.408959
\(862\) −18.0000 −0.613082
\(863\) −6.00000 −0.204242 −0.102121 0.994772i \(-0.532563\pi\)
−0.102121 + 0.994772i \(0.532563\pi\)
\(864\) 1.00000 0.0340207
\(865\) 18.0000 0.612018
\(866\) −16.0000 −0.543702
\(867\) −8.00000 −0.271694
\(868\) −4.00000 −0.135769
\(869\) 30.0000 1.01768
\(870\) 27.0000 0.915386
\(871\) 0 0
\(872\) −11.0000 −0.372507
\(873\) 10.0000 0.338449
\(874\) 63.0000 2.13101
\(875\) −3.00000 −0.101419
\(876\) 7.00000 0.236508
\(877\) −14.0000 −0.472746 −0.236373 0.971662i \(-0.575959\pi\)
−0.236373 + 0.971662i \(0.575959\pi\)
\(878\) −1.00000 −0.0337484
\(879\) 18.0000 0.607125
\(880\) 9.00000 0.303390
\(881\) −3.00000 −0.101073 −0.0505363 0.998722i \(-0.516093\pi\)
−0.0505363 + 0.998722i \(0.516093\pi\)
\(882\) 1.00000 0.0336718
\(883\) −25.0000 −0.841317 −0.420658 0.907219i \(-0.638201\pi\)
−0.420658 + 0.907219i \(0.638201\pi\)
\(884\) 0 0
\(885\) 36.0000 1.21013
\(886\) 18.0000 0.604722
\(887\) 36.0000 1.20876 0.604381 0.796696i \(-0.293421\pi\)
0.604381 + 0.796696i \(0.293421\pi\)
\(888\) 7.00000 0.234905
\(889\) −2.00000 −0.0670778
\(890\) −18.0000 −0.603361
\(891\) −3.00000 −0.100504
\(892\) −26.0000 −0.870544
\(893\) 0 0
\(894\) 12.0000 0.401340
\(895\) 0 0
\(896\) −1.00000 −0.0334077
\(897\) 0 0
\(898\) −21.0000 −0.700779
\(899\) −36.0000 −1.20067
\(900\) 4.00000 0.133333
\(901\) 18.0000 0.599667
\(902\) 36.0000 1.19867
\(903\) 1.00000 0.0332779
\(904\) −18.0000 −0.598671
\(905\) −6.00000 −0.199447
\(906\) −17.0000 −0.564787
\(907\) −28.0000 −0.929725 −0.464862 0.885383i \(-0.653896\pi\)
−0.464862 + 0.885383i \(0.653896\pi\)
\(908\) 18.0000 0.597351
\(909\) 12.0000 0.398015
\(910\) 0 0
\(911\) −33.0000 −1.09334 −0.546669 0.837349i \(-0.684105\pi\)
−0.546669 + 0.837349i \(0.684105\pi\)
\(912\) 7.00000 0.231793
\(913\) −18.0000 −0.595713
\(914\) 28.0000 0.926158
\(915\) 3.00000 0.0991769
\(916\) −14.0000 −0.462573
\(917\) 15.0000 0.495344
\(918\) −3.00000 −0.0990148
\(919\) −34.0000 −1.12156 −0.560778 0.827966i \(-0.689498\pi\)
−0.560778 + 0.827966i \(0.689498\pi\)
\(920\) −27.0000 −0.890164
\(921\) 16.0000 0.527218
\(922\) −33.0000 −1.08680
\(923\) 0 0
\(924\) 3.00000 0.0986928
\(925\) 28.0000 0.920634
\(926\) −41.0000 −1.34734
\(927\) −13.0000 −0.426976
\(928\) −9.00000 −0.295439
\(929\) −12.0000 −0.393707 −0.196854 0.980433i \(-0.563072\pi\)
−0.196854 + 0.980433i \(0.563072\pi\)
\(930\) −12.0000 −0.393496
\(931\) 7.00000 0.229416
\(932\) 24.0000 0.786146
\(933\) 18.0000 0.589294
\(934\) −3.00000 −0.0981630
\(935\) −27.0000 −0.882994
\(936\) 0 0
\(937\) −34.0000 −1.11073 −0.555366 0.831606i \(-0.687422\pi\)
−0.555366 + 0.831606i \(0.687422\pi\)
\(938\) 14.0000 0.457116
\(939\) 8.00000 0.261070
\(940\) 0 0
\(941\) −18.0000 −0.586783 −0.293392 0.955992i \(-0.594784\pi\)
−0.293392 + 0.955992i \(0.594784\pi\)
\(942\) −13.0000 −0.423563
\(943\) −108.000 −3.51696
\(944\) −12.0000 −0.390567
\(945\) 3.00000 0.0975900
\(946\) 3.00000 0.0975384
\(947\) 57.0000 1.85225 0.926126 0.377215i \(-0.123118\pi\)
0.926126 + 0.377215i \(0.123118\pi\)
\(948\) −10.0000 −0.324785
\(949\) 0 0
\(950\) 28.0000 0.908440
\(951\) 0 0
\(952\) 3.00000 0.0972306
\(953\) −24.0000 −0.777436 −0.388718 0.921357i \(-0.627082\pi\)
−0.388718 + 0.921357i \(0.627082\pi\)
\(954\) −6.00000 −0.194257
\(955\) 45.0000 1.45617
\(956\) −24.0000 −0.776215
\(957\) 27.0000 0.872786
\(958\) 15.0000 0.484628
\(959\) 9.00000 0.290625
\(960\) −3.00000 −0.0968246
\(961\) −15.0000 −0.483871
\(962\) 0 0
\(963\) −6.00000 −0.193347
\(964\) 10.0000 0.322078
\(965\) −12.0000 −0.386294
\(966\) −9.00000 −0.289570
\(967\) 13.0000 0.418052 0.209026 0.977910i \(-0.432971\pi\)
0.209026 + 0.977910i \(0.432971\pi\)
\(968\) −2.00000 −0.0642824
\(969\) −21.0000 −0.674617
\(970\) −30.0000 −0.963242
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 1.00000 0.0320750
\(973\) 4.00000 0.128234
\(974\) 16.0000 0.512673
\(975\) 0 0
\(976\) −1.00000 −0.0320092
\(977\) −15.0000 −0.479893 −0.239946 0.970786i \(-0.577130\pi\)
−0.239946 + 0.970786i \(0.577130\pi\)
\(978\) −2.00000 −0.0639529
\(979\) −18.0000 −0.575282
\(980\) −3.00000 −0.0958315
\(981\) −11.0000 −0.351203
\(982\) 30.0000 0.957338
\(983\) 39.0000 1.24391 0.621953 0.783054i \(-0.286339\pi\)
0.621953 + 0.783054i \(0.286339\pi\)
\(984\) −12.0000 −0.382546
\(985\) −36.0000 −1.14706
\(986\) 27.0000 0.859855
\(987\) 0 0
\(988\) 0 0
\(989\) −9.00000 −0.286183
\(990\) 9.00000 0.286039
\(991\) 38.0000 1.20711 0.603555 0.797321i \(-0.293750\pi\)
0.603555 + 0.797321i \(0.293750\pi\)
\(992\) 4.00000 0.127000
\(993\) 10.0000 0.317340
\(994\) 12.0000 0.380617
\(995\) 21.0000 0.665745
\(996\) 6.00000 0.190117
\(997\) −46.0000 −1.45683 −0.728417 0.685134i \(-0.759744\pi\)
−0.728417 + 0.685134i \(0.759744\pi\)
\(998\) −32.0000 −1.01294
\(999\) 7.00000 0.221470
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7098.2.a.w.1.1 1
13.12 even 2 546.2.a.d.1.1 1
39.38 odd 2 1638.2.a.l.1.1 1
52.51 odd 2 4368.2.a.l.1.1 1
91.90 odd 2 3822.2.a.a.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.2.a.d.1.1 1 13.12 even 2
1638.2.a.l.1.1 1 39.38 odd 2
3822.2.a.a.1.1 1 91.90 odd 2
4368.2.a.l.1.1 1 52.51 odd 2
7098.2.a.w.1.1 1 1.1 even 1 trivial