Properties

Label 72.21.b.a.19.1
Level 7272
Weight 2121
Character 72.19
Self dual yes
Analytic conductor 182.530182.530
Analytic rank 00
Dimension 11
CM discriminant -8
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,21,Mod(19,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 21, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.19");
 
S:= CuspForms(chi, 21);
 
N := Newforms(S);
 
Level: N N == 72=2332 72 = 2^{3} \cdot 3^{2}
Weight: k k == 21 21
Character orbit: [χ][\chi] == 72.b (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 182.529910874182.529910874
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 19.1
Character χ\chi == 72.19

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q1024.00q2+1.04858e6q41.07374e9q8+4.23830e10q11+1.09951e12q16+3.35354e12q171.01465e12q194.34002e13q22+9.53674e13q251.12590e15q323.43402e15q34+1.03901e15q38+2.54181e16q41+2.78111e15q43+4.44418e16q44+7.97923e16q499.76562e16q50+1.73912e17q59+1.15292e18q643.56138e17q67+3.51644e18q686.01672e18q731.06394e18q762.60281e19q82+3.10229e19q832.84786e18q864.55084e19q886.12024e19q895.00091e19q978.17073e19q98+O(q100)q-1024.00 q^{2} +1.04858e6 q^{4} -1.07374e9 q^{8} +4.23830e10 q^{11} +1.09951e12 q^{16} +3.35354e12 q^{17} -1.01465e12 q^{19} -4.34002e13 q^{22} +9.53674e13 q^{25} -1.12590e15 q^{32} -3.43402e15 q^{34} +1.03901e15 q^{38} +2.54181e16 q^{41} +2.78111e15 q^{43} +4.44418e16 q^{44} +7.97923e16 q^{49} -9.76562e16 q^{50} +1.73912e17 q^{59} +1.15292e18 q^{64} -3.56138e17 q^{67} +3.51644e18 q^{68} -6.01672e18 q^{73} -1.06394e18 q^{76} -2.60281e19 q^{82} +3.10229e19 q^{83} -2.84786e18 q^{86} -4.55084e19 q^{88} -6.12024e19 q^{89} -5.00091e19 q^{97} -8.17073e19 q^{98} +O(q^{100})

Character values

We give the values of χ\chi on generators for (Z/72Z)×\left(\mathbb{Z}/72\mathbb{Z}\right)^\times.

nn 3737 5555 6565
χ(n)\chi(n) 1-1 1-1 11

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −1024.00 −1.00000
33 0 0
44 1.04858e6 1.00000
55 0 0 1.00000 00
−1.00000 π\pi
66 0 0
77 0 0 1.00000 00
−1.00000 π\pi
88 −1.07374e9 −1.00000
99 0 0
1010 0 0
1111 4.23830e10 1.63405 0.817025 0.576603i 0.195622π-0.195622\pi
0.817025 + 0.576603i 0.195622π0.195622\pi
1212 0 0
1313 0 0 1.00000 00
−1.00000 π\pi
1414 0 0
1515 0 0
1616 1.09951e12 1.00000
1717 3.35354e12 1.66347 0.831733 0.555176i 0.187349π-0.187349\pi
0.831733 + 0.555176i 0.187349π0.187349\pi
1818 0 0
1919 −1.01465e12 −0.165494 −0.0827470 0.996571i 0.526369π-0.526369\pi
−0.0827470 + 0.996571i 0.526369π0.526369\pi
2020 0 0
2121 0 0
2222 −4.34002e13 −1.63405
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 9.53674e13 1.00000
2626 0 0
2727 0 0
2828 0 0
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 0 0 1.00000 00
−1.00000 π\pi
3232 −1.12590e15 −1.00000
3333 0 0
3434 −3.43402e15 −1.66347
3535 0 0
3636 0 0
3737 0 0 1.00000 00
−1.00000 π\pi
3838 1.03901e15 0.165494
3939 0 0
4040 0 0
4141 2.54181e16 1.89367 0.946834 0.321721i 0.104261π-0.104261\pi
0.946834 + 0.321721i 0.104261π0.104261\pi
4242 0 0
4343 2.78111e15 0.128687 0.0643434 0.997928i 0.479505π-0.479505\pi
0.0643434 + 0.997928i 0.479505π0.479505\pi
4444 4.44418e16 1.63405
4545 0 0
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 7.97923e16 1.00000
5050 −9.76562e16 −1.00000
5151 0 0
5252 0 0
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 0 0
5656 0 0
5757 0 0
5858 0 0
5959 1.73912e17 0.340259 0.170130 0.985422i 0.445581π-0.445581\pi
0.170130 + 0.985422i 0.445581π0.445581\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 0 0
6363 0 0
6464 1.15292e18 1.00000
6565 0 0
6666 0 0
6767 −3.56138e17 −0.195375 −0.0976877 0.995217i 0.531145π-0.531145\pi
−0.0976877 + 0.995217i 0.531145π0.531145\pi
6868 3.51644e18 1.66347
6969 0 0
7070 0 0
7171 0 0 1.00000 00
−1.00000 π\pi
7272 0 0
7373 −6.01672e18 −1.40001 −0.700005 0.714138i 0.746819π-0.746819\pi
−0.700005 + 0.714138i 0.746819π0.746819\pi
7474 0 0
7575 0 0
7676 −1.06394e18 −0.165494
7777 0 0
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 0 0
8181 0 0
8282 −2.60281e19 −1.89367
8383 3.10229e19 1.99941 0.999703 0.0243827i 0.00776202π-0.00776202\pi
0.999703 + 0.0243827i 0.00776202π0.00776202\pi
8484 0 0
8585 0 0
8686 −2.84786e18 −0.128687
8787 0 0
8888 −4.55084e19 −1.63405
8989 −6.12024e19 −1.96277 −0.981383 0.192059i 0.938484π-0.938484\pi
−0.981383 + 0.192059i 0.938484π0.938484\pi
9090 0 0
9191 0 0
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 −5.00091e19 −0.678160 −0.339080 0.940758i 0.610116π-0.610116\pi
−0.339080 + 0.940758i 0.610116π0.610116\pi
9898 −8.17073e19 −1.00000
9999 0 0
100100 1.00000e20 1.00000
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0 0
105105 0 0
106106 0 0
107107 −3.62647e20 −1.84351 −0.921756 0.387770i 0.873246π-0.873246\pi
−0.921756 + 0.387770i 0.873246π0.873246\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 0 0
113113 −1.52948e20 −0.450567 −0.225284 0.974293i 0.572331π-0.572331\pi
−0.225284 + 0.974293i 0.572331π0.572331\pi
114114 0 0
115115 0 0
116116 0 0
117117 0 0
118118 −1.78086e20 −0.340259
119119 0 0
120120 0 0
121121 1.12357e21 1.67012
122122 0 0
123123 0 0
124124 0 0
125125 0 0
126126 0 0
127127 0 0 1.00000 00
−1.00000 π\pi
128128 −1.18059e21 −1.00000
129129 0 0
130130 0 0
131131 −2.17294e21 −1.45994 −0.729970 0.683479i 0.760466π-0.760466\pi
−0.729970 + 0.683479i 0.760466π0.760466\pi
132132 0 0
133133 0 0
134134 3.64685e20 0.195375
135135 0 0
136136 −3.60083e21 −1.66347
137137 −2.11640e21 −0.908642 −0.454321 0.890838i 0.650118π-0.650118\pi
−0.454321 + 0.890838i 0.650118π0.650118\pi
138138 0 0
139139 2.54239e21 0.944266 0.472133 0.881527i 0.343484π-0.343484\pi
0.472133 + 0.881527i 0.343484π0.343484\pi
140140 0 0
141141 0 0
142142 0 0
143143 0 0
144144 0 0
145145 0 0
146146 6.16112e21 1.40001
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 1.08948e21 0.165494
153153 0 0
154154 0 0
155155 0 0
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 0 0
161161 0 0
162162 0 0
163163 7.06792e19 0.00533845 0.00266923 0.999996i 0.499150π-0.499150\pi
0.00266923 + 0.999996i 0.499150π0.499150\pi
164164 2.66528e22 1.89367
165165 0 0
166166 −3.17674e22 −1.99941
167167 0 0 1.00000 00
−1.00000 π\pi
168168 0 0
169169 1.90050e22 1.00000
170170 0 0
171171 0 0
172172 2.91621e21 0.128687
173173 0 0 1.00000 00
−1.00000 π\pi
174174 0 0
175175 0 0
176176 4.66006e22 1.63405
177177 0 0
178178 6.26713e22 1.96277
179179 3.92234e22 1.16149 0.580744 0.814086i 0.302762π-0.302762\pi
0.580744 + 0.814086i 0.302762π0.302762\pi
180180 0 0
181181 0 0 1.00000 00
−1.00000 π\pi
182182 0 0
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 1.42133e23 2.71818
188188 0 0
189189 0 0
190190 0 0
191191 0 0 1.00000 00
−1.00000 π\pi
192192 0 0
193193 1.20384e23 1.67878 0.839391 0.543528i 0.182912π-0.182912\pi
0.839391 + 0.543528i 0.182912π0.182912\pi
194194 5.12093e22 0.678160
195195 0 0
196196 8.36683e22 1.00000
197197 0 0 1.00000 00
−1.00000 π\pi
198198 0 0
199199 0 0 1.00000 00
−1.00000 π\pi
200200 −1.02400e23 −1.00000
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 0 0
209209 −4.30041e22 −0.270425
210210 0 0
211211 −2.82329e23 −1.61410 −0.807051 0.590482i 0.798938π-0.798938\pi
−0.807051 + 0.590482i 0.798938π0.798938\pi
212212 0 0
213213 0 0
214214 3.71350e23 1.84351
215215 0 0
216216 0 0
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 0 0
225225 0 0
226226 1.56619e23 0.450567
227227 2.21143e23 0.608716 0.304358 0.952558i 0.401558π-0.401558\pi
0.304358 + 0.952558i 0.401558π0.401558\pi
228228 0 0
229229 0 0 1.00000 00
−1.00000 π\pi
230230 0 0
231231 0 0
232232 0 0
233233 7.85874e23 1.66645 0.833227 0.552931i 0.186491π-0.186491\pi
0.833227 + 0.552931i 0.186491π0.186491\pi
234234 0 0
235235 0 0
236236 1.82360e23 0.340259
237237 0 0
238238 0 0
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 7.13387e23 1.07933 0.539666 0.841879i 0.318551π-0.318551\pi
0.539666 + 0.841879i 0.318551π0.318551\pi
242242 −1.15054e24 −1.67012
243243 0 0
244244 0 0
245245 0 0
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0 0
251251 1.55766e24 1.56941 0.784703 0.619872i 0.212815π-0.212815\pi
0.784703 + 0.619872i 0.212815π0.212815\pi
252252 0 0
253253 0 0
254254 0 0
255255 0 0
256256 1.20893e24 1.00000
257257 −1.50407e24 −1.19657 −0.598284 0.801284i 0.704151π-0.704151\pi
−0.598284 + 0.801284i 0.704151π0.704151\pi
258258 0 0
259259 0 0
260260 0 0
261261 0 0
262262 2.22509e24 1.45994
263263 0 0 1.00000 00
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 −3.73437e23 −0.195375
269269 0 0 1.00000 00
−1.00000 π\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 3.68725e24 1.66347
273273 0 0
274274 2.16720e24 0.908642
275275 4.04196e24 1.63405
276276 0 0
277277 0 0 1.00000 00
−1.00000 π\pi
278278 −2.60341e24 −0.944266
279279 0 0
280280 0 0
281281 −2.04420e24 −0.665979 −0.332989 0.942931i 0.608057π-0.608057\pi
−0.332989 + 0.942931i 0.608057π0.608057\pi
282282 0 0
283283 −7.68742e23 −0.233301 −0.116650 0.993173i 0.537216π-0.537216\pi
−0.116650 + 0.993173i 0.537216π0.537216\pi
284284 0 0
285285 0 0
286286 0 0
287287 0 0
288288 0 0
289289 7.18197e24 1.76712
290290 0 0
291291 0 0
292292 −6.30899e24 −1.40001
293293 0 0 1.00000 00
−1.00000 π\pi
294294 0 0
295295 0 0
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 0 0
302302 0 0
303303 0 0
304304 −1.11562e24 −0.165494
305305 0 0
306306 0 0
307307 2.64867e24 0.356160 0.178080 0.984016i 0.443011π-0.443011\pi
0.178080 + 0.984016i 0.443011π0.443011\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 0 0
313313 1.53618e25 1.70215 0.851075 0.525044i 0.175951π-0.175951\pi
0.851075 + 0.525044i 0.175951π0.175951\pi
314314 0 0
315315 0 0
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 0 0
321321 0 0
322322 0 0
323323 −3.40268e24 −0.275293
324324 0 0
325325 0 0
326326 −7.23755e22 −0.00533845
327327 0 0
328328 −2.72924e25 −1.89367
329329 0 0
330330 0 0
331331 −3.08691e25 −1.95544 −0.977718 0.209923i 0.932679π-0.932679\pi
−0.977718 + 0.209923i 0.932679π0.932679\pi
332332 3.25298e25 1.99941
333333 0 0
334334 0 0
335335 0 0
336336 0 0
337337 1.11942e24 0.0592508 0.0296254 0.999561i 0.490569π-0.490569\pi
0.0296254 + 0.999561i 0.490569π0.490569\pi
338338 −1.94611e25 −1.00000
339339 0 0
340340 0 0
341341 0 0
342342 0 0
343343 0 0
344344 −2.98620e24 −0.128687
345345 0 0
346346 0 0
347347 5.03994e25 1.99127 0.995635 0.0933286i 0.0297507π-0.0297507\pi
0.995635 + 0.0933286i 0.0297507π0.0297507\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 0 0
351351 0 0
352352 −4.77190e25 −1.63405
353353 −5.62790e25 −1.87327 −0.936633 0.350313i 0.886075π-0.886075\pi
−0.936633 + 0.350313i 0.886075π0.886075\pi
354354 0 0
355355 0 0
356356 −6.41754e25 −1.96277
357357 0 0
358358 −4.01647e25 −1.16149
359359 0 0 1.00000 00
−1.00000 π\pi
360360 0 0
361361 −3.65604e25 −0.972612
362362 0 0
363363 0 0
364364 0 0
365365 0 0
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 1.00000 00
−1.00000 π\pi
374374 −1.45544e26 −2.71818
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 −3.83008e25 −0.626347 −0.313174 0.949696i 0.601392π-0.601392\pi
−0.313174 + 0.949696i 0.601392π0.601392\pi
380380 0 0
381381 0 0
382382 0 0
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 0 0
386386 −1.23273e26 −1.67878
387387 0 0
388388 −5.24384e25 −0.678160
389389 0 0 1.00000 00
−1.00000 π\pi
390390 0 0
391391 0 0
392392 −8.56763e25 −1.00000
393393 0 0
394394 0 0
395395 0 0
396396 0 0
397397 0 0 1.00000 00
−1.00000 π\pi
398398 0 0
399399 0 0
400400 1.04858e26 1.00000
401401 2.13090e26 1.98207 0.991034 0.133612i 0.0426576π-0.0426576\pi
0.991034 + 0.133612i 0.0426576π0.0426576\pi
402402 0 0
403403 0 0
404404 0 0
405405 0 0
406406 0 0
407407 0 0
408408 0 0
409409 1.27053e26 0.969955 0.484977 0.874527i 0.338828π-0.338828\pi
0.484977 + 0.874527i 0.338828π0.338828\pi
410410 0 0
411411 0 0
412412 0 0
413413 0 0
414414 0 0
415415 0 0
416416 0 0
417417 0 0
418418 4.40362e25 0.270425
419419 3.16629e26 1.89850 0.949249 0.314527i 0.101846π-0.101846\pi
0.949249 + 0.314527i 0.101846π0.101846\pi
420420 0 0
421421 0 0 1.00000 00
−1.00000 π\pi
422422 2.89105e26 1.61410
423423 0 0
424424 0 0
425425 3.19818e26 1.66347
426426 0 0
427427 0 0
428428 −3.80263e26 −1.84351
429429 0 0
430430 0 0
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 −2.40752e26 −1.03918 −0.519591 0.854415i 0.673916π-0.673916\pi
−0.519591 + 0.854415i 0.673916π0.673916\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 0 0
441441 0 0
442442 0 0
443443 −1.30434e26 −0.448078 −0.224039 0.974580i 0.571924π-0.571924\pi
−0.224039 + 0.974580i 0.571924π0.571924\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0 0
449449 5.95620e26 1.78857 0.894285 0.447499i 0.147685π-0.147685\pi
0.894285 + 0.447499i 0.147685π0.147685\pi
450450 0 0
451451 1.07729e27 3.09435
452452 −1.60378e26 −0.450567
453453 0 0
454454 −2.26450e26 −0.608716
455455 0 0
456456 0 0
457457 6.94600e26 1.74813 0.874064 0.485812i 0.161476π-0.161476\pi
0.874064 + 0.485812i 0.161476π0.161476\pi
458458 0 0
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 −8.04735e26 −1.66645
467467 9.22043e26 1.86888 0.934442 0.356114i 0.115899π-0.115899\pi
0.934442 + 0.356114i 0.115899π0.115899\pi
468468 0 0
469469 0 0
470470 0 0
471471 0 0
472472 −1.86737e26 −0.340259
473473 1.17872e26 0.210281
474474 0 0
475475 −9.67650e25 −0.165494
476476 0 0
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 −7.30509e26 −1.07933
483483 0 0
484484 1.17815e27 1.67012
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 0 0
491491 −1.59202e27 −1.95494 −0.977469 0.211079i 0.932302π-0.932302\pi
−0.977469 + 0.211079i 0.932302π0.932302\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0 0
498498 0 0
499499 1.90641e27 1.99164 0.995820 0.0913348i 0.0291133π-0.0291133\pi
0.995820 + 0.0913348i 0.0291133π0.0291133\pi
500500 0 0
501501 0 0
502502 −1.59504e27 −1.56941
503503 0 0 1.00000 00
−1.00000 π\pi
504504 0 0
505505 0 0
506506 0 0
507507 0 0
508508 0 0
509509 0 0 1.00000 00
−1.00000 π\pi
510510 0 0
511511 0 0
512512 −1.23794e27 −1.00000
513513 0 0
514514 1.54017e27 1.19657
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 0 0
521521 2.57885e27 1.75004 0.875021 0.484085i 0.160848π-0.160848\pi
0.875021 + 0.484085i 0.160848π0.160848\pi
522522 0 0
523523 2.21598e27 1.44726 0.723632 0.690186i 0.242471π-0.242471\pi
0.723632 + 0.690186i 0.242471π0.242471\pi
524524 −2.27849e27 −1.45994
525525 0 0
526526 0 0
527527 0 0
528528 0 0
529529 1.71616e27 1.00000
530530 0 0
531531 0 0
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 3.82400e26 0.195375
537537 0 0
538538 0 0
539539 3.38184e27 1.63405
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 −3.77575e27 −1.66347
545545 0 0
546546 0 0
547547 −4.19373e27 −1.74875 −0.874375 0.485251i 0.838728π-0.838728\pi
−0.874375 + 0.485251i 0.838728π0.838728\pi
548548 −2.21921e27 −0.908642
549549 0 0
550550 −4.13897e27 −1.63405
551551 0 0
552552 0 0
553553 0 0
554554 0 0
555555 0 0
556556 2.66589e27 0.944266
557557 0 0 1.00000 00
−1.00000 π\pi
558558 0 0
559559 0 0
560560 0 0
561561 0 0
562562 2.09326e27 0.665979
563563 −2.78356e27 −0.869994 −0.434997 0.900432i 0.643251π-0.643251\pi
−0.434997 + 0.900432i 0.643251π0.643251\pi
564564 0 0
565565 0 0
566566 7.87192e26 0.233301
567567 0 0
568568 0 0
569569 6.37985e27 1.79344 0.896722 0.442595i 0.145942π-0.145942\pi
0.896722 + 0.442595i 0.145942π0.145942\pi
570570 0 0
571571 −7.29382e27 −1.97967 −0.989837 0.142204i 0.954581π-0.954581\pi
−0.989837 + 0.142204i 0.954581π0.954581\pi
572572 0 0
573573 0 0
574574 0 0
575575 0 0
576576 0 0
577577 −8.17943e27 −1.99970 −0.999850 0.0173302i 0.994483π-0.994483\pi
−0.999850 + 0.0173302i 0.994483π0.994483\pi
578578 −7.35434e27 −1.76712
579579 0 0
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 6.46040e27 1.40001
585585 0 0
586586 0 0
587587 7.68162e27 1.58151 0.790755 0.612133i 0.209688π-0.209688\pi
0.790755 + 0.612133i 0.209688π0.209688\pi
588588 0 0
589589 0 0
590590 0 0
591591 0 0
592592 0 0
593593 −3.00007e27 −0.557936 −0.278968 0.960300i 0.589992π-0.589992\pi
−0.278968 + 0.960300i 0.589992π0.589992\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0 0
599599 0 0 1.00000 00
−1.00000 π\pi
600600 0 0
601601 8.69391e27 1.41407 0.707035 0.707179i 0.250033π-0.250033\pi
0.707035 + 0.707179i 0.250033π0.250033\pi
602602 0 0
603603 0 0
604604 0 0
605605 0 0
606606 0 0
607607 0 0 1.00000 00
−1.00000 π\pi
608608 1.14240e27 0.165494
609609 0 0
610610 0 0
611611 0 0
612612 0 0
613613 0 0 1.00000 00
−1.00000 π\pi
614614 −2.71224e27 −0.356160
615615 0 0
616616 0 0
617617 −1.47242e28 −1.84153 −0.920765 0.390119i 0.872434π-0.872434\pi
−0.920765 + 0.390119i 0.872434π0.872434\pi
618618 0 0
619619 6.02524e24 0.000729572 0 0.000364786 1.00000i 0.499884π-0.499884\pi
0.000364786 1.00000i 0.499884π0.499884\pi
620620 0 0
621621 0 0
622622 0 0
623623 0 0
624624 0 0
625625 9.09495e27 1.00000
626626 −1.57305e28 −1.70215
627627 0 0
628628 0 0
629629 0 0
630630 0 0
631631 0 0 1.00000 00
−1.00000 π\pi
632632 0 0
633633 0 0
634634 0 0
635635 0 0
636636 0 0
637637 0 0
638638 0 0
639639 0 0
640640 0 0
641641 −1.77175e28 −1.51294 −0.756471 0.654027i 0.773078π-0.773078\pi
−0.756471 + 0.654027i 0.773078π0.773078\pi
642642 0 0
643643 −2.35774e28 −1.95158 −0.975791 0.218706i 0.929816π-0.929816\pi
−0.975791 + 0.218706i 0.929816π0.929816\pi
644644 0 0
645645 0 0
646646 3.48434e27 0.275293
647647 0 0 1.00000 00
−1.00000 π\pi
648648 0 0
649649 7.37092e27 0.556000
650650 0 0
651651 0 0
652652 7.41125e25 0.00533845
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 2.79475e28 1.89367
657657 0 0
658658 0 0
659659 −1.96646e28 −1.27301 −0.636504 0.771274i 0.719620π-0.719620\pi
−0.636504 + 0.771274i 0.719620π0.719620\pi
660660 0 0
661661 0 0 1.00000 00
−1.00000 π\pi
662662 3.16099e28 1.95544
663663 0 0
664664 −3.33105e28 −1.99941
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −2.82190e28 −1.48044 −0.740221 0.672364i 0.765279π-0.765279\pi
−0.740221 + 0.672364i 0.765279π0.765279\pi
674674 −1.14629e27 −0.0592508
675675 0 0
676676 1.99281e28 1.00000
677677 0 0 1.00000 00
−1.00000 π\pi
678678 0 0
679679 0 0
680680 0 0
681681 0 0
682682 0 0
683683 −4.34265e28 −1.96584 −0.982919 0.184038i 0.941083π-0.941083\pi
−0.982919 + 0.184038i 0.941083π0.941083\pi
684684 0 0
685685 0 0
686686 0 0
687687 0 0
688688 3.05787e27 0.128687
689689 0 0
690690 0 0
691691 −3.84706e28 −1.55006 −0.775030 0.631924i 0.782265π-0.782265\pi
−0.775030 + 0.631924i 0.782265π0.782265\pi
692692 0 0
693693 0 0
694694 −5.16089e28 −1.99127
695695 0 0
696696 0 0
697697 8.52404e28 3.15005
698698 0 0
699699 0 0
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 4.88643e28 1.63405
705705 0 0
706706 5.76297e28 1.87327
707707 0 0
708708 0 0
709709 0 0 1.00000 00
−1.00000 π\pi
710710 0 0
711711 0 0
712712 6.57156e28 1.96277
713713 0 0
714714 0 0
715715 0 0
716716 4.11287e28 1.16149
717717 0 0
718718 0 0
719719 0 0 1.00000 00
−1.00000 π\pi
720720 0 0
721721 0 0
722722 3.74379e28 0.972612
723723 0 0
724724 0 0
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0 0
729729 0 0
730730 0 0
731731 9.32657e27 0.214066
732732 0 0
733733 0 0 1.00000 00
−1.00000 π\pi
734734 0 0
735735 0 0
736736 0 0
737737 −1.50942e28 −0.319253
738738 0 0
739739 5.68807e28 1.17090 0.585451 0.810708i 0.300917π-0.300917\pi
0.585451 + 0.810708i 0.300917π0.300917\pi
740740 0 0
741741 0 0
742742 0 0
743743 0 0 1.00000 00
−1.00000 π\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 1.49037e29 2.71818
749749 0 0
750750 0 0
751751 0 0 1.00000 00
−1.00000 π\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 3.92200e28 0.626347
759759 0 0
760760 0 0
761761 7.16003e28 1.09918 0.549589 0.835435i 0.314784π-0.314784\pi
0.549589 + 0.835435i 0.314784π0.314784\pi
762762 0 0
763763 0 0
764764 0 0
765765 0 0
766766 0 0
767767 0 0
768768 0 0
769769 −4.32623e28 −0.598200 −0.299100 0.954222i 0.596686π-0.596686\pi
−0.299100 + 0.954222i 0.596686π0.596686\pi
770770 0 0
771771 0 0
772772 1.26231e29 1.67878
773773 0 0 1.00000 00
−1.00000 π\pi
774774 0 0
775775 0 0
776776 5.36969e28 0.678160
777777 0 0
778778 0 0
779779 −2.57906e28 −0.313391
780780 0 0
781781 0 0
782782 0 0
783783 0 0
784784 8.77325e28 1.00000
785785 0 0
786786 0 0
787787 −1.82292e29 −1.99996 −0.999979 0.00648819i 0.997935π-0.997935\pi
−0.999979 + 0.00648819i 0.997935π0.997935\pi
788788 0 0
789789 0 0
790790 0 0
791791 0 0
792792 0 0
793793 0 0
794794 0 0
795795 0 0
796796 0 0
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 −1.07374e29 −1.00000
801801 0 0
802802 −2.18204e29 −1.98207
803803 −2.55007e29 −2.28768
804804 0 0
805805 0 0
806806 0 0
807807 0 0
808808 0 0
809809 1.24019e29 1.03277 0.516383 0.856357i 0.327278π-0.327278\pi
0.516383 + 0.856357i 0.327278π0.327278\pi
810810 0 0
811811 −1.11745e29 −0.907860 −0.453930 0.891037i 0.649978π-0.649978\pi
−0.453930 + 0.891037i 0.649978π0.649978\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 −2.82187e27 −0.0212969
818818 −1.30102e29 −0.969955
819819 0 0
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 0 0
827827 −2.19924e29 −1.46966 −0.734830 0.678252i 0.762738π-0.762738\pi
−0.734830 + 0.678252i 0.762738π0.762738\pi
828828 0 0
829829 0 0 1.00000 00
−1.00000 π\pi
830830 0 0
831831 0 0
832832 0 0
833833 2.67586e29 1.66347
834834 0 0
835835 0 0
836836 −4.50931e28 −0.270425
837837 0 0
838838 −3.24228e29 −1.89850
839839 0 0 1.00000 00
−1.00000 π\pi
840840 0 0
841841 1.76995e29 1.00000
842842 0 0
843843 0 0
844844 −2.96043e29 −1.61410
845845 0 0
846846 0 0
847847 0 0
848848 0 0
849849 0 0
850850 −3.27494e29 −1.66347
851851 0 0
852852 0 0
853853 0 0 1.00000 00
−1.00000 π\pi
854854 0 0
855855 0 0
856856 3.89389e29 1.84351
857857 3.50153e28 0.163851 0.0819256 0.996638i 0.473893π-0.473893\pi
0.0819256 + 0.996638i 0.473893π0.473893\pi
858858 0 0
859859 −4.25332e29 −1.94445 −0.972224 0.234053i 0.924801π-0.924801\pi
−0.972224 + 0.234053i 0.924801π0.924801\pi
860860 0 0
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 0 0
866866 2.46530e29 1.03918
867867 0 0
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0 0
876876 0 0
877877 0 0 1.00000 00
−1.00000 π\pi
878878 0 0
879879 0 0
880880 0 0
881881 −5.59188e29 −1.98517 −0.992587 0.121534i 0.961219π-0.961219\pi
−0.992587 + 0.121534i 0.961219π0.961219\pi
882882 0 0
883883 4.50564e29 1.56369 0.781843 0.623476i 0.214280π-0.214280\pi
0.781843 + 0.623476i 0.214280π0.214280\pi
884884 0 0
885885 0 0
886886 1.33564e29 0.448078
887887 0 0 1.00000 00
−1.00000 π\pi
888888 0 0
889889 0 0
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 0 0
897897 0 0
898898 −6.09915e29 −1.78857
899899 0 0
900900 0 0
901901 0 0
902902 −1.10315e30 −3.09435
903903 0 0
904904 1.64227e29 0.450567
905905 0 0
906906 0 0
907907 −7.39355e29 −1.96237 −0.981183 0.193079i 0.938153π-0.938153\pi
−0.981183 + 0.193079i 0.938153π0.938153\pi
908908 2.31885e29 0.608716
909909 0 0
910910 0 0
911911 0 0 1.00000 00
−1.00000 π\pi
912912 0 0
913913 1.31484e30 3.26713
914914 −7.11271e29 −1.74813
915915 0 0
916916 0 0
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 0 0
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 9.33455e29 1.94956 0.974779 0.223173i 0.0716415π-0.0716415\pi
0.974779 + 0.223173i 0.0716415π0.0716415\pi
930930 0 0
931931 −8.09616e28 −0.165494
932932 8.24048e29 1.66645
933933 0 0
934934 −9.44172e29 −1.86888
935935 0 0
936936 0 0
937937 7.34116e29 1.40724 0.703621 0.710575i 0.251565π-0.251565\pi
0.703621 + 0.710575i 0.251565π0.251565\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 1.91218e29 0.340259
945945 0 0
946946 −1.20701e29 −0.210281
947947 8.42382e29 1.45214 0.726071 0.687619i 0.241344π-0.241344\pi
0.726071 + 0.687619i 0.241344π0.241344\pi
948948 0 0
949949 0 0
950950 9.90873e28 0.165494
951951 0 0
952952 0 0
953953 9.07852e29 1.46922 0.734609 0.678491i 0.237366π-0.237366\pi
0.734609 + 0.678491i 0.237366π0.237366\pi
954954 0 0
955955 0 0
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 6.71791e29 1.00000
962962 0 0
963963 0 0
964964 7.48041e29 1.07933
965965 0 0
966966 0 0
967967 0 0 1.00000 00
−1.00000 π\pi
968968 −1.20642e30 −1.67012
969969 0 0
970970 0 0
971971 7.67973e29 1.03075 0.515376 0.856964i 0.327652π-0.327652\pi
0.515376 + 0.856964i 0.327652π0.327652\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 5.46005e29 0.689051 0.344525 0.938777i 0.388040π-0.388040\pi
0.344525 + 0.938777i 0.388040π0.388040\pi
978978 0 0
979979 −2.59394e30 −3.20726
980980 0 0
981981 0 0
982982 1.63023e30 1.95494
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 0 0 1.00000 00
−1.00000 π\pi
992992 0 0
993993 0 0
994994 0 0
995995 0 0
996996 0 0
997997 0 0 1.00000 00
−1.00000 π\pi
998998 −1.95216e30 −1.99164
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 72.21.b.a.19.1 1
3.2 odd 2 8.21.d.a.3.1 1
8.3 odd 2 CM 72.21.b.a.19.1 1
12.11 even 2 32.21.d.a.15.1 1
24.5 odd 2 32.21.d.a.15.1 1
24.11 even 2 8.21.d.a.3.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
8.21.d.a.3.1 1 3.2 odd 2
8.21.d.a.3.1 1 24.11 even 2
32.21.d.a.15.1 1 12.11 even 2
32.21.d.a.15.1 1 24.5 odd 2
72.21.b.a.19.1 1 1.1 even 1 trivial
72.21.b.a.19.1 1 8.3 odd 2 CM