Properties

Label 72.5.m
Level 7272
Weight 55
Character orbit 72.m
Rep. character χ72(41,)\chi_{72}(41,\cdot)
Character field Q(ζ6)\Q(\zeta_{6})
Dimension 2424
Newform subspaces 11
Sturm bound 6060
Trace bound 00

Related objects

Downloads

Learn more

Defining parameters

Level: N N == 72=2332 72 = 2^{3} \cdot 3^{2}
Weight: k k == 5 5
Character orbit: [χ][\chi] == 72.m (of order 66 and degree 22)
Character conductor: cond(χ)\operatorname{cond}(\chi) == 9 9
Character field: Q(ζ6)\Q(\zeta_{6})
Newform subspaces: 1 1
Sturm bound: 6060
Trace bound: 00

Dimensions

The following table gives the dimensions of various subspaces of M5(72,[χ])M_{5}(72, [\chi]).

Total New Old
Modular forms 104 24 80
Cusp forms 88 24 64
Eisenstein series 16 0 16

Trace form

24q+4q3100q9+252q1180q15408q19+24q21+720q23+1500q251280q27+2376q291104q311412q334184q39+1980q41+1476q43++50744q99+O(q100) 24 q + 4 q^{3} - 100 q^{9} + 252 q^{11} - 80 q^{15} - 408 q^{19} + 24 q^{21} + 720 q^{23} + 1500 q^{25} - 1280 q^{27} + 2376 q^{29} - 1104 q^{31} - 1412 q^{33} - 4184 q^{39} + 1980 q^{41} + 1476 q^{43}+ \cdots + 50744 q^{99}+O(q^{100}) Copy content Toggle raw display

Decomposition of S5new(72,[χ])S_{5}^{\mathrm{new}}(72, [\chi]) into newform subspaces

Label Char Prim Dim AA Field CM Minimal twist Traces Sato-Tate qq-expansion
a2a_{2} a3a_{3} a5a_{5} a7a_{7}
72.5.m.a 72.m 9.d 2424 7.4437.443 None 72.5.m.a 00 44 00 00 SU(2)[C6]\mathrm{SU}(2)[C_{6}]

Decomposition of S5old(72,[χ])S_{5}^{\mathrm{old}}(72, [\chi]) into lower level spaces

S5old(72,[χ]) S_{5}^{\mathrm{old}}(72, [\chi]) \simeq S5new(9,[χ])S_{5}^{\mathrm{new}}(9, [\chi])4^{\oplus 4}\oplusS5new(18,[χ])S_{5}^{\mathrm{new}}(18, [\chi])3^{\oplus 3}\oplusS5new(36,[χ])S_{5}^{\mathrm{new}}(36, [\chi])2^{\oplus 2}