Properties

Label 72.5.m
Level $72$
Weight $5$
Character orbit 72.m
Rep. character $\chi_{72}(41,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $24$
Newform subspaces $1$
Sturm bound $60$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 72.m (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 9 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(60\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{5}(72, [\chi])\).

Total New Old
Modular forms 104 24 80
Cusp forms 88 24 64
Eisenstein series 16 0 16

Trace form

\( 24 q + 4 q^{3} - 100 q^{9} + O(q^{10}) \) \( 24 q + 4 q^{3} - 100 q^{9} + 252 q^{11} - 80 q^{15} - 408 q^{19} + 24 q^{21} + 720 q^{23} + 1500 q^{25} - 1280 q^{27} + 2376 q^{29} - 1104 q^{31} - 1412 q^{33} - 4184 q^{39} + 1980 q^{41} + 1476 q^{43} - 4696 q^{45} + 4536 q^{47} - 6084 q^{49} - 7828 q^{51} + 2544 q^{55} - 1204 q^{57} + 10332 q^{59} + 2784 q^{61} + 9072 q^{63} + 17280 q^{65} - 2604 q^{67} + 5680 q^{69} + 5112 q^{73} - 15412 q^{75} - 28368 q^{77} + 3480 q^{79} - 26548 q^{81} - 23400 q^{83} + 7392 q^{85} - 3192 q^{87} - 14208 q^{91} + 39488 q^{93} + 57528 q^{95} - 4020 q^{97} + 50744 q^{99} + O(q^{100}) \)

Decomposition of \(S_{5}^{\mathrm{new}}(72, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
72.5.m.a 72.m 9.d $24$ $7.443$ None 72.5.m.a \(0\) \(4\) \(0\) \(0\) $\mathrm{SU}(2)[C_{6}]$

Decomposition of \(S_{5}^{\mathrm{old}}(72, [\chi])\) into lower level spaces

\( S_{5}^{\mathrm{old}}(72, [\chi]) \simeq \) \(S_{5}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{5}^{\mathrm{new}}(36, [\chi])\)\(^{\oplus 2}\)