Properties

Label 72.4.l.b
Level $72$
Weight $4$
Character orbit 72.l
Analytic conductor $4.248$
Analytic rank $0$
Dimension $64$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,4,Mod(11,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.11");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 72.l (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.24813752041\)
Analytic rank: \(0\)
Dimension: \(64\)
Relative dimension: \(32\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9}+O(q^{10}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q) = \) \( 64 q - 3 q^{2} + 6 q^{3} - 17 q^{4} - 3 q^{6} + 42 q^{9} + 12 q^{10} + 48 q^{11} + 318 q^{12} + 72 q^{14} + 127 q^{16} + 330 q^{18} - 220 q^{19} - 234 q^{20} - 217 q^{22} + 189 q^{24} - 902 q^{25} - 252 q^{27} - 132 q^{28} + 420 q^{30} - 693 q^{32} - 660 q^{33} + 509 q^{34} - 537 q^{36} - 1977 q^{38} - 36 q^{40} + 1620 q^{41} + 72 q^{42} - 292 q^{43} + 48 q^{46} + 765 q^{48} + 1762 q^{49} - 1227 q^{50} - 1794 q^{51} + 330 q^{52} - 645 q^{54} + 942 q^{56} - 294 q^{57} - 282 q^{58} + 5592 q^{59} + 1236 q^{60} + 1090 q^{64} - 6 q^{65} + 3522 q^{66} + 68 q^{67} - 2025 q^{68} + 600 q^{70} + 1875 q^{72} - 868 q^{73} - 420 q^{74} - 4254 q^{75} - 1471 q^{76} + 3228 q^{78} + 498 q^{81} + 362 q^{82} + 3654 q^{83} - 2028 q^{84} - 4119 q^{86} + 3155 q^{88} + 2958 q^{90} - 1380 q^{91} - 744 q^{92} - 138 q^{94} - 4782 q^{96} - 1912 q^{97} - 2118 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
11.1 −2.81730 0.250612i 2.93713 4.28640i 7.87439 + 1.41210i 3.52304 + 6.10209i −9.34902 + 11.3400i 16.9049 + 9.76005i −21.8306 5.95172i −9.74649 25.1795i −8.39622 18.0744i
11.2 −2.78774 0.478024i −3.91093 3.42120i 7.54299 + 2.66521i −7.74992 13.4233i 9.26725 + 11.4069i 4.08207 + 2.35678i −19.7539 11.0356i 3.59080 + 26.7602i 15.1881 + 41.1252i
11.3 −2.75189 0.653547i 3.42450 + 3.90805i 7.14575 + 3.59697i 7.56234 + 13.0984i −6.86974 12.9926i −23.1409 13.3604i −17.3135 14.5685i −3.54563 + 26.7662i −12.2503 40.9875i
11.4 −2.69888 + 0.846204i 5.16561 + 0.562595i 6.56788 4.56760i −8.75283 15.1603i −14.4174 + 2.85278i −14.7005 8.48731i −13.8608 + 17.8852i 26.3670 + 5.81229i 36.4516 + 33.5092i
11.5 −2.55734 + 1.20831i −4.70468 + 2.20589i 5.08000 6.18010i −1.01248 1.75366i 9.36610 11.3259i −16.3356 9.43138i −5.52384 + 21.9428i 17.2681 20.7560i 4.70820 + 3.26133i
11.6 −2.55635 + 1.21041i 0.355853 + 5.18395i 5.06981 6.18846i 2.33412 + 4.04281i −7.18439 12.8213i 28.2737 + 16.3238i −5.46963 + 21.9564i −26.7467 + 3.68945i −10.8603 7.50958i
11.7 −2.26617 + 1.69248i −1.59153 4.94642i 2.27101 7.67089i 4.74971 + 8.22674i 11.9784 + 8.51575i −16.7522 9.67189i 7.83636 + 21.2271i −21.9341 + 15.7448i −24.6872 10.6043i
11.8 −1.94193 2.05643i 3.42450 + 3.90805i −0.457807 + 7.98689i −7.56234 13.0984i 1.38648 14.6314i 23.1409 + 13.3604i 17.3135 14.5685i −3.54563 + 26.7662i −12.2503 + 40.9875i
11.9 −1.80785 2.17524i −3.91093 3.42120i −1.46335 + 7.86502i 7.74992 + 13.4233i −0.371551 + 14.6922i −4.08207 2.35678i 19.7539 11.0356i 3.59080 + 26.7602i 15.1881 41.1252i
11.10 −1.62569 2.31455i 2.93713 4.28640i −2.71428 + 7.52547i −3.52304 6.10209i −14.6960 + 0.170208i −16.9049 9.76005i 21.8306 5.95172i −9.74649 25.1795i −8.39622 + 18.0744i
11.11 −1.47499 + 2.41338i 5.12181 0.875794i −3.64882 7.11942i 3.60771 + 6.24874i −5.44099 + 13.6527i 6.44991 + 3.72386i 22.5638 + 1.69509i 25.4660 8.97131i −20.4019 0.510040i
11.12 −1.16891 + 2.57559i −4.87955 1.78605i −5.26729 6.02127i −2.83055 4.90265i 10.3039 10.4800i 25.8587 + 14.9296i 21.6653 6.52801i 20.6201 + 17.4302i 15.9359 1.55955i
11.13 −0.867121 + 2.69223i 0.0478653 + 5.19593i −6.49620 4.66898i −8.51655 14.7511i −14.0301 4.37664i −9.57807 5.52990i 18.2030 13.4407i −26.9954 + 0.497410i 47.0983 10.1375i
11.14 −0.616605 2.76040i 5.16561 + 0.562595i −7.23960 + 3.40415i 8.75283 + 15.1603i −1.63215 14.6060i 14.7005 + 8.48731i 13.8608 + 17.8852i 26.3670 + 5.81229i 36.4516 33.5092i
11.15 −0.250335 + 2.81733i −3.80768 + 3.53576i −7.87466 1.41055i 10.8653 + 18.8192i −9.00820 11.6126i −10.5583 6.09581i 5.94529 21.8324i 1.99678 26.9261i −55.7398 + 25.8999i
11.16 −0.232248 2.81888i −4.70468 + 2.20589i −7.89212 + 1.30935i 1.01248 + 1.75366i 7.31078 + 12.7496i 16.3356 + 9.43138i 5.52384 + 21.9428i 17.2681 20.7560i 4.70820 3.26133i
11.17 −0.229927 2.81907i 0.355853 + 5.18395i −7.89427 + 1.29636i −2.33412 4.04281i 14.5321 2.19510i −28.2737 16.3238i 5.46963 + 21.9564i −26.7467 + 3.68945i −10.8603 + 7.50958i
11.18 −0.0437026 + 2.82809i 1.76134 4.88853i −7.99618 0.247190i −4.95891 8.58909i 13.7482 + 5.19486i −11.4514 6.61147i 1.04853 22.6031i −20.7954 17.2207i 24.5074 13.6489i
11.19 0.332650 2.80880i −1.59153 4.94642i −7.77869 1.86869i −4.74971 8.22674i −14.4229 + 2.82487i 16.7522 + 9.67189i −7.83636 + 21.2271i −21.9341 + 15.7448i −24.6872 + 10.6043i
11.20 0.960011 + 2.66052i 4.10749 + 3.18254i −6.15676 + 5.10826i 1.46312 + 2.53420i −4.52397 + 13.9833i 4.48829 + 2.59132i −19.5012 11.4762i 6.74292 + 26.1445i −5.33769 + 6.32553i
See all 64 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 11.32
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
8.d odd 2 1 inner
9.d odd 6 1 inner
72.l even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.4.l.b 64
3.b odd 2 1 216.4.l.b 64
4.b odd 2 1 288.4.p.b 64
8.b even 2 1 288.4.p.b 64
8.d odd 2 1 inner 72.4.l.b 64
9.c even 3 1 216.4.l.b 64
9.d odd 6 1 inner 72.4.l.b 64
12.b even 2 1 864.4.p.b 64
24.f even 2 1 216.4.l.b 64
24.h odd 2 1 864.4.p.b 64
36.f odd 6 1 864.4.p.b 64
36.h even 6 1 288.4.p.b 64
72.j odd 6 1 288.4.p.b 64
72.l even 6 1 inner 72.4.l.b 64
72.n even 6 1 864.4.p.b 64
72.p odd 6 1 216.4.l.b 64
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.4.l.b 64 1.a even 1 1 trivial
72.4.l.b 64 8.d odd 2 1 inner
72.4.l.b 64 9.d odd 6 1 inner
72.4.l.b 64 72.l even 6 1 inner
216.4.l.b 64 3.b odd 2 1
216.4.l.b 64 9.c even 3 1
216.4.l.b 64 24.f even 2 1
216.4.l.b 64 72.p odd 6 1
288.4.p.b 64 4.b odd 2 1
288.4.p.b 64 8.b even 2 1
288.4.p.b 64 36.h even 6 1
288.4.p.b 64 72.j odd 6 1
864.4.p.b 64 12.b even 2 1
864.4.p.b 64 24.h odd 2 1
864.4.p.b 64 36.f odd 6 1
864.4.p.b 64 72.n even 6 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{64} + 2451 T_{5}^{62} + 3328326 T_{5}^{60} + 3108844719 T_{5}^{58} + 2205690843492 T_{5}^{56} + \cdots + 49\!\cdots\!00 \) acting on \(S_{4}^{\mathrm{new}}(72, [\chi])\). Copy content Toggle raw display