Properties

Label 72.6.a.d
Level $72$
Weight $6$
Character orbit 72.a
Self dual yes
Analytic conductor $11.548$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,6,Mod(1,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 72 = 2^{3} \cdot 3^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 72.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(11.5476350265\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 16 q^{5} + 12 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( q + 16 q^{5} + 12 q^{7} + 448 q^{11} - 206 q^{13} + 1952 q^{17} + 1064 q^{19} + 3712 q^{23} - 2869 q^{25} + 4080 q^{29} + 5324 q^{31} + 192 q^{35} - 9690 q^{37} - 9120 q^{41} + 16552 q^{43} - 14208 q^{47} - 16663 q^{49} - 21776 q^{53} + 7168 q^{55} - 31616 q^{59} - 13154 q^{61} - 3296 q^{65} + 27056 q^{67} + 9728 q^{71} + 9046 q^{73} + 5376 q^{77} - 58292 q^{79} + 86336 q^{83} + 31232 q^{85} + 75072 q^{89} - 2472 q^{91} + 17024 q^{95} + 76046 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 0 0 16.0000 0 12.0000 0 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(3\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.6.a.d yes 1
3.b odd 2 1 72.6.a.c 1
4.b odd 2 1 144.6.a.h 1
8.b even 2 1 576.6.a.n 1
8.d odd 2 1 576.6.a.m 1
12.b even 2 1 144.6.a.e 1
24.f even 2 1 576.6.a.w 1
24.h odd 2 1 576.6.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.6.a.c 1 3.b odd 2 1
72.6.a.d yes 1 1.a even 1 1 trivial
144.6.a.e 1 12.b even 2 1
144.6.a.h 1 4.b odd 2 1
576.6.a.m 1 8.d odd 2 1
576.6.a.n 1 8.b even 2 1
576.6.a.w 1 24.f even 2 1
576.6.a.x 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} - 16 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(72))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T - 16 \) Copy content Toggle raw display
$7$ \( T - 12 \) Copy content Toggle raw display
$11$ \( T - 448 \) Copy content Toggle raw display
$13$ \( T + 206 \) Copy content Toggle raw display
$17$ \( T - 1952 \) Copy content Toggle raw display
$19$ \( T - 1064 \) Copy content Toggle raw display
$23$ \( T - 3712 \) Copy content Toggle raw display
$29$ \( T - 4080 \) Copy content Toggle raw display
$31$ \( T - 5324 \) Copy content Toggle raw display
$37$ \( T + 9690 \) Copy content Toggle raw display
$41$ \( T + 9120 \) Copy content Toggle raw display
$43$ \( T - 16552 \) Copy content Toggle raw display
$47$ \( T + 14208 \) Copy content Toggle raw display
$53$ \( T + 21776 \) Copy content Toggle raw display
$59$ \( T + 31616 \) Copy content Toggle raw display
$61$ \( T + 13154 \) Copy content Toggle raw display
$67$ \( T - 27056 \) Copy content Toggle raw display
$71$ \( T - 9728 \) Copy content Toggle raw display
$73$ \( T - 9046 \) Copy content Toggle raw display
$79$ \( T + 58292 \) Copy content Toggle raw display
$83$ \( T - 86336 \) Copy content Toggle raw display
$89$ \( T - 75072 \) Copy content Toggle raw display
$97$ \( T - 76046 \) Copy content Toggle raw display
show more
show less