Defining parameters
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.m (of order \(6\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 9 \) |
Character field: | \(\Q(\zeta_{6})\) | ||
Newform subspaces: | \( 1 \) | ||
Sturm bound: | \(60\) | ||
Trace bound: | \(0\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{5}(72, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 104 | 24 | 80 |
Cusp forms | 88 | 24 | 64 |
Eisenstein series | 16 | 0 | 16 |
Trace form
Decomposition of \(S_{5}^{\mathrm{new}}(72, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
72.5.m.a | $24$ | $7.443$ | None | \(0\) | \(4\) | \(0\) | \(0\) |
Decomposition of \(S_{5}^{\mathrm{old}}(72, [\chi])\) into lower level spaces
\( S_{5}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)