Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [72,4,Mod(11,72)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(72, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 1]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("72.11");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.l (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.24813752041\) |
Analytic rank: | \(0\) |
Dimension: | \(64\) |
Relative dimension: | \(32\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −2.81730 | − | 0.250612i | 2.93713 | − | 4.28640i | 7.87439 | + | 1.41210i | 3.52304 | + | 6.10209i | −9.34902 | + | 11.3400i | 16.9049 | + | 9.76005i | −21.8306 | − | 5.95172i | −9.74649 | − | 25.1795i | −8.39622 | − | 18.0744i |
11.2 | −2.78774 | − | 0.478024i | −3.91093 | − | 3.42120i | 7.54299 | + | 2.66521i | −7.74992 | − | 13.4233i | 9.26725 | + | 11.4069i | 4.08207 | + | 2.35678i | −19.7539 | − | 11.0356i | 3.59080 | + | 26.7602i | 15.1881 | + | 41.1252i |
11.3 | −2.75189 | − | 0.653547i | 3.42450 | + | 3.90805i | 7.14575 | + | 3.59697i | 7.56234 | + | 13.0984i | −6.86974 | − | 12.9926i | −23.1409 | − | 13.3604i | −17.3135 | − | 14.5685i | −3.54563 | + | 26.7662i | −12.2503 | − | 40.9875i |
11.4 | −2.69888 | + | 0.846204i | 5.16561 | + | 0.562595i | 6.56788 | − | 4.56760i | −8.75283 | − | 15.1603i | −14.4174 | + | 2.85278i | −14.7005 | − | 8.48731i | −13.8608 | + | 17.8852i | 26.3670 | + | 5.81229i | 36.4516 | + | 33.5092i |
11.5 | −2.55734 | + | 1.20831i | −4.70468 | + | 2.20589i | 5.08000 | − | 6.18010i | −1.01248 | − | 1.75366i | 9.36610 | − | 11.3259i | −16.3356 | − | 9.43138i | −5.52384 | + | 21.9428i | 17.2681 | − | 20.7560i | 4.70820 | + | 3.26133i |
11.6 | −2.55635 | + | 1.21041i | 0.355853 | + | 5.18395i | 5.06981 | − | 6.18846i | 2.33412 | + | 4.04281i | −7.18439 | − | 12.8213i | 28.2737 | + | 16.3238i | −5.46963 | + | 21.9564i | −26.7467 | + | 3.68945i | −10.8603 | − | 7.50958i |
11.7 | −2.26617 | + | 1.69248i | −1.59153 | − | 4.94642i | 2.27101 | − | 7.67089i | 4.74971 | + | 8.22674i | 11.9784 | + | 8.51575i | −16.7522 | − | 9.67189i | 7.83636 | + | 21.2271i | −21.9341 | + | 15.7448i | −24.6872 | − | 10.6043i |
11.8 | −1.94193 | − | 2.05643i | 3.42450 | + | 3.90805i | −0.457807 | + | 7.98689i | −7.56234 | − | 13.0984i | 1.38648 | − | 14.6314i | 23.1409 | + | 13.3604i | 17.3135 | − | 14.5685i | −3.54563 | + | 26.7662i | −12.2503 | + | 40.9875i |
11.9 | −1.80785 | − | 2.17524i | −3.91093 | − | 3.42120i | −1.46335 | + | 7.86502i | 7.74992 | + | 13.4233i | −0.371551 | + | 14.6922i | −4.08207 | − | 2.35678i | 19.7539 | − | 11.0356i | 3.59080 | + | 26.7602i | 15.1881 | − | 41.1252i |
11.10 | −1.62569 | − | 2.31455i | 2.93713 | − | 4.28640i | −2.71428 | + | 7.52547i | −3.52304 | − | 6.10209i | −14.6960 | + | 0.170208i | −16.9049 | − | 9.76005i | 21.8306 | − | 5.95172i | −9.74649 | − | 25.1795i | −8.39622 | + | 18.0744i |
11.11 | −1.47499 | + | 2.41338i | 5.12181 | − | 0.875794i | −3.64882 | − | 7.11942i | 3.60771 | + | 6.24874i | −5.44099 | + | 13.6527i | 6.44991 | + | 3.72386i | 22.5638 | + | 1.69509i | 25.4660 | − | 8.97131i | −20.4019 | − | 0.510040i |
11.12 | −1.16891 | + | 2.57559i | −4.87955 | − | 1.78605i | −5.26729 | − | 6.02127i | −2.83055 | − | 4.90265i | 10.3039 | − | 10.4800i | 25.8587 | + | 14.9296i | 21.6653 | − | 6.52801i | 20.6201 | + | 17.4302i | 15.9359 | − | 1.55955i |
11.13 | −0.867121 | + | 2.69223i | 0.0478653 | + | 5.19593i | −6.49620 | − | 4.66898i | −8.51655 | − | 14.7511i | −14.0301 | − | 4.37664i | −9.57807 | − | 5.52990i | 18.2030 | − | 13.4407i | −26.9954 | + | 0.497410i | 47.0983 | − | 10.1375i |
11.14 | −0.616605 | − | 2.76040i | 5.16561 | + | 0.562595i | −7.23960 | + | 3.40415i | 8.75283 | + | 15.1603i | −1.63215 | − | 14.6060i | 14.7005 | + | 8.48731i | 13.8608 | + | 17.8852i | 26.3670 | + | 5.81229i | 36.4516 | − | 33.5092i |
11.15 | −0.250335 | + | 2.81733i | −3.80768 | + | 3.53576i | −7.87466 | − | 1.41055i | 10.8653 | + | 18.8192i | −9.00820 | − | 11.6126i | −10.5583 | − | 6.09581i | 5.94529 | − | 21.8324i | 1.99678 | − | 26.9261i | −55.7398 | + | 25.8999i |
11.16 | −0.232248 | − | 2.81888i | −4.70468 | + | 2.20589i | −7.89212 | + | 1.30935i | 1.01248 | + | 1.75366i | 7.31078 | + | 12.7496i | 16.3356 | + | 9.43138i | 5.52384 | + | 21.9428i | 17.2681 | − | 20.7560i | 4.70820 | − | 3.26133i |
11.17 | −0.229927 | − | 2.81907i | 0.355853 | + | 5.18395i | −7.89427 | + | 1.29636i | −2.33412 | − | 4.04281i | 14.5321 | − | 2.19510i | −28.2737 | − | 16.3238i | 5.46963 | + | 21.9564i | −26.7467 | + | 3.68945i | −10.8603 | + | 7.50958i |
11.18 | −0.0437026 | + | 2.82809i | 1.76134 | − | 4.88853i | −7.99618 | − | 0.247190i | −4.95891 | − | 8.58909i | 13.7482 | + | 5.19486i | −11.4514 | − | 6.61147i | 1.04853 | − | 22.6031i | −20.7954 | − | 17.2207i | 24.5074 | − | 13.6489i |
11.19 | 0.332650 | − | 2.80880i | −1.59153 | − | 4.94642i | −7.77869 | − | 1.86869i | −4.74971 | − | 8.22674i | −14.4229 | + | 2.82487i | 16.7522 | + | 9.67189i | −7.83636 | + | 21.2271i | −21.9341 | + | 15.7448i | −24.6872 | + | 10.6043i |
11.20 | 0.960011 | + | 2.66052i | 4.10749 | + | 3.18254i | −6.15676 | + | 5.10826i | 1.46312 | + | 2.53420i | −4.52397 | + | 13.9833i | 4.48829 | + | 2.59132i | −19.5012 | − | 11.4762i | 6.74292 | + | 26.1445i | −5.33769 | + | 6.32553i |
See all 64 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
9.d | odd | 6 | 1 | inner |
72.l | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.4.l.b | ✓ | 64 |
3.b | odd | 2 | 1 | 216.4.l.b | 64 | ||
4.b | odd | 2 | 1 | 288.4.p.b | 64 | ||
8.b | even | 2 | 1 | 288.4.p.b | 64 | ||
8.d | odd | 2 | 1 | inner | 72.4.l.b | ✓ | 64 |
9.c | even | 3 | 1 | 216.4.l.b | 64 | ||
9.d | odd | 6 | 1 | inner | 72.4.l.b | ✓ | 64 |
12.b | even | 2 | 1 | 864.4.p.b | 64 | ||
24.f | even | 2 | 1 | 216.4.l.b | 64 | ||
24.h | odd | 2 | 1 | 864.4.p.b | 64 | ||
36.f | odd | 6 | 1 | 864.4.p.b | 64 | ||
36.h | even | 6 | 1 | 288.4.p.b | 64 | ||
72.j | odd | 6 | 1 | 288.4.p.b | 64 | ||
72.l | even | 6 | 1 | inner | 72.4.l.b | ✓ | 64 |
72.n | even | 6 | 1 | 864.4.p.b | 64 | ||
72.p | odd | 6 | 1 | 216.4.l.b | 64 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.4.l.b | ✓ | 64 | 1.a | even | 1 | 1 | trivial |
72.4.l.b | ✓ | 64 | 8.d | odd | 2 | 1 | inner |
72.4.l.b | ✓ | 64 | 9.d | odd | 6 | 1 | inner |
72.4.l.b | ✓ | 64 | 72.l | even | 6 | 1 | inner |
216.4.l.b | 64 | 3.b | odd | 2 | 1 | ||
216.4.l.b | 64 | 9.c | even | 3 | 1 | ||
216.4.l.b | 64 | 24.f | even | 2 | 1 | ||
216.4.l.b | 64 | 72.p | odd | 6 | 1 | ||
288.4.p.b | 64 | 4.b | odd | 2 | 1 | ||
288.4.p.b | 64 | 8.b | even | 2 | 1 | ||
288.4.p.b | 64 | 36.h | even | 6 | 1 | ||
288.4.p.b | 64 | 72.j | odd | 6 | 1 | ||
864.4.p.b | 64 | 12.b | even | 2 | 1 | ||
864.4.p.b | 64 | 24.h | odd | 2 | 1 | ||
864.4.p.b | 64 | 36.f | odd | 6 | 1 | ||
864.4.p.b | 64 | 72.n | even | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{64} + 2451 T_{5}^{62} + 3328326 T_{5}^{60} + 3108844719 T_{5}^{58} + 2205690843492 T_{5}^{56} + \cdots + 49\!\cdots\!00 \) acting on \(S_{4}^{\mathrm{new}}(72, [\chi])\).