Properties

Label 72.6.a.d
Level 7272
Weight 66
Character orbit 72.a
Self dual yes
Analytic conductor 11.54811.548
Analytic rank 00
Dimension 11
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [72,6,Mod(1,72)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(72, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("72.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 72=2332 72 = 2^{3} \cdot 3^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 72.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 11.547635026511.5476350265
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+16q5+12q7+448q11206q13+1952q17+1064q19+3712q232869q25+4080q29+5324q31+192q359690q379120q41+16552q4314208q47++76046q97+O(q100) q + 16 q^{5} + 12 q^{7} + 448 q^{11} - 206 q^{13} + 1952 q^{17} + 1064 q^{19} + 3712 q^{23} - 2869 q^{25} + 4080 q^{29} + 5324 q^{31} + 192 q^{35} - 9690 q^{37} - 9120 q^{41} + 16552 q^{43} - 14208 q^{47}+ \cdots + 76046 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
0
0 0 0 16.0000 0 12.0000 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
33 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 72.6.a.d yes 1
3.b odd 2 1 72.6.a.c 1
4.b odd 2 1 144.6.a.h 1
8.b even 2 1 576.6.a.n 1
8.d odd 2 1 576.6.a.m 1
12.b even 2 1 144.6.a.e 1
24.f even 2 1 576.6.a.w 1
24.h odd 2 1 576.6.a.x 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
72.6.a.c 1 3.b odd 2 1
72.6.a.d yes 1 1.a even 1 1 trivial
144.6.a.e 1 12.b even 2 1
144.6.a.h 1 4.b odd 2 1
576.6.a.m 1 8.d odd 2 1
576.6.a.n 1 8.b even 2 1
576.6.a.w 1 24.f even 2 1
576.6.a.x 1 24.h odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T516 T_{5} - 16 acting on S6new(Γ0(72))S_{6}^{\mathrm{new}}(\Gamma_0(72)). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T T Copy content Toggle raw display
33 T T Copy content Toggle raw display
55 T16 T - 16 Copy content Toggle raw display
77 T12 T - 12 Copy content Toggle raw display
1111 T448 T - 448 Copy content Toggle raw display
1313 T+206 T + 206 Copy content Toggle raw display
1717 T1952 T - 1952 Copy content Toggle raw display
1919 T1064 T - 1064 Copy content Toggle raw display
2323 T3712 T - 3712 Copy content Toggle raw display
2929 T4080 T - 4080 Copy content Toggle raw display
3131 T5324 T - 5324 Copy content Toggle raw display
3737 T+9690 T + 9690 Copy content Toggle raw display
4141 T+9120 T + 9120 Copy content Toggle raw display
4343 T16552 T - 16552 Copy content Toggle raw display
4747 T+14208 T + 14208 Copy content Toggle raw display
5353 T+21776 T + 21776 Copy content Toggle raw display
5959 T+31616 T + 31616 Copy content Toggle raw display
6161 T+13154 T + 13154 Copy content Toggle raw display
6767 T27056 T - 27056 Copy content Toggle raw display
7171 T9728 T - 9728 Copy content Toggle raw display
7373 T9046 T - 9046 Copy content Toggle raw display
7979 T+58292 T + 58292 Copy content Toggle raw display
8383 T86336 T - 86336 Copy content Toggle raw display
8989 T75072 T - 75072 Copy content Toggle raw display
9797 T76046 T - 76046 Copy content Toggle raw display
show more
show less