Properties

Label 72.3.b.a
Level $72$
Weight $3$
Character orbit 72.b
Self dual yes
Analytic conductor $1.962$
Analytic rank $0$
Dimension $1$
CM discriminant -8
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,3,Mod(19,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 0]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.19");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 72.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(1.96185790339\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 8)
Sato-Tate group: $\mathrm{U}(1)[D_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 2 q^{2} + 4 q^{4} + 8 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( q + 2 q^{2} + 4 q^{4} + 8 q^{8} - 14 q^{11} + 16 q^{16} - 2 q^{17} - 34 q^{19} - 28 q^{22} + 25 q^{25} + 32 q^{32} - 4 q^{34} - 68 q^{38} + 46 q^{41} + 14 q^{43} - 56 q^{44} + 49 q^{49} + 50 q^{50} + 82 q^{59} + 64 q^{64} + 62 q^{67} - 8 q^{68} - 142 q^{73} - 136 q^{76} + 92 q^{82} - 158 q^{83} + 28 q^{86} - 112 q^{88} - 146 q^{89} - 94 q^{97} + 98 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/72\mathbb{Z}\right)^\times\).

\(n\) \(37\) \(55\) \(65\)
\(\chi(n)\) \(1\) \(1\) \(0\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
19.1
0
2.00000 0 4.00000 0 0 0 8.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 CM by \(\Q(\sqrt{-2}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.3.b.a 1
3.b odd 2 1 8.3.d.a 1
4.b odd 2 1 288.3.b.a 1
8.b even 2 1 288.3.b.a 1
8.d odd 2 1 CM 72.3.b.a 1
12.b even 2 1 32.3.d.a 1
15.d odd 2 1 200.3.g.a 1
15.e even 4 2 200.3.e.a 2
16.e even 4 2 2304.3.g.j 2
16.f odd 4 2 2304.3.g.j 2
21.c even 2 1 392.3.g.a 1
21.g even 6 2 392.3.k.b 2
21.h odd 6 2 392.3.k.d 2
24.f even 2 1 8.3.d.a 1
24.h odd 2 1 32.3.d.a 1
48.i odd 4 2 256.3.c.e 2
48.k even 4 2 256.3.c.e 2
60.h even 2 1 800.3.g.a 1
60.l odd 4 2 800.3.e.a 2
84.h odd 2 1 1568.3.g.a 1
120.i odd 2 1 800.3.g.a 1
120.m even 2 1 200.3.g.a 1
120.q odd 4 2 200.3.e.a 2
120.w even 4 2 800.3.e.a 2
168.e odd 2 1 392.3.g.a 1
168.i even 2 1 1568.3.g.a 1
168.v even 6 2 392.3.k.d 2
168.be odd 6 2 392.3.k.b 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
8.3.d.a 1 3.b odd 2 1
8.3.d.a 1 24.f even 2 1
32.3.d.a 1 12.b even 2 1
32.3.d.a 1 24.h odd 2 1
72.3.b.a 1 1.a even 1 1 trivial
72.3.b.a 1 8.d odd 2 1 CM
200.3.e.a 2 15.e even 4 2
200.3.e.a 2 120.q odd 4 2
200.3.g.a 1 15.d odd 2 1
200.3.g.a 1 120.m even 2 1
256.3.c.e 2 48.i odd 4 2
256.3.c.e 2 48.k even 4 2
288.3.b.a 1 4.b odd 2 1
288.3.b.a 1 8.b even 2 1
392.3.g.a 1 21.c even 2 1
392.3.g.a 1 168.e odd 2 1
392.3.k.b 2 21.g even 6 2
392.3.k.b 2 168.be odd 6 2
392.3.k.d 2 21.h odd 6 2
392.3.k.d 2 168.v even 6 2
800.3.e.a 2 60.l odd 4 2
800.3.e.a 2 120.w even 4 2
800.3.g.a 1 60.h even 2 1
800.3.g.a 1 120.i odd 2 1
1568.3.g.a 1 84.h odd 2 1
1568.3.g.a 1 168.i even 2 1
2304.3.g.j 2 16.e even 4 2
2304.3.g.j 2 16.f odd 4 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} \) acting on \(S_{3}^{\mathrm{new}}(72, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T - 2 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T \) Copy content Toggle raw display
$11$ \( T + 14 \) Copy content Toggle raw display
$13$ \( T \) Copy content Toggle raw display
$17$ \( T + 2 \) Copy content Toggle raw display
$19$ \( T + 34 \) Copy content Toggle raw display
$23$ \( T \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T \) Copy content Toggle raw display
$37$ \( T \) Copy content Toggle raw display
$41$ \( T - 46 \) Copy content Toggle raw display
$43$ \( T - 14 \) Copy content Toggle raw display
$47$ \( T \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T - 82 \) Copy content Toggle raw display
$61$ \( T \) Copy content Toggle raw display
$67$ \( T - 62 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T + 142 \) Copy content Toggle raw display
$79$ \( T \) Copy content Toggle raw display
$83$ \( T + 158 \) Copy content Toggle raw display
$89$ \( T + 146 \) Copy content Toggle raw display
$97$ \( T + 94 \) Copy content Toggle raw display
show more
show less