Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [72,5,Mod(43,72)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(72, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 4]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("72.43");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 72 = 2^{3} \cdot 3^{2} \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 72.p (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(7.44263734204\) |
Analytic rank: | \(0\) |
Dimension: | \(88\) |
Relative dimension: | \(44\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
43.1 | −3.95986 | + | 0.565272i | −0.248502 | − | 8.99657i | 15.3609 | − | 4.47679i | −33.3324 | + | 19.2445i | 6.06954 | + | 35.4847i | 74.8398 | + | 43.2088i | −58.2965 | + | 26.4105i | −80.8765 | + | 4.47133i | 121.113 | − | 95.0473i |
43.2 | −3.93517 | − | 0.717268i | −7.94378 | + | 4.23041i | 14.9711 | + | 5.64514i | 0.827340 | − | 0.477665i | 34.2944 | − | 10.9495i | 48.6307 | + | 28.0769i | −54.8645 | − | 32.9528i | 45.2073 | − | 67.2109i | −3.59833 | + | 1.28627i |
43.3 | −3.89968 | − | 0.890213i | −7.14400 | − | 5.47387i | 14.4150 | + | 6.94310i | −7.87087 | + | 4.54425i | 22.9864 | + | 27.7060i | −59.3416 | − | 34.2609i | −50.0332 | − | 39.9083i | 21.0736 | + | 78.2106i | 34.7393 | − | 10.7144i |
43.4 | −3.85922 | + | 1.05185i | 8.92834 | + | 1.13350i | 13.7872 | − | 8.11868i | −26.1495 | + | 15.0974i | −35.6487 | + | 5.01688i | −39.5599 | − | 22.8399i | −44.6682 | + | 45.8339i | 78.4304 | + | 20.2405i | 85.0364 | − | 85.7697i |
43.5 | −3.85475 | + | 1.06812i | 5.47144 | − | 7.14586i | 13.7182 | − | 8.23470i | 34.3706 | − | 19.8439i | −13.4584 | + | 33.3897i | 4.61706 | + | 2.66566i | −44.0847 | + | 46.3955i | −21.1267 | − | 78.1963i | −111.294 | + | 113.205i |
43.6 | −3.81882 | + | 1.19022i | −2.65445 | + | 8.59965i | 13.1667 | − | 9.09048i | 17.4312 | − | 10.0639i | −0.0986349 | − | 35.9999i | −49.3138 | − | 28.4714i | −39.4617 | + | 50.3862i | −66.9078 | − | 45.6546i | −54.5881 | + | 59.1791i |
43.7 | −3.79885 | − | 1.25250i | 7.40748 | + | 5.11167i | 12.8625 | + | 9.51614i | 19.4388 | − | 11.2230i | −21.7375 | − | 28.6964i | 16.3361 | + | 9.43164i | −36.9435 | − | 52.2606i | 28.7416 | + | 75.7293i | −87.9018 | + | 18.2873i |
43.8 | −3.42315 | + | 2.06931i | −7.80714 | − | 4.47756i | 7.43587 | − | 14.1671i | 14.7009 | − | 8.48755i | 35.9905 | − | 0.828075i | −16.5269 | − | 9.54179i | 3.86217 | + | 63.8834i | 40.9029 | + | 69.9139i | −32.7598 | + | 59.4749i |
43.9 | −3.33332 | − | 2.21111i | 1.03663 | + | 8.94010i | 6.22200 | + | 14.7406i | −38.0026 | + | 21.9408i | 16.3121 | − | 32.0923i | −8.29349 | − | 4.78825i | 11.8532 | − | 62.8928i | −78.8508 | + | 18.5351i | 175.188 | + | 10.8922i |
43.10 | −3.30101 | − | 2.25906i | 4.44945 | − | 7.82320i | 5.79331 | + | 14.9143i | −2.53773 | + | 1.46516i | −32.3607 | + | 15.7729i | −39.8426 | − | 23.0032i | 14.5686 | − | 62.3198i | −41.4048 | − | 69.6178i | 11.6869 | + | 0.896378i |
43.11 | −3.00451 | + | 2.64063i | 3.93069 | + | 8.09627i | 2.05417 | − | 15.8676i | 0.239806 | − | 0.138452i | −33.1891 | − | 13.9458i | 73.5661 | + | 42.4734i | 35.7286 | + | 53.0986i | −50.0993 | + | 63.6479i | −0.354899 | + | 1.04922i |
43.12 | −2.80039 | − | 2.85619i | −5.44488 | − | 7.16612i | −0.315605 | + | 15.9969i | 39.0021 | − | 22.5179i | −5.21999 | + | 35.6195i | 62.8918 | + | 36.3106i | 46.5739 | − | 43.8961i | −21.7066 | + | 78.0373i | −173.536 | − | 48.3384i |
43.13 | −2.74080 | + | 2.91342i | −7.87501 | + | 4.35709i | −0.976044 | − | 15.9702i | −38.7055 | + | 22.3466i | 8.88980 | − | 34.8851i | −16.8840 | − | 9.74799i | 49.2031 | + | 40.9275i | 43.0316 | − | 68.6242i | 40.9788 | − | 174.013i |
43.14 | −2.17989 | − | 3.35382i | −1.94675 | + | 8.78693i | −6.49617 | + | 14.6219i | 21.6394 | − | 12.4935i | 33.7135 | − | 12.6255i | −24.5598 | − | 14.1796i | 63.2001 | − | 10.0871i | −73.4203 | − | 34.2119i | −89.0724 | − | 45.3401i |
43.15 | −2.11362 | − | 3.39597i | 8.77973 | − | 1.97899i | −7.06524 | + | 14.3556i | −19.3544 | + | 11.1743i | −25.2776 | − | 25.6329i | 66.9185 | + | 38.6354i | 63.6843 | − | 6.34884i | 73.1672 | − | 34.7500i | 78.8552 | + | 42.1088i |
43.16 | −1.79643 | − | 3.57391i | −8.96951 | + | 0.740137i | −9.54568 | + | 12.8406i | −15.9578 | + | 9.21327i | 18.7583 | + | 30.7266i | −11.6291 | − | 6.71408i | 63.0392 | + | 11.0482i | 79.9044 | − | 13.2773i | 61.5946 | + | 40.4809i |
43.17 | −1.15270 | + | 3.83031i | −7.87501 | + | 4.35709i | −13.3426 | − | 8.83038i | 38.7055 | − | 22.3466i | −7.61149 | − | 35.1862i | 16.8840 | + | 9.74799i | 49.2031 | − | 40.9275i | 43.0316 | − | 68.6242i | 40.9788 | + | 174.013i |
43.18 | −0.942169 | − | 3.88746i | 8.90483 | + | 1.30534i | −14.2246 | + | 7.32528i | 23.2381 | − | 13.4165i | −3.31539 | − | 35.8470i | −52.2165 | − | 30.1472i | 41.8787 | + | 48.3960i | 77.5922 | + | 23.2478i | −74.0503 | − | 77.6964i |
43.19 | −0.784595 | + | 3.92230i | 3.93069 | + | 8.09627i | −14.7688 | − | 6.15483i | −0.239806 | + | 0.138452i | −34.8400 | + | 9.06504i | −73.5661 | − | 42.4734i | 35.7286 | − | 53.0986i | −50.0993 | + | 63.6479i | −0.354899 | − | 1.04922i |
43.20 | −0.269184 | − | 3.99093i | −1.80425 | − | 8.81729i | −15.8551 | + | 2.14859i | −11.7270 | + | 6.77058i | −34.7035 | + | 9.57411i | −3.17774 | − | 1.83467i | 12.8428 | + | 62.6982i | −74.4894 | + | 31.8172i | 30.1777 | + | 44.9791i |
See all 88 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
9.c | even | 3 | 1 | inner |
72.p | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 72.5.p.b | ✓ | 88 |
3.b | odd | 2 | 1 | 216.5.p.b | 88 | ||
4.b | odd | 2 | 1 | 288.5.t.b | 88 | ||
8.b | even | 2 | 1 | 288.5.t.b | 88 | ||
8.d | odd | 2 | 1 | inner | 72.5.p.b | ✓ | 88 |
9.c | even | 3 | 1 | inner | 72.5.p.b | ✓ | 88 |
9.d | odd | 6 | 1 | 216.5.p.b | 88 | ||
12.b | even | 2 | 1 | 864.5.t.b | 88 | ||
24.f | even | 2 | 1 | 216.5.p.b | 88 | ||
24.h | odd | 2 | 1 | 864.5.t.b | 88 | ||
36.f | odd | 6 | 1 | 288.5.t.b | 88 | ||
36.h | even | 6 | 1 | 864.5.t.b | 88 | ||
72.j | odd | 6 | 1 | 864.5.t.b | 88 | ||
72.l | even | 6 | 1 | 216.5.p.b | 88 | ||
72.n | even | 6 | 1 | 288.5.t.b | 88 | ||
72.p | odd | 6 | 1 | inner | 72.5.p.b | ✓ | 88 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
72.5.p.b | ✓ | 88 | 1.a | even | 1 | 1 | trivial |
72.5.p.b | ✓ | 88 | 8.d | odd | 2 | 1 | inner |
72.5.p.b | ✓ | 88 | 9.c | even | 3 | 1 | inner |
72.5.p.b | ✓ | 88 | 72.p | odd | 6 | 1 | inner |
216.5.p.b | 88 | 3.b | odd | 2 | 1 | ||
216.5.p.b | 88 | 9.d | odd | 6 | 1 | ||
216.5.p.b | 88 | 24.f | even | 2 | 1 | ||
216.5.p.b | 88 | 72.l | even | 6 | 1 | ||
288.5.t.b | 88 | 4.b | odd | 2 | 1 | ||
288.5.t.b | 88 | 8.b | even | 2 | 1 | ||
288.5.t.b | 88 | 36.f | odd | 6 | 1 | ||
288.5.t.b | 88 | 72.n | even | 6 | 1 | ||
864.5.t.b | 88 | 12.b | even | 2 | 1 | ||
864.5.t.b | 88 | 24.h | odd | 2 | 1 | ||
864.5.t.b | 88 | 36.h | even | 6 | 1 | ||
864.5.t.b | 88 | 72.j | odd | 6 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{88} - 16749 T_{5}^{86} + 151466376 T_{5}^{84} - 946630365075 T_{5}^{82} + \cdots + 11\!\cdots\!76 \) acting on \(S_{5}^{\mathrm{new}}(72, [\chi])\).