Properties

Label 720.2.bd.g.307.5
Level $720$
Weight $2$
Character 720.307
Analytic conductor $5.749$
Analytic rank $0$
Dimension $18$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(307,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([2, 3, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.307");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.bd (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(18\)
Relative dimension: \(9\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} + 2 x^{16} - 4 x^{15} - 5 x^{14} - 14 x^{13} - 10 x^{12} + 6 x^{11} + 37 x^{10} + 70 x^{9} + \cdots + 512 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 80)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 307.5
Root \(-0.480367 + 1.33013i\) of defining polynomial
Character \(\chi\) \(=\) 720.307
Dual form 720.2.bd.g.523.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.307817 + 1.38031i) q^{2} +(-1.81050 + 0.849763i) q^{4} +(-1.43498 - 1.71489i) q^{5} +(-0.458895 - 0.458895i) q^{7} +(-1.73024 - 2.23747i) q^{8} +(1.92536 - 2.50858i) q^{10} +(0.492763 + 0.492763i) q^{11} +4.52109 q^{13} +(0.492160 - 0.774671i) q^{14} +(2.55581 - 3.07699i) q^{16} +(3.12823 + 3.12823i) q^{17} +(4.04508 + 4.04508i) q^{19} +(4.05527 + 1.88541i) q^{20} +(-0.528484 + 0.831845i) q^{22} +(1.80660 - 1.80660i) q^{23} +(-0.881683 + 4.92165i) q^{25} +(1.39167 + 6.24050i) q^{26} +(1.22078 + 0.440876i) q^{28} +(3.83926 - 3.83926i) q^{29} +0.139949i q^{31} +(5.03391 + 2.58065i) q^{32} +(-3.35500 + 5.28085i) q^{34} +(-0.128450 + 1.44546i) q^{35} +5.84330 q^{37} +(-4.33831 + 6.82860i) q^{38} +(-1.35417 + 6.17788i) q^{40} -4.55648i q^{41} -7.49928 q^{43} +(-1.31088 - 0.473414i) q^{44} +(3.04976 + 1.93756i) q^{46} +(4.14073 - 4.14073i) q^{47} -6.57883i q^{49} +(-7.06479 + 0.297972i) q^{50} +(-8.18543 + 3.84186i) q^{52} +2.75773i q^{53} +(0.137930 - 1.55214i) q^{55} +(-0.232768 + 1.82076i) q^{56} +(6.48115 + 4.11757i) q^{58} +(3.62521 - 3.62521i) q^{59} +(3.72781 + 3.72781i) q^{61} +(-0.193173 + 0.0430787i) q^{62} +(-2.01257 + 7.74271i) q^{64} +(-6.48766 - 7.75317i) q^{65} +3.32677 q^{67} +(-8.32192 - 3.00540i) q^{68} +(-2.03471 + 0.267635i) q^{70} -1.37056 q^{71} +(-2.55028 - 2.55028i) q^{73} +(1.79867 + 8.06556i) q^{74} +(-10.7610 - 3.88625i) q^{76} -0.452252i q^{77} -3.86426 q^{79} +(-8.94421 + 0.0324871i) q^{80} +(6.28934 - 1.40256i) q^{82} +14.4698i q^{83} +(0.875628 - 9.85351i) q^{85} +(-2.30840 - 10.3513i) q^{86} +(0.249948 - 1.95514i) q^{88} +3.35011 q^{89} +(-2.07470 - 2.07470i) q^{91} +(-1.73566 + 4.80602i) q^{92} +(6.99006 + 4.44089i) q^{94} +(1.13226 - 12.7415i) q^{95} +(-4.95582 - 4.95582i) q^{97} +(9.08081 - 2.02507i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q + 4 q^{2} - 4 q^{4} + 4 q^{5} + 2 q^{7} + 4 q^{8} - 12 q^{10} + 2 q^{11} - 12 q^{14} + 6 q^{17} + 2 q^{19} + 4 q^{20} + 4 q^{22} + 2 q^{23} + 6 q^{25} + 16 q^{26} - 4 q^{28} + 14 q^{29} + 4 q^{32}+ \cdots - 32 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(-1\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.307817 + 1.38031i 0.217659 + 0.976025i
\(3\) 0 0
\(4\) −1.81050 + 0.849763i −0.905249 + 0.424882i
\(5\) −1.43498 1.71489i −0.641741 0.766921i
\(6\) 0 0
\(7\) −0.458895 0.458895i −0.173446 0.173446i 0.615046 0.788491i \(-0.289138\pi\)
−0.788491 + 0.615046i \(0.789138\pi\)
\(8\) −1.73024 2.23747i −0.611731 0.791066i
\(9\) 0 0
\(10\) 1.92536 2.50858i 0.608853 0.793283i
\(11\) 0.492763 + 0.492763i 0.148574 + 0.148574i 0.777481 0.628907i \(-0.216497\pi\)
−0.628907 + 0.777481i \(0.716497\pi\)
\(12\) 0 0
\(13\) 4.52109 1.25393 0.626963 0.779049i \(-0.284298\pi\)
0.626963 + 0.779049i \(0.284298\pi\)
\(14\) 0.492160 0.774671i 0.131535 0.207040i
\(15\) 0 0
\(16\) 2.55581 3.07699i 0.638951 0.769247i
\(17\) 3.12823 + 3.12823i 0.758708 + 0.758708i 0.976087 0.217379i \(-0.0697508\pi\)
−0.217379 + 0.976087i \(0.569751\pi\)
\(18\) 0 0
\(19\) 4.04508 + 4.04508i 0.928005 + 0.928005i 0.997577 0.0695721i \(-0.0221634\pi\)
−0.0695721 + 0.997577i \(0.522163\pi\)
\(20\) 4.05527 + 1.88541i 0.906786 + 0.421591i
\(21\) 0 0
\(22\) −0.528484 + 0.831845i −0.112673 + 0.177350i
\(23\) 1.80660 1.80660i 0.376701 0.376701i −0.493209 0.869911i \(-0.664176\pi\)
0.869911 + 0.493209i \(0.164176\pi\)
\(24\) 0 0
\(25\) −0.881683 + 4.92165i −0.176337 + 0.984330i
\(26\) 1.39167 + 6.24050i 0.272928 + 1.22386i
\(27\) 0 0
\(28\) 1.22078 + 0.440876i 0.230706 + 0.0833177i
\(29\) 3.83926 3.83926i 0.712932 0.712932i −0.254215 0.967148i \(-0.581817\pi\)
0.967148 + 0.254215i \(0.0818172\pi\)
\(30\) 0 0
\(31\) 0.139949i 0.0251356i 0.999921 + 0.0125678i \(0.00400057\pi\)
−0.999921 + 0.0125678i \(0.995999\pi\)
\(32\) 5.03391 + 2.58065i 0.889878 + 0.456199i
\(33\) 0 0
\(34\) −3.35500 + 5.28085i −0.575378 + 0.905658i
\(35\) −0.128450 + 1.44546i −0.0217120 + 0.244327i
\(36\) 0 0
\(37\) 5.84330 0.960633 0.480317 0.877095i \(-0.340522\pi\)
0.480317 + 0.877095i \(0.340522\pi\)
\(38\) −4.33831 + 6.82860i −0.703767 + 1.10774i
\(39\) 0 0
\(40\) −1.35417 + 6.17788i −0.214113 + 0.976809i
\(41\) 4.55648i 0.711602i −0.934562 0.355801i \(-0.884208\pi\)
0.934562 0.355801i \(-0.115792\pi\)
\(42\) 0 0
\(43\) −7.49928 −1.14363 −0.571815 0.820383i \(-0.693760\pi\)
−0.571815 + 0.820383i \(0.693760\pi\)
\(44\) −1.31088 0.473414i −0.197622 0.0713699i
\(45\) 0 0
\(46\) 3.04976 + 1.93756i 0.449662 + 0.285677i
\(47\) 4.14073 4.14073i 0.603987 0.603987i −0.337381 0.941368i \(-0.609541\pi\)
0.941368 + 0.337381i \(0.109541\pi\)
\(48\) 0 0
\(49\) 6.57883i 0.939833i
\(50\) −7.06479 + 0.297972i −0.999112 + 0.0421396i
\(51\) 0 0
\(52\) −8.18543 + 3.84186i −1.13511 + 0.532770i
\(53\) 2.75773i 0.378803i 0.981900 + 0.189402i \(0.0606548\pi\)
−0.981900 + 0.189402i \(0.939345\pi\)
\(54\) 0 0
\(55\) 0.137930 1.55214i 0.0185985 0.209290i
\(56\) −0.232768 + 1.82076i −0.0311050 + 0.243309i
\(57\) 0 0
\(58\) 6.48115 + 4.11757i 0.851016 + 0.540663i
\(59\) 3.62521 3.62521i 0.471962 0.471962i −0.430587 0.902549i \(-0.641694\pi\)
0.902549 + 0.430587i \(0.141694\pi\)
\(60\) 0 0
\(61\) 3.72781 + 3.72781i 0.477298 + 0.477298i 0.904266 0.426969i \(-0.140419\pi\)
−0.426969 + 0.904266i \(0.640419\pi\)
\(62\) −0.193173 + 0.0430787i −0.0245330 + 0.00547100i
\(63\) 0 0
\(64\) −2.01257 + 7.74271i −0.251571 + 0.967839i
\(65\) −6.48766 7.75317i −0.804696 0.961662i
\(66\) 0 0
\(67\) 3.32677 0.406430 0.203215 0.979134i \(-0.434861\pi\)
0.203215 + 0.979134i \(0.434861\pi\)
\(68\) −8.32192 3.00540i −1.00918 0.364459i
\(69\) 0 0
\(70\) −2.03471 + 0.267635i −0.243195 + 0.0319885i
\(71\) −1.37056 −0.162655 −0.0813275 0.996687i \(-0.525916\pi\)
−0.0813275 + 0.996687i \(0.525916\pi\)
\(72\) 0 0
\(73\) −2.55028 2.55028i −0.298488 0.298488i 0.541933 0.840422i \(-0.317693\pi\)
−0.840422 + 0.541933i \(0.817693\pi\)
\(74\) 1.79867 + 8.06556i 0.209091 + 0.937602i
\(75\) 0 0
\(76\) −10.7610 3.88625i −1.23437 0.445783i
\(77\) 0.452252i 0.0515389i
\(78\) 0 0
\(79\) −3.86426 −0.434763 −0.217382 0.976087i \(-0.569752\pi\)
−0.217382 + 0.976087i \(0.569752\pi\)
\(80\) −8.94421 + 0.0324871i −0.999993 + 0.00363216i
\(81\) 0 0
\(82\) 6.28934 1.40256i 0.694541 0.154887i
\(83\) 14.4698i 1.58827i 0.607744 + 0.794133i \(0.292075\pi\)
−0.607744 + 0.794133i \(0.707925\pi\)
\(84\) 0 0
\(85\) 0.875628 9.85351i 0.0949752 1.06876i
\(86\) −2.30840 10.3513i −0.248922 1.11621i
\(87\) 0 0
\(88\) 0.249948 1.95514i 0.0266445 0.208419i
\(89\) 3.35011 0.355111 0.177556 0.984111i \(-0.443181\pi\)
0.177556 + 0.984111i \(0.443181\pi\)
\(90\) 0 0
\(91\) −2.07470 2.07470i −0.217488 0.217488i
\(92\) −1.73566 + 4.80602i −0.180955 + 0.501062i
\(93\) 0 0
\(94\) 6.99006 + 4.44089i 0.720970 + 0.458043i
\(95\) 1.13226 12.7415i 0.116168 1.30725i
\(96\) 0 0
\(97\) −4.95582 4.95582i −0.503187 0.503187i 0.409240 0.912427i \(-0.365794\pi\)
−0.912427 + 0.409240i \(0.865794\pi\)
\(98\) 9.08081 2.02507i 0.917300 0.204563i
\(99\) 0 0
\(100\) −2.58595 9.65986i −0.258595 0.965986i
\(101\) 1.84536 1.84536i 0.183621 0.183621i −0.609311 0.792931i \(-0.708554\pi\)
0.792931 + 0.609311i \(0.208554\pi\)
\(102\) 0 0
\(103\) −11.6655 + 11.6655i −1.14944 + 1.14944i −0.162773 + 0.986664i \(0.552044\pi\)
−0.986664 + 0.162773i \(0.947956\pi\)
\(104\) −7.82256 10.1158i −0.767065 0.991938i
\(105\) 0 0
\(106\) −3.80651 + 0.848874i −0.369721 + 0.0824500i
\(107\) 15.3106i 1.48013i 0.672534 + 0.740067i \(0.265206\pi\)
−0.672534 + 0.740067i \(0.734794\pi\)
\(108\) 0 0
\(109\) 12.4798 12.4798i 1.19535 1.19535i 0.219803 0.975544i \(-0.429458\pi\)
0.975544 0.219803i \(-0.0705416\pi\)
\(110\) 2.18488 0.287388i 0.208320 0.0274013i
\(111\) 0 0
\(112\) −2.58486 + 0.239168i −0.244246 + 0.0225993i
\(113\) −2.53557 + 2.53557i −0.238526 + 0.238526i −0.816240 0.577713i \(-0.803945\pi\)
0.577713 + 0.816240i \(0.303945\pi\)
\(114\) 0 0
\(115\) −5.69053 0.505686i −0.530645 0.0471555i
\(116\) −3.68851 + 10.2134i −0.342470 + 0.948293i
\(117\) 0 0
\(118\) 6.11980 + 3.88800i 0.563373 + 0.357919i
\(119\) 2.87106i 0.263189i
\(120\) 0 0
\(121\) 10.5144i 0.955852i
\(122\) −3.99805 + 6.29301i −0.361966 + 0.569743i
\(123\) 0 0
\(124\) −0.118924 0.253378i −0.0106797 0.0227540i
\(125\) 9.70527 5.55047i 0.868066 0.496449i
\(126\) 0 0
\(127\) −0.615790 + 0.615790i −0.0546426 + 0.0546426i −0.733900 0.679257i \(-0.762302\pi\)
0.679257 + 0.733900i \(0.262302\pi\)
\(128\) −11.3068 0.394630i −0.999391 0.0348807i
\(129\) 0 0
\(130\) 8.70475 11.3415i 0.763457 0.994718i
\(131\) −9.55413 + 9.55413i −0.834748 + 0.834748i −0.988162 0.153414i \(-0.950973\pi\)
0.153414 + 0.988162i \(0.450973\pi\)
\(132\) 0 0
\(133\) 3.71253i 0.321917i
\(134\) 1.02404 + 4.59197i 0.0884632 + 0.396686i
\(135\) 0 0
\(136\) 1.58676 12.4119i 0.136063 1.06431i
\(137\) 3.70277 3.70277i 0.316349 0.316349i −0.531014 0.847363i \(-0.678189\pi\)
0.847363 + 0.531014i \(0.178189\pi\)
\(138\) 0 0
\(139\) 5.46761 5.46761i 0.463756 0.463756i −0.436128 0.899885i \(-0.643651\pi\)
0.899885 + 0.436128i \(0.143651\pi\)
\(140\) −0.995737 2.72615i −0.0841551 0.230401i
\(141\) 0 0
\(142\) −0.421880 1.89179i −0.0354034 0.158755i
\(143\) 2.22783 + 2.22783i 0.186300 + 0.186300i
\(144\) 0 0
\(145\) −12.0931 1.07465i −1.00428 0.0892450i
\(146\) 2.73516 4.30520i 0.226363 0.356301i
\(147\) 0 0
\(148\) −10.5793 + 4.96542i −0.869612 + 0.408155i
\(149\) −4.21561 4.21561i −0.345356 0.345356i 0.513021 0.858376i \(-0.328526\pi\)
−0.858376 + 0.513021i \(0.828526\pi\)
\(150\) 0 0
\(151\) 12.4417 1.01249 0.506244 0.862390i \(-0.331034\pi\)
0.506244 + 0.862390i \(0.331034\pi\)
\(152\) 2.05181 16.0497i 0.166424 1.30180i
\(153\) 0 0
\(154\) 0.624247 0.139211i 0.0503033 0.0112179i
\(155\) 0.239997 0.200824i 0.0192771 0.0161306i
\(156\) 0 0
\(157\) 7.50500i 0.598964i 0.954102 + 0.299482i \(0.0968138\pi\)
−0.954102 + 0.299482i \(0.903186\pi\)
\(158\) −1.18948 5.33387i −0.0946302 0.424340i
\(159\) 0 0
\(160\) −2.79802 12.3358i −0.221203 0.975228i
\(161\) −1.65807 −0.130675
\(162\) 0 0
\(163\) 23.7284i 1.85855i 0.369383 + 0.929277i \(0.379569\pi\)
−0.369383 + 0.929277i \(0.620431\pi\)
\(164\) 3.87193 + 8.24949i 0.302347 + 0.644177i
\(165\) 0 0
\(166\) −19.9728 + 4.45404i −1.55019 + 0.345701i
\(167\) 0.402976 + 0.402976i 0.0311832 + 0.0311832i 0.722526 0.691343i \(-0.242981\pi\)
−0.691343 + 0.722526i \(0.742981\pi\)
\(168\) 0 0
\(169\) 7.44028 0.572330
\(170\) 13.8704 1.82444i 1.06381 0.139928i
\(171\) 0 0
\(172\) 13.5774 6.37261i 1.03527 0.485907i
\(173\) 15.4500 1.17464 0.587320 0.809355i \(-0.300183\pi\)
0.587320 + 0.809355i \(0.300183\pi\)
\(174\) 0 0
\(175\) 2.66312 1.85392i 0.201313 0.140143i
\(176\) 2.77563 0.256820i 0.209221 0.0193585i
\(177\) 0 0
\(178\) 1.03122 + 4.62419i 0.0772932 + 0.346597i
\(179\) −5.20444 5.20444i −0.388998 0.388998i 0.485332 0.874330i \(-0.338699\pi\)
−0.874330 + 0.485332i \(0.838699\pi\)
\(180\) 0 0
\(181\) −9.08925 + 9.08925i −0.675599 + 0.675599i −0.959001 0.283402i \(-0.908537\pi\)
0.283402 + 0.959001i \(0.408537\pi\)
\(182\) 2.22510 3.50236i 0.164936 0.259612i
\(183\) 0 0
\(184\) −7.16804 0.916372i −0.528435 0.0675559i
\(185\) −8.38500 10.0206i −0.616478 0.736730i
\(186\) 0 0
\(187\) 3.08295i 0.225448i
\(188\) −3.97814 + 11.0154i −0.290136 + 0.803382i
\(189\) 0 0
\(190\) 17.9357 2.35916i 1.30119 0.171151i
\(191\) 15.1075i 1.09314i −0.837413 0.546571i \(-0.815933\pi\)
0.837413 0.546571i \(-0.184067\pi\)
\(192\) 0 0
\(193\) 4.19166 4.19166i 0.301722 0.301722i −0.539965 0.841687i \(-0.681563\pi\)
0.841687 + 0.539965i \(0.181563\pi\)
\(194\) 5.31507 8.36604i 0.381600 0.600647i
\(195\) 0 0
\(196\) 5.59045 + 11.9110i 0.399318 + 0.850783i
\(197\) 4.03184 0.287256 0.143628 0.989632i \(-0.454123\pi\)
0.143628 + 0.989632i \(0.454123\pi\)
\(198\) 0 0
\(199\) 5.43055i 0.384961i −0.981301 0.192481i \(-0.938347\pi\)
0.981301 0.192481i \(-0.0616533\pi\)
\(200\) 12.5376 6.54287i 0.886541 0.462651i
\(201\) 0 0
\(202\) 3.11520 + 1.97914i 0.219185 + 0.139252i
\(203\) −3.52363 −0.247310
\(204\) 0 0
\(205\) −7.81385 + 6.53844i −0.545743 + 0.456664i
\(206\) −19.6928 12.5111i −1.37206 0.871693i
\(207\) 0 0
\(208\) 11.5550 13.9114i 0.801197 0.964579i
\(209\) 3.98653i 0.275754i
\(210\) 0 0
\(211\) 3.23020 3.23020i 0.222376 0.222376i −0.587122 0.809498i \(-0.699739\pi\)
0.809498 + 0.587122i \(0.199739\pi\)
\(212\) −2.34342 4.99286i −0.160946 0.342911i
\(213\) 0 0
\(214\) −21.1334 + 4.71286i −1.44465 + 0.322165i
\(215\) 10.7613 + 12.8604i 0.733914 + 0.877074i
\(216\) 0 0
\(217\) 0.0642220 0.0642220i 0.00435967 0.00435967i
\(218\) 21.0674 + 13.3845i 1.42687 + 0.906511i
\(219\) 0 0
\(220\) 1.06923 + 2.92735i 0.0720872 + 0.197362i
\(221\) 14.1430 + 14.1430i 0.951363 + 0.951363i
\(222\) 0 0
\(223\) −8.17319 8.17319i −0.547317 0.547317i 0.378347 0.925664i \(-0.376493\pi\)
−0.925664 + 0.378347i \(0.876493\pi\)
\(224\) −1.12579 3.49428i −0.0752199 0.233471i
\(225\) 0 0
\(226\) −4.28035 2.71937i −0.284725 0.180890i
\(227\) 1.54068 0.102258 0.0511292 0.998692i \(-0.483718\pi\)
0.0511292 + 0.998692i \(0.483718\pi\)
\(228\) 0 0
\(229\) −17.5646 17.5646i −1.16070 1.16070i −0.984322 0.176378i \(-0.943562\pi\)
−0.176378 0.984322i \(-0.556438\pi\)
\(230\) −1.05364 8.01034i −0.0694748 0.528186i
\(231\) 0 0
\(232\) −15.2331 1.94741i −1.00010 0.127854i
\(233\) −9.99018 9.99018i −0.654479 0.654479i 0.299590 0.954068i \(-0.403150\pi\)
−0.954068 + 0.299590i \(0.903150\pi\)
\(234\) 0 0
\(235\) −13.0427 1.15904i −0.850814 0.0756072i
\(236\) −3.48286 + 9.64399i −0.226715 + 0.627771i
\(237\) 0 0
\(238\) 3.96294 0.883759i 0.256879 0.0572856i
\(239\) −26.2762 −1.69967 −0.849833 0.527052i \(-0.823297\pi\)
−0.849833 + 0.527052i \(0.823297\pi\)
\(240\) 0 0
\(241\) −0.113242 −0.00729456 −0.00364728 0.999993i \(-0.501161\pi\)
−0.00364728 + 0.999993i \(0.501161\pi\)
\(242\) 14.5131 3.23650i 0.932935 0.208050i
\(243\) 0 0
\(244\) −9.91696 3.58144i −0.634868 0.229278i
\(245\) −11.2820 + 9.44047i −0.720778 + 0.603130i
\(246\) 0 0
\(247\) 18.2882 + 18.2882i 1.16365 + 1.16365i
\(248\) 0.313133 0.242145i 0.0198840 0.0153762i
\(249\) 0 0
\(250\) 10.6488 + 11.6877i 0.673489 + 0.739197i
\(251\) −19.2220 19.2220i −1.21328 1.21328i −0.969941 0.243339i \(-0.921757\pi\)
−0.243339 0.969941i \(-0.578243\pi\)
\(252\) 0 0
\(253\) 1.78045 0.111936
\(254\) −1.03953 0.660430i −0.0652260 0.0414390i
\(255\) 0 0
\(256\) −2.93572 15.7284i −0.183482 0.983023i
\(257\) 0.757800 + 0.757800i 0.0472703 + 0.0472703i 0.730347 0.683077i \(-0.239358\pi\)
−0.683077 + 0.730347i \(0.739358\pi\)
\(258\) 0 0
\(259\) −2.68146 2.68146i −0.166618 0.166618i
\(260\) 18.3343 + 8.52412i 1.13704 + 0.528643i
\(261\) 0 0
\(262\) −16.1286 10.2467i −0.996425 0.633044i
\(263\) −5.73017 + 5.73017i −0.353338 + 0.353338i −0.861350 0.508012i \(-0.830380\pi\)
0.508012 + 0.861350i \(0.330380\pi\)
\(264\) 0 0
\(265\) 4.72919 3.95728i 0.290512 0.243094i
\(266\) 5.12443 1.14278i 0.314199 0.0700682i
\(267\) 0 0
\(268\) −6.02311 + 2.82697i −0.367920 + 0.172685i
\(269\) −9.78879 + 9.78879i −0.596833 + 0.596833i −0.939468 0.342635i \(-0.888680\pi\)
0.342635 + 0.939468i \(0.388680\pi\)
\(270\) 0 0
\(271\) 4.10159i 0.249154i 0.992210 + 0.124577i \(0.0397574\pi\)
−0.992210 + 0.124577i \(0.960243\pi\)
\(272\) 17.6207 1.63038i 1.06841 0.0988565i
\(273\) 0 0
\(274\) 6.25074 + 3.97119i 0.377621 + 0.239908i
\(275\) −2.85967 + 1.99075i −0.172444 + 0.120046i
\(276\) 0 0
\(277\) 24.6755 1.48261 0.741305 0.671169i \(-0.234207\pi\)
0.741305 + 0.671169i \(0.234207\pi\)
\(278\) 9.23000 + 5.86396i 0.553578 + 0.351697i
\(279\) 0 0
\(280\) 3.45642 2.21358i 0.206560 0.132286i
\(281\) 23.6688i 1.41196i 0.708230 + 0.705981i \(0.249494\pi\)
−0.708230 + 0.705981i \(0.750506\pi\)
\(282\) 0 0
\(283\) 13.0492 0.775694 0.387847 0.921724i \(-0.373219\pi\)
0.387847 + 0.921724i \(0.373219\pi\)
\(284\) 2.48139 1.16465i 0.147243 0.0691091i
\(285\) 0 0
\(286\) −2.38932 + 3.76085i −0.141284 + 0.222384i
\(287\) −2.09094 + 2.09094i −0.123424 + 0.123424i
\(288\) 0 0
\(289\) 2.57168i 0.151275i
\(290\) −2.23912 17.0231i −0.131486 0.999628i
\(291\) 0 0
\(292\) 6.78442 + 2.45015i 0.397028 + 0.143384i
\(293\) 31.6731i 1.85036i −0.379526 0.925181i \(-0.623913\pi\)
0.379526 0.925181i \(-0.376087\pi\)
\(294\) 0 0
\(295\) −11.4189 1.01474i −0.664835 0.0590802i
\(296\) −10.1103 13.0742i −0.587649 0.759924i
\(297\) 0 0
\(298\) 4.52120 7.11646i 0.261906 0.412246i
\(299\) 8.16779 8.16779i 0.472355 0.472355i
\(300\) 0 0
\(301\) 3.44138 + 3.44138i 0.198358 + 0.198358i
\(302\) 3.82975 + 17.1733i 0.220377 + 0.988213i
\(303\) 0 0
\(304\) 22.7851 2.10823i 1.30682 0.120915i
\(305\) 1.04346 11.7421i 0.0597482 0.672351i
\(306\) 0 0
\(307\) −27.3597 −1.56150 −0.780751 0.624843i \(-0.785163\pi\)
−0.780751 + 0.624843i \(0.785163\pi\)
\(308\) 0.384307 + 0.818802i 0.0218979 + 0.0466556i
\(309\) 0 0
\(310\) 0.351074 + 0.269453i 0.0199397 + 0.0153039i
\(311\) 15.8076 0.896368 0.448184 0.893941i \(-0.352071\pi\)
0.448184 + 0.893941i \(0.352071\pi\)
\(312\) 0 0
\(313\) −13.8388 13.8388i −0.782217 0.782217i 0.197988 0.980205i \(-0.436559\pi\)
−0.980205 + 0.197988i \(0.936559\pi\)
\(314\) −10.3592 + 2.31016i −0.584604 + 0.130370i
\(315\) 0 0
\(316\) 6.99624 3.28371i 0.393569 0.184723i
\(317\) 35.0092i 1.96631i 0.182766 + 0.983156i \(0.441495\pi\)
−0.182766 + 0.983156i \(0.558505\pi\)
\(318\) 0 0
\(319\) 3.78369 0.211846
\(320\) 16.1659 7.65928i 0.903700 0.428167i
\(321\) 0 0
\(322\) −0.510383 2.28865i −0.0284425 0.127542i
\(323\) 25.3079i 1.40817i
\(324\) 0 0
\(325\) −3.98617 + 22.2512i −0.221113 + 1.23428i
\(326\) −32.7525 + 7.30401i −1.81400 + 0.404532i
\(327\) 0 0
\(328\) −10.1950 + 7.88378i −0.562924 + 0.435309i
\(329\) −3.80032 −0.209518
\(330\) 0 0
\(331\) 16.8212 + 16.8212i 0.924578 + 0.924578i 0.997349 0.0727709i \(-0.0231842\pi\)
−0.0727709 + 0.997349i \(0.523184\pi\)
\(332\) −12.2959 26.1975i −0.674825 1.43778i
\(333\) 0 0
\(334\) −0.432188 + 0.680273i −0.0236483 + 0.0372229i
\(335\) −4.77384 5.70504i −0.260823 0.311700i
\(336\) 0 0
\(337\) 14.4984 + 14.4984i 0.789777 + 0.789777i 0.981457 0.191680i \(-0.0613937\pi\)
−0.191680 + 0.981457i \(0.561394\pi\)
\(338\) 2.29024 + 10.2699i 0.124573 + 0.558608i
\(339\) 0 0
\(340\) 6.78783 + 18.5838i 0.368122 + 1.00785i
\(341\) −0.0689618 + 0.0689618i −0.00373449 + 0.00373449i
\(342\) 0 0
\(343\) −6.23125 + 6.23125i −0.336456 + 0.336456i
\(344\) 12.9755 + 16.7794i 0.699593 + 0.904687i
\(345\) 0 0
\(346\) 4.75576 + 21.3257i 0.255671 + 1.14648i
\(347\) 16.7705i 0.900286i 0.892956 + 0.450143i \(0.148627\pi\)
−0.892956 + 0.450143i \(0.851373\pi\)
\(348\) 0 0
\(349\) 1.86337 1.86337i 0.0997439 0.0997439i −0.655474 0.755218i \(-0.727531\pi\)
0.755218 + 0.655474i \(0.227531\pi\)
\(350\) 3.37873 + 3.10525i 0.180601 + 0.165983i
\(351\) 0 0
\(352\) 1.20888 + 3.75217i 0.0644333 + 0.199991i
\(353\) −24.1362 + 24.1362i −1.28464 + 1.28464i −0.346642 + 0.937998i \(0.612678\pi\)
−0.937998 + 0.346642i \(0.887322\pi\)
\(354\) 0 0
\(355\) 1.96672 + 2.35035i 0.104382 + 0.124744i
\(356\) −6.06537 + 2.84680i −0.321464 + 0.150880i
\(357\) 0 0
\(358\) 5.58171 8.78574i 0.295003 0.464341i
\(359\) 12.2500i 0.646532i −0.946308 0.323266i \(-0.895219\pi\)
0.946308 0.323266i \(-0.104781\pi\)
\(360\) 0 0
\(361\) 13.7253i 0.722386i
\(362\) −15.3438 9.74814i −0.806451 0.512351i
\(363\) 0 0
\(364\) 5.51926 + 1.99324i 0.289288 + 0.104474i
\(365\) −0.713853 + 8.03305i −0.0373648 + 0.420469i
\(366\) 0 0
\(367\) 2.71307 2.71307i 0.141621 0.141621i −0.632742 0.774363i \(-0.718071\pi\)
0.774363 + 0.632742i \(0.218071\pi\)
\(368\) −0.941567 10.1762i −0.0490826 0.530470i
\(369\) 0 0
\(370\) 11.2505 14.6584i 0.584885 0.762054i
\(371\) 1.26551 1.26551i 0.0657018 0.0657018i
\(372\) 0 0
\(373\) 16.4846i 0.853541i −0.904360 0.426771i \(-0.859651\pi\)
0.904360 0.426771i \(-0.140349\pi\)
\(374\) −4.25542 + 0.948984i −0.220043 + 0.0490708i
\(375\) 0 0
\(376\) −16.4292 2.10033i −0.847272 0.108316i
\(377\) 17.3576 17.3576i 0.893964 0.893964i
\(378\) 0 0
\(379\) −13.7716 + 13.7716i −0.707401 + 0.707401i −0.965988 0.258587i \(-0.916743\pi\)
0.258587 + 0.965988i \(0.416743\pi\)
\(380\) 8.77726 + 24.0305i 0.450264 + 1.23274i
\(381\) 0 0
\(382\) 20.8530 4.65034i 1.06693 0.237932i
\(383\) −11.5530 11.5530i −0.590332 0.590332i 0.347389 0.937721i \(-0.387068\pi\)
−0.937721 + 0.347389i \(0.887068\pi\)
\(384\) 0 0
\(385\) −0.775562 + 0.648972i −0.0395263 + 0.0330747i
\(386\) 7.07604 + 4.49552i 0.360161 + 0.228816i
\(387\) 0 0
\(388\) 13.1838 + 4.76123i 0.669305 + 0.241715i
\(389\) 15.7728 + 15.7728i 0.799712 + 0.799712i 0.983050 0.183338i \(-0.0586903\pi\)
−0.183338 + 0.983050i \(0.558690\pi\)
\(390\) 0 0
\(391\) 11.3029 0.571612
\(392\) −14.7200 + 11.3829i −0.743470 + 0.574925i
\(393\) 0 0
\(394\) 1.24107 + 5.56517i 0.0625240 + 0.280369i
\(395\) 5.54512 + 6.62677i 0.279006 + 0.333429i
\(396\) 0 0
\(397\) 29.9558i 1.50344i 0.659483 + 0.751720i \(0.270775\pi\)
−0.659483 + 0.751720i \(0.729225\pi\)
\(398\) 7.49583 1.67161i 0.375732 0.0837904i
\(399\) 0 0
\(400\) 12.8905 + 15.2917i 0.644523 + 0.764585i
\(401\) −19.9241 −0.994963 −0.497481 0.867475i \(-0.665742\pi\)
−0.497481 + 0.867475i \(0.665742\pi\)
\(402\) 0 0
\(403\) 0.632724i 0.0315182i
\(404\) −1.77291 + 4.90915i −0.0882054 + 0.244239i
\(405\) 0 0
\(406\) −1.08463 4.86369i −0.0538294 0.241381i
\(407\) 2.87936 + 2.87936i 0.142725 + 0.142725i
\(408\) 0 0
\(409\) 5.89856 0.291665 0.145832 0.989309i \(-0.453414\pi\)
0.145832 + 0.989309i \(0.453414\pi\)
\(410\) −11.4303 8.77287i −0.564502 0.433261i
\(411\) 0 0
\(412\) 11.2075 31.0333i 0.552152 1.52890i
\(413\) −3.32717 −0.163720
\(414\) 0 0
\(415\) 24.8141 20.7638i 1.21808 1.01926i
\(416\) 22.7588 + 11.6674i 1.11584 + 0.572039i
\(417\) 0 0
\(418\) −5.50264 + 1.22712i −0.269143 + 0.0600204i
\(419\) −8.24430 8.24430i −0.402760 0.402760i 0.476444 0.879205i \(-0.341925\pi\)
−0.879205 + 0.476444i \(0.841925\pi\)
\(420\) 0 0
\(421\) −17.1776 + 17.1776i −0.837184 + 0.837184i −0.988487 0.151304i \(-0.951653\pi\)
0.151304 + 0.988487i \(0.451653\pi\)
\(422\) 5.45297 + 3.46436i 0.265447 + 0.168642i
\(423\) 0 0
\(424\) 6.17034 4.77152i 0.299658 0.231725i
\(425\) −18.1542 + 12.6380i −0.880607 + 0.613031i
\(426\) 0 0
\(427\) 3.42135i 0.165571i
\(428\) −13.0104 27.7198i −0.628881 1.33989i
\(429\) 0 0
\(430\) −14.4388 + 18.8126i −0.696303 + 0.907222i
\(431\) 32.1769i 1.54990i 0.632020 + 0.774952i \(0.282226\pi\)
−0.632020 + 0.774952i \(0.717774\pi\)
\(432\) 0 0
\(433\) −20.3383 + 20.3383i −0.977396 + 0.977396i −0.999750 0.0223540i \(-0.992884\pi\)
0.0223540 + 0.999750i \(0.492884\pi\)
\(434\) 0.108415 + 0.0688775i 0.00520407 + 0.00330623i
\(435\) 0 0
\(436\) −11.9898 + 33.1995i −0.574206 + 1.58997i
\(437\) 14.6156 0.699161
\(438\) 0 0
\(439\) 35.4180i 1.69041i −0.534444 0.845204i \(-0.679479\pi\)
0.534444 0.845204i \(-0.320521\pi\)
\(440\) −3.71151 + 2.37695i −0.176940 + 0.113317i
\(441\) 0 0
\(442\) −15.1683 + 23.8752i −0.721481 + 1.13563i
\(443\) 3.03787 0.144333 0.0721667 0.997393i \(-0.477009\pi\)
0.0721667 + 0.997393i \(0.477009\pi\)
\(444\) 0 0
\(445\) −4.80733 5.74507i −0.227890 0.272342i
\(446\) 8.76567 13.7974i 0.415067 0.653324i
\(447\) 0 0
\(448\) 4.47664 2.62953i 0.211502 0.124234i
\(449\) 8.65559i 0.408483i 0.978921 + 0.204241i \(0.0654727\pi\)
−0.978921 + 0.204241i \(0.934527\pi\)
\(450\) 0 0
\(451\) 2.24526 2.24526i 0.105725 0.105725i
\(452\) 2.43601 6.74527i 0.114580 0.317271i
\(453\) 0 0
\(454\) 0.474247 + 2.12661i 0.0222575 + 0.0998068i
\(455\) −0.580733 + 6.53504i −0.0272252 + 0.306367i
\(456\) 0 0
\(457\) −13.5575 + 13.5575i −0.634193 + 0.634193i −0.949117 0.314924i \(-0.898021\pi\)
0.314924 + 0.949117i \(0.398021\pi\)
\(458\) 18.8379 29.6512i 0.880236 1.38551i
\(459\) 0 0
\(460\) 10.7324 3.92006i 0.500401 0.182774i
\(461\) 1.19682 + 1.19682i 0.0557416 + 0.0557416i 0.734428 0.678687i \(-0.237450\pi\)
−0.678687 + 0.734428i \(0.737450\pi\)
\(462\) 0 0
\(463\) −21.1815 21.1815i −0.984390 0.984390i 0.0154904 0.999880i \(-0.495069\pi\)
−0.999880 + 0.0154904i \(0.995069\pi\)
\(464\) −2.00096 21.6258i −0.0928921 1.00395i
\(465\) 0 0
\(466\) 10.7144 16.8647i 0.496334 0.781241i
\(467\) −24.8448 −1.14968 −0.574840 0.818266i \(-0.694936\pi\)
−0.574840 + 0.818266i \(0.694936\pi\)
\(468\) 0 0
\(469\) −1.52664 1.52664i −0.0704936 0.0704936i
\(470\) −2.41494 18.3598i −0.111393 0.846873i
\(471\) 0 0
\(472\) −14.3838 1.83884i −0.662066 0.0846394i
\(473\) −3.69537 3.69537i −0.169913 0.169913i
\(474\) 0 0
\(475\) −23.4749 + 16.3420i −1.07710 + 0.749822i
\(476\) 2.43972 + 5.19804i 0.111824 + 0.238252i
\(477\) 0 0
\(478\) −8.08825 36.2692i −0.369948 1.65892i
\(479\) 23.5766 1.07724 0.538621 0.842548i \(-0.318946\pi\)
0.538621 + 0.842548i \(0.318946\pi\)
\(480\) 0 0
\(481\) 26.4181 1.20456
\(482\) −0.0348578 0.156309i −0.00158773 0.00711967i
\(483\) 0 0
\(484\) 8.93472 + 19.0362i 0.406124 + 0.865284i
\(485\) −1.38719 + 15.6102i −0.0629891 + 0.708821i
\(486\) 0 0
\(487\) −2.63011 2.63011i −0.119182 0.119182i 0.645001 0.764182i \(-0.276857\pi\)
−0.764182 + 0.645001i \(0.776857\pi\)
\(488\) 1.89089 14.7909i 0.0855964 0.669552i
\(489\) 0 0
\(490\) −16.5035 12.6666i −0.745553 0.572221i
\(491\) 18.6899 + 18.6899i 0.843465 + 0.843465i 0.989308 0.145843i \(-0.0465894\pi\)
−0.145843 + 0.989308i \(0.546589\pi\)
\(492\) 0 0
\(493\) 24.0202 1.08182
\(494\) −19.6139 + 30.8727i −0.882472 + 1.38903i
\(495\) 0 0
\(496\) 0.430623 + 0.357683i 0.0193355 + 0.0160605i
\(497\) 0.628940 + 0.628940i 0.0282118 + 0.0282118i
\(498\) 0 0
\(499\) −9.69342 9.69342i −0.433937 0.433937i 0.456028 0.889965i \(-0.349272\pi\)
−0.889965 + 0.456028i \(0.849272\pi\)
\(500\) −12.8548 + 18.2963i −0.574884 + 0.818235i
\(501\) 0 0
\(502\) 20.6154 32.4491i 0.920110 1.44827i
\(503\) 13.0434 13.0434i 0.581577 0.581577i −0.353759 0.935336i \(-0.615097\pi\)
0.935336 + 0.353759i \(0.115097\pi\)
\(504\) 0 0
\(505\) −5.81265 0.516538i −0.258659 0.0229856i
\(506\) 0.548051 + 2.45756i 0.0243638 + 0.109252i
\(507\) 0 0
\(508\) 0.591611 1.63816i 0.0262485 0.0726817i
\(509\) 25.8539 25.8539i 1.14595 1.14595i 0.158611 0.987341i \(-0.449298\pi\)
0.987341 0.158611i \(-0.0507016\pi\)
\(510\) 0 0
\(511\) 2.34062i 0.103543i
\(512\) 20.8063 8.89365i 0.919518 0.393047i
\(513\) 0 0
\(514\) −0.812734 + 1.27926i −0.0358481 + 0.0564258i
\(515\) 36.7448 + 3.26531i 1.61917 + 0.143887i
\(516\) 0 0
\(517\) 4.08080 0.179473
\(518\) 2.87584 4.52664i 0.126357 0.198889i
\(519\) 0 0
\(520\) −6.12232 + 27.9308i −0.268481 + 1.22485i
\(521\) 25.0528i 1.09758i −0.835959 0.548792i \(-0.815088\pi\)
0.835959 0.548792i \(-0.184912\pi\)
\(522\) 0 0
\(523\) 40.3434 1.76410 0.882048 0.471160i \(-0.156165\pi\)
0.882048 + 0.471160i \(0.156165\pi\)
\(524\) 9.17898 25.4165i 0.400986 1.11032i
\(525\) 0 0
\(526\) −9.67325 6.14556i −0.421774 0.267959i
\(527\) −0.437794 + 0.437794i −0.0190706 + 0.0190706i
\(528\) 0 0
\(529\) 16.4724i 0.716192i
\(530\) 6.91798 + 5.30963i 0.300498 + 0.230636i
\(531\) 0 0
\(532\) 3.15477 + 6.72153i 0.136777 + 0.291415i
\(533\) 20.6003i 0.892296i
\(534\) 0 0
\(535\) 26.2560 21.9704i 1.13515 0.949862i
\(536\) −5.75610 7.44356i −0.248626 0.321513i
\(537\) 0 0
\(538\) −16.5247 10.4984i −0.712430 0.452618i
\(539\) 3.24180 3.24180i 0.139634 0.139634i
\(540\) 0 0
\(541\) −24.7446 24.7446i −1.06385 1.06385i −0.997817 0.0660360i \(-0.978965\pi\)
−0.0660360 0.997817i \(-0.521035\pi\)
\(542\) −5.66146 + 1.26254i −0.243181 + 0.0542307i
\(543\) 0 0
\(544\) 7.67437 + 23.8201i 0.329036 + 1.02128i
\(545\) −39.3097 3.49324i −1.68384 0.149634i
\(546\) 0 0
\(547\) 19.0254 0.813465 0.406733 0.913547i \(-0.366668\pi\)
0.406733 + 0.913547i \(0.366668\pi\)
\(548\) −3.55738 + 9.85034i −0.151964 + 0.420786i
\(549\) 0 0
\(550\) −3.62809 3.33444i −0.154702 0.142181i
\(551\) 31.0602 1.32321
\(552\) 0 0
\(553\) 1.77329 + 1.77329i 0.0754079 + 0.0754079i
\(554\) 7.59554 + 34.0598i 0.322704 + 1.44706i
\(555\) 0 0
\(556\) −5.25292 + 14.5453i −0.222773 + 0.616856i
\(557\) 30.9517i 1.31146i −0.754993 0.655732i \(-0.772360\pi\)
0.754993 0.655732i \(-0.227640\pi\)
\(558\) 0 0
\(559\) −33.9050 −1.43403
\(560\) 4.11936 + 4.08954i 0.174075 + 0.172815i
\(561\) 0 0
\(562\) −32.6702 + 7.28565i −1.37811 + 0.307327i
\(563\) 3.50238i 0.147608i 0.997273 + 0.0738039i \(0.0235139\pi\)
−0.997273 + 0.0738039i \(0.976486\pi\)
\(564\) 0 0
\(565\) 7.98670 + 0.709734i 0.336003 + 0.0298587i
\(566\) 4.01676 + 18.0119i 0.168837 + 0.757097i
\(567\) 0 0
\(568\) 2.37138 + 3.06658i 0.0995011 + 0.128671i
\(569\) 0.525780 0.0220418 0.0110209 0.999939i \(-0.496492\pi\)
0.0110209 + 0.999939i \(0.496492\pi\)
\(570\) 0 0
\(571\) −11.2487 11.2487i −0.470743 0.470743i 0.431412 0.902155i \(-0.358016\pi\)
−0.902155 + 0.431412i \(0.858016\pi\)
\(572\) −5.92660 2.14035i −0.247804 0.0894926i
\(573\) 0 0
\(574\) −3.52977 2.24252i −0.147330 0.0936008i
\(575\) 7.29859 + 10.4843i 0.304372 + 0.437224i
\(576\) 0 0
\(577\) −2.92884 2.92884i −0.121929 0.121929i 0.643509 0.765438i \(-0.277478\pi\)
−0.765438 + 0.643509i \(0.777478\pi\)
\(578\) −3.54971 + 0.791607i −0.147649 + 0.0329265i
\(579\) 0 0
\(580\) 22.8078 8.33065i 0.947043 0.345912i
\(581\) 6.64011 6.64011i 0.275478 0.275478i
\(582\) 0 0
\(583\) −1.35891 + 1.35891i −0.0562801 + 0.0562801i
\(584\) −1.29360 + 10.1188i −0.0535295 + 0.418718i
\(585\) 0 0
\(586\) 43.7186 9.74951i 1.80600 0.402748i
\(587\) 23.1574i 0.955809i −0.878412 0.477905i \(-0.841396\pi\)
0.878412 0.477905i \(-0.158604\pi\)
\(588\) 0 0
\(589\) −0.566106 + 0.566106i −0.0233260 + 0.0233260i
\(590\) −2.11428 16.0740i −0.0870436 0.661754i
\(591\) 0 0
\(592\) 14.9343 17.9798i 0.613798 0.738964i
\(593\) 13.9325 13.9325i 0.572141 0.572141i −0.360585 0.932726i \(-0.617423\pi\)
0.932726 + 0.360585i \(0.117423\pi\)
\(594\) 0 0
\(595\) −4.92354 + 4.11990i −0.201846 + 0.168900i
\(596\) 11.2146 + 4.05008i 0.459368 + 0.165898i
\(597\) 0 0
\(598\) 13.7882 + 8.75988i 0.563843 + 0.358218i
\(599\) 33.5311i 1.37004i −0.728523 0.685021i \(-0.759793\pi\)
0.728523 0.685021i \(-0.240207\pi\)
\(600\) 0 0
\(601\) 19.4164i 0.792011i −0.918248 0.396005i \(-0.870396\pi\)
0.918248 0.396005i \(-0.129604\pi\)
\(602\) −3.69085 + 5.80948i −0.150428 + 0.236777i
\(603\) 0 0
\(604\) −22.5256 + 10.5725i −0.916554 + 0.430187i
\(605\) −18.0310 + 15.0879i −0.733063 + 0.613409i
\(606\) 0 0
\(607\) −9.51495 + 9.51495i −0.386200 + 0.386200i −0.873330 0.487130i \(-0.838044\pi\)
0.487130 + 0.873330i \(0.338044\pi\)
\(608\) 9.92363 + 30.8015i 0.402456 + 1.24917i
\(609\) 0 0
\(610\) 16.5289 2.17412i 0.669236 0.0880277i
\(611\) 18.7206 18.7206i 0.757355 0.757355i
\(612\) 0 0
\(613\) 9.37947i 0.378833i 0.981897 + 0.189417i \(0.0606597\pi\)
−0.981897 + 0.189417i \(0.939340\pi\)
\(614\) −8.42177 37.7648i −0.339875 1.52406i
\(615\) 0 0
\(616\) −1.01190 + 0.782503i −0.0407707 + 0.0315280i
\(617\) 3.54768 3.54768i 0.142824 0.142824i −0.632079 0.774904i \(-0.717798\pi\)
0.774904 + 0.632079i \(0.217798\pi\)
\(618\) 0 0
\(619\) 24.6158 24.6158i 0.989392 0.989392i −0.0105527 0.999944i \(-0.503359\pi\)
0.999944 + 0.0105527i \(0.00335910\pi\)
\(620\) −0.263862 + 0.567533i −0.0105970 + 0.0227927i
\(621\) 0 0
\(622\) 4.86585 + 21.8194i 0.195103 + 0.874877i
\(623\) −1.53735 1.53735i −0.0615926 0.0615926i
\(624\) 0 0
\(625\) −23.4453 8.67867i −0.937811 0.347147i
\(626\) 14.8420 23.3617i 0.593206 0.933720i
\(627\) 0 0
\(628\) −6.37747 13.5878i −0.254489 0.542211i
\(629\) 18.2792 + 18.2792i 0.728840 + 0.728840i
\(630\) 0 0
\(631\) −28.8921 −1.15018 −0.575088 0.818092i \(-0.695032\pi\)
−0.575088 + 0.818092i \(0.695032\pi\)
\(632\) 6.68608 + 8.64618i 0.265958 + 0.343927i
\(633\) 0 0
\(634\) −48.3235 + 10.7764i −1.91917 + 0.427986i
\(635\) 1.93966 + 0.172367i 0.0769729 + 0.00684016i
\(636\) 0 0
\(637\) 29.7435i 1.17848i
\(638\) 1.16468 + 5.22265i 0.0461102 + 0.206767i
\(639\) 0 0
\(640\) 15.5483 + 19.9562i 0.614600 + 0.788839i
\(641\) 16.6914 0.659271 0.329636 0.944108i \(-0.393074\pi\)
0.329636 + 0.944108i \(0.393074\pi\)
\(642\) 0 0
\(643\) 5.22468i 0.206041i 0.994679 + 0.103021i \(0.0328507\pi\)
−0.994679 + 0.103021i \(0.967149\pi\)
\(644\) 3.00194 1.40897i 0.118293 0.0555212i
\(645\) 0 0
\(646\) −34.9327 + 7.79019i −1.37441 + 0.306501i
\(647\) −21.6797 21.6797i −0.852318 0.852318i 0.138100 0.990418i \(-0.455900\pi\)
−0.990418 + 0.138100i \(0.955900\pi\)
\(648\) 0 0
\(649\) 3.57273 0.140242
\(650\) −31.9406 + 1.34716i −1.25281 + 0.0528399i
\(651\) 0 0
\(652\) −20.1636 42.9603i −0.789666 1.68245i
\(653\) −22.7642 −0.890833 −0.445417 0.895323i \(-0.646944\pi\)
−0.445417 + 0.895323i \(0.646944\pi\)
\(654\) 0 0
\(655\) 30.0942 + 2.67431i 1.17588 + 0.104494i
\(656\) −14.0202 11.6455i −0.547398 0.454679i
\(657\) 0 0
\(658\) −1.16980 5.24560i −0.0456036 0.204495i
\(659\) 1.66201 + 1.66201i 0.0647427 + 0.0647427i 0.738737 0.673994i \(-0.235423\pi\)
−0.673994 + 0.738737i \(0.735423\pi\)
\(660\) 0 0
\(661\) −5.62818 + 5.62818i −0.218911 + 0.218911i −0.808039 0.589129i \(-0.799471\pi\)
0.589129 + 0.808039i \(0.299471\pi\)
\(662\) −18.0406 + 28.3963i −0.701168 + 1.10365i
\(663\) 0 0
\(664\) 32.3758 25.0362i 1.25642 0.971591i
\(665\) −6.36657 + 5.32739i −0.246885 + 0.206587i
\(666\) 0 0
\(667\) 13.8720i 0.537125i
\(668\) −1.07202 0.387153i −0.0414777 0.0149794i
\(669\) 0 0
\(670\) 6.40525 8.34548i 0.247456 0.322414i
\(671\) 3.67386i 0.141828i
\(672\) 0 0
\(673\) 0.278251 0.278251i 0.0107258 0.0107258i −0.701724 0.712449i \(-0.747586\pi\)
0.712449 + 0.701724i \(0.247586\pi\)
\(674\) −15.5494 + 24.4751i −0.598940 + 0.942744i
\(675\) 0 0
\(676\) −13.4706 + 6.32248i −0.518101 + 0.243172i
\(677\) −26.3591 −1.01306 −0.506531 0.862222i \(-0.669072\pi\)
−0.506531 + 0.862222i \(0.669072\pi\)
\(678\) 0 0
\(679\) 4.54840i 0.174551i
\(680\) −23.5620 + 15.0897i −0.903562 + 0.578664i
\(681\) 0 0
\(682\) −0.116416 0.0739609i −0.00445780 0.00283211i
\(683\) 2.83023 0.108296 0.0541479 0.998533i \(-0.482756\pi\)
0.0541479 + 0.998533i \(0.482756\pi\)
\(684\) 0 0
\(685\) −11.6632 1.03645i −0.445629 0.0396006i
\(686\) −10.5191 6.68296i −0.401622 0.255157i
\(687\) 0 0
\(688\) −19.1667 + 23.0752i −0.730724 + 0.879734i
\(689\) 12.4679i 0.474991i
\(690\) 0 0
\(691\) 22.1815 22.1815i 0.843825 0.843825i −0.145529 0.989354i \(-0.546488\pi\)
0.989354 + 0.145529i \(0.0464884\pi\)
\(692\) −27.9721 + 13.1288i −1.06334 + 0.499083i
\(693\) 0 0
\(694\) −23.1484 + 5.16223i −0.878702 + 0.195956i
\(695\) −17.2222 1.53044i −0.653276 0.0580531i
\(696\) 0 0
\(697\) 14.2537 14.2537i 0.539898 0.539898i
\(698\) 3.14560 + 1.99845i 0.119063 + 0.0756423i
\(699\) 0 0
\(700\) −3.24618 + 5.61953i −0.122694 + 0.212398i
\(701\) −16.2264 16.2264i −0.612864 0.612864i 0.330828 0.943691i \(-0.392672\pi\)
−0.943691 + 0.330828i \(0.892672\pi\)
\(702\) 0 0
\(703\) 23.6366 + 23.6366i 0.891472 + 0.891472i
\(704\) −4.80704 + 2.82360i −0.181172 + 0.106418i
\(705\) 0 0
\(706\) −40.7449 25.8858i −1.53345 0.974226i
\(707\) −1.69365 −0.0636965
\(708\) 0 0
\(709\) 25.3577 + 25.3577i 0.952329 + 0.952329i 0.998914 0.0465856i \(-0.0148340\pi\)
−0.0465856 + 0.998914i \(0.514834\pi\)
\(710\) −2.63882 + 3.43815i −0.0990331 + 0.129031i
\(711\) 0 0
\(712\) −5.79648 7.49579i −0.217232 0.280916i
\(713\) 0.252832 + 0.252832i 0.00946863 + 0.00946863i
\(714\) 0 0
\(715\) 0.623594 7.01735i 0.0233211 0.262434i
\(716\) 13.8452 + 5.00009i 0.517418 + 0.186862i
\(717\) 0 0
\(718\) 16.9088 3.77076i 0.631031 0.140724i
\(719\) −41.3374 −1.54163 −0.770813 0.637061i \(-0.780150\pi\)
−0.770813 + 0.637061i \(0.780150\pi\)
\(720\) 0 0
\(721\) 10.7065 0.398730
\(722\) −18.9452 + 4.22489i −0.705067 + 0.157234i
\(723\) 0 0
\(724\) 8.73236 24.1798i 0.324536 0.898635i
\(725\) 15.5105 + 22.2805i 0.576045 + 0.827477i
\(726\) 0 0
\(727\) −23.4630 23.4630i −0.870193 0.870193i 0.122300 0.992493i \(-0.460973\pi\)
−0.992493 + 0.122300i \(0.960973\pi\)
\(728\) −1.05237 + 8.23182i −0.0390033 + 0.305092i
\(729\) 0 0
\(730\) −11.3078 + 1.48737i −0.418521 + 0.0550500i
\(731\) −23.4595 23.4595i −0.867681 0.867681i
\(732\) 0 0
\(733\) −15.1628 −0.560051 −0.280025 0.959993i \(-0.590343\pi\)
−0.280025 + 0.959993i \(0.590343\pi\)
\(734\) 4.58000 + 2.90975i 0.169051 + 0.107401i
\(735\) 0 0
\(736\) 13.7564 4.43205i 0.507069 0.163368i
\(737\) 1.63931 + 1.63931i 0.0603848 + 0.0603848i
\(738\) 0 0
\(739\) −0.974343 0.974343i −0.0358418 0.0358418i 0.688959 0.724801i \(-0.258068\pi\)
−0.724801 + 0.688959i \(0.758068\pi\)
\(740\) 23.6962 + 11.0170i 0.871089 + 0.404994i
\(741\) 0 0
\(742\) 2.13633 + 1.35724i 0.0784272 + 0.0498260i
\(743\) −29.0897 + 29.0897i −1.06720 + 1.06720i −0.0696259 + 0.997573i \(0.522181\pi\)
−0.997573 + 0.0696259i \(0.977819\pi\)
\(744\) 0 0
\(745\) −1.18000 + 13.2786i −0.0432317 + 0.486490i
\(746\) 22.7538 5.07424i 0.833078 0.185781i
\(747\) 0 0
\(748\) −2.61978 5.58168i −0.0957887 0.204087i
\(749\) 7.02596 7.02596i 0.256723 0.256723i
\(750\) 0 0
\(751\) 7.77705i 0.283789i −0.989882 0.141894i \(-0.954681\pi\)
0.989882 0.141894i \(-0.0453193\pi\)
\(752\) −2.15808 23.3239i −0.0786970 0.850534i
\(753\) 0 0
\(754\) 29.3019 + 18.6159i 1.06711 + 0.677952i
\(755\) −17.8535 21.3361i −0.649755 0.776498i
\(756\) 0 0
\(757\) 1.42073 0.0516372 0.0258186 0.999667i \(-0.491781\pi\)
0.0258186 + 0.999667i \(0.491781\pi\)
\(758\) −23.2482 14.7699i −0.844413 0.536469i
\(759\) 0 0
\(760\) −30.4677 + 19.5123i −1.10518 + 0.707786i
\(761\) 26.6737i 0.966921i 0.875366 + 0.483460i \(0.160620\pi\)
−0.875366 + 0.483460i \(0.839380\pi\)
\(762\) 0 0
\(763\) −11.4538 −0.414656
\(764\) 12.8378 + 27.3521i 0.464456 + 0.989565i
\(765\) 0 0
\(766\) 12.3905 19.5029i 0.447687 0.704669i
\(767\) 16.3899 16.3899i 0.591805 0.591805i
\(768\) 0 0
\(769\) 45.8210i 1.65235i 0.563415 + 0.826174i \(0.309487\pi\)
−0.563415 + 0.826174i \(0.690513\pi\)
\(770\) −1.13451 0.870750i −0.0408850 0.0313797i
\(771\) 0 0
\(772\) −4.02707 + 11.1509i −0.144937 + 0.401330i
\(773\) 18.5473i 0.667101i −0.942732 0.333550i \(-0.891753\pi\)
0.942732 0.333550i \(-0.108247\pi\)
\(774\) 0 0
\(775\) −0.688782 0.123391i −0.0247418 0.00443233i
\(776\) −2.51378 + 19.6633i −0.0902393 + 0.705870i
\(777\) 0 0
\(778\) −16.9162 + 26.6264i −0.606474 + 0.954603i
\(779\) 18.4313 18.4313i 0.660370 0.660370i
\(780\) 0 0
\(781\) −0.675359 0.675359i −0.0241662 0.0241662i
\(782\) 3.47922 + 15.6015i 0.124417 + 0.557908i
\(783\) 0 0
\(784\) −20.2430 16.8142i −0.722964 0.600508i
\(785\) 12.8702 10.7695i 0.459358 0.384380i
\(786\) 0 0
\(787\) −21.3016 −0.759319 −0.379659 0.925126i \(-0.623959\pi\)
−0.379659 + 0.925126i \(0.623959\pi\)
\(788\) −7.29963 + 3.42610i −0.260039 + 0.122050i
\(789\) 0 0
\(790\) −7.44011 + 9.69381i −0.264707 + 0.344890i
\(791\) 2.32712 0.0827427
\(792\) 0 0
\(793\) 16.8538 + 16.8538i 0.598496 + 0.598496i
\(794\) −41.3482 + 9.22090i −1.46739 + 0.327237i
\(795\) 0 0
\(796\) 4.61468 + 9.83200i 0.163563 + 0.348486i
\(797\) 2.35457i 0.0834033i 0.999130 + 0.0417016i \(0.0132779\pi\)
−0.999130 + 0.0417016i \(0.986722\pi\)
\(798\) 0 0
\(799\) 25.9063 0.916500
\(800\) −17.1394 + 22.4998i −0.605968 + 0.795489i
\(801\) 0 0
\(802\) −6.13297 27.5014i −0.216563 0.971108i
\(803\) 2.51337i 0.0886949i
\(804\) 0 0
\(805\) 2.37930 + 2.84341i 0.0838592 + 0.100217i
\(806\) −0.873354 + 0.194763i −0.0307626 + 0.00686023i
\(807\) 0 0
\(808\) −7.32187 0.936037i −0.257582 0.0329297i
\(809\) 23.9476 0.841952 0.420976 0.907072i \(-0.361688\pi\)
0.420976 + 0.907072i \(0.361688\pi\)
\(810\) 0 0
\(811\) −1.33006 1.33006i −0.0467048 0.0467048i 0.683369 0.730073i \(-0.260514\pi\)
−0.730073 + 0.683369i \(0.760514\pi\)
\(812\) 6.37952 2.99425i 0.223877 0.105078i
\(813\) 0 0
\(814\) −3.08809 + 4.86072i −0.108238 + 0.170368i
\(815\) 40.6916 34.0498i 1.42537 1.19271i
\(816\) 0 0
\(817\) −30.3352 30.3352i −1.06129 1.06129i
\(818\) 1.81567 + 8.14182i 0.0634836 + 0.284672i
\(819\) 0 0
\(820\) 8.59083 18.4777i 0.300005 0.645271i
\(821\) −36.4676 + 36.4676i −1.27273 + 1.27273i −0.328076 + 0.944651i \(0.606400\pi\)
−0.944651 + 0.328076i \(0.893600\pi\)
\(822\) 0 0
\(823\) 26.3978 26.3978i 0.920170 0.920170i −0.0768712 0.997041i \(-0.524493\pi\)
0.997041 + 0.0768712i \(0.0244930\pi\)
\(824\) 46.2853 + 5.91718i 1.61243 + 0.206135i
\(825\) 0 0
\(826\) −1.02416 4.59252i −0.0356351 0.159794i
\(827\) 1.99830i 0.0694878i 0.999396 + 0.0347439i \(0.0110616\pi\)
−0.999396 + 0.0347439i \(0.988938\pi\)
\(828\) 0 0
\(829\) −13.0376 + 13.0376i −0.452813 + 0.452813i −0.896287 0.443474i \(-0.853746\pi\)
0.443474 + 0.896287i \(0.353746\pi\)
\(830\) 36.2986 + 27.8596i 1.25994 + 0.967021i
\(831\) 0 0
\(832\) −9.09901 + 35.0055i −0.315451 + 1.21360i
\(833\) 20.5801 20.5801i 0.713059 0.713059i
\(834\) 0 0
\(835\) 0.112797 1.26932i 0.00390352 0.0439266i
\(836\) −3.38761 7.21760i −0.117163 0.249626i
\(837\) 0 0
\(838\) 8.84194 13.9174i 0.305440 0.480769i
\(839\) 15.4102i 0.532018i 0.963971 + 0.266009i \(0.0857050\pi\)
−0.963971 + 0.266009i \(0.914295\pi\)
\(840\) 0 0
\(841\) 0.479815i 0.0165453i
\(842\) −28.9979 18.4228i −0.999333 0.634891i
\(843\) 0 0
\(844\) −3.10336 + 8.59317i −0.106822 + 0.295789i
\(845\) −10.6766 12.7593i −0.367287 0.438932i
\(846\) 0 0
\(847\) −4.82499 + 4.82499i −0.165789 + 0.165789i
\(848\) 8.48550 + 7.04822i 0.291393 + 0.242037i
\(849\) 0 0
\(850\) −23.0324 21.1682i −0.790006 0.726062i
\(851\) 10.5565 10.5565i 0.361872 0.361872i
\(852\) 0 0
\(853\) 7.96419i 0.272689i −0.990662 0.136344i \(-0.956465\pi\)
0.990662 0.136344i \(-0.0435353\pi\)
\(854\) 4.72251 1.05315i 0.161601 0.0360380i
\(855\) 0 0
\(856\) 34.2571 26.4910i 1.17088 0.905443i
\(857\) −5.35407 + 5.35407i −0.182891 + 0.182891i −0.792615 0.609723i \(-0.791281\pi\)
0.609723 + 0.792615i \(0.291281\pi\)
\(858\) 0 0
\(859\) 35.0058 35.0058i 1.19438 1.19438i 0.218559 0.975824i \(-0.429864\pi\)
0.975824 0.218559i \(-0.0701355\pi\)
\(860\) −30.4116 14.1392i −1.03703 0.482144i
\(861\) 0 0
\(862\) −44.4140 + 9.90457i −1.51275 + 0.337351i
\(863\) 36.7138 + 36.7138i 1.24975 + 1.24975i 0.955829 + 0.293923i \(0.0949610\pi\)
0.293923 + 0.955829i \(0.405039\pi\)
\(864\) 0 0
\(865\) −22.1703 26.4950i −0.753814 0.900856i
\(866\) −34.3336 21.8126i −1.16670 0.741224i
\(867\) 0 0
\(868\) −0.0617003 + 0.170847i −0.00209424 + 0.00579893i
\(869\) −1.90416 1.90416i −0.0645943 0.0645943i
\(870\) 0 0
\(871\) 15.0406 0.509633
\(872\) −49.5162 6.33022i −1.67683 0.214368i
\(873\) 0 0
\(874\) 4.49894 + 20.1741i 0.152179 + 0.682399i
\(875\) −7.00078 1.90662i −0.236669 0.0644555i
\(876\) 0 0
\(877\) 14.3410i 0.484262i −0.970244 0.242131i \(-0.922154\pi\)
0.970244 0.242131i \(-0.0778463\pi\)
\(878\) 48.8877 10.9022i 1.64988 0.367933i
\(879\) 0 0
\(880\) −4.42338 4.39137i −0.149112 0.148033i
\(881\) 13.6397 0.459533 0.229767 0.973246i \(-0.426204\pi\)
0.229767 + 0.973246i \(0.426204\pi\)
\(882\) 0 0
\(883\) 6.12563i 0.206144i −0.994674 0.103072i \(-0.967133\pi\)
0.994674 0.103072i \(-0.0328672\pi\)
\(884\) −37.6242 13.5877i −1.26544 0.457004i
\(885\) 0 0
\(886\) 0.935105 + 4.19319i 0.0314155 + 0.140873i
\(887\) −25.5187 25.5187i −0.856834 0.856834i 0.134130 0.990964i \(-0.457176\pi\)
−0.990964 + 0.134130i \(0.957176\pi\)
\(888\) 0 0
\(889\) 0.565166 0.0189551
\(890\) 6.45018 8.40403i 0.216211 0.281704i
\(891\) 0 0
\(892\) 21.7428 + 7.85227i 0.728003 + 0.262913i
\(893\) 33.4992 1.12101
\(894\) 0 0
\(895\) −1.45678 + 16.3933i −0.0486948 + 0.547967i
\(896\) 5.00755 + 5.36973i 0.167290 + 0.179390i
\(897\) 0 0
\(898\) −11.9474 + 2.66433i −0.398689 + 0.0889100i
\(899\) 0.537302 + 0.537302i 0.0179200 + 0.0179200i
\(900\) 0 0
\(901\) −8.62682 + 8.62682i −0.287401 + 0.287401i
\(902\) 3.79028 + 2.40802i 0.126203 + 0.0801784i
\(903\) 0 0
\(904\) 10.0604 + 1.28613i 0.334604 + 0.0427762i
\(905\) 28.6299 + 2.54418i 0.951691 + 0.0845715i
\(906\) 0 0
\(907\) 32.1815i 1.06857i 0.845305 + 0.534284i \(0.179419\pi\)
−0.845305 + 0.534284i \(0.820581\pi\)
\(908\) −2.78940 + 1.30921i −0.0925694 + 0.0434477i
\(909\) 0 0
\(910\) −9.19913 + 1.21000i −0.304948 + 0.0401112i
\(911\) 38.6282i 1.27981i −0.768455 0.639904i \(-0.778974\pi\)
0.768455 0.639904i \(-0.221026\pi\)
\(912\) 0 0
\(913\) −7.13018 + 7.13018i −0.235974 + 0.235974i
\(914\) −22.8868 14.5403i −0.757027 0.480950i
\(915\) 0 0
\(916\) 46.7264 + 16.8749i 1.54388 + 0.557563i
\(917\) 8.76867 0.289567
\(918\) 0 0
\(919\) 19.1924i 0.633099i 0.948576 + 0.316550i \(0.102524\pi\)
−0.948576 + 0.316550i \(0.897476\pi\)
\(920\) 8.71450 + 13.6074i 0.287309 + 0.448622i
\(921\) 0 0
\(922\) −1.28358 + 2.02038i −0.0422725 + 0.0665378i
\(923\) −6.19641 −0.203957
\(924\) 0 0
\(925\) −5.15194 + 28.7587i −0.169395 + 0.945580i
\(926\) 22.7170 35.7571i 0.746527 1.17505i
\(927\) 0 0
\(928\) 29.2343 9.41870i 0.959662 0.309184i
\(929\) 16.8576i 0.553081i 0.961002 + 0.276541i \(0.0891880\pi\)
−0.961002 + 0.276541i \(0.910812\pi\)
\(930\) 0 0
\(931\) 26.6119 26.6119i 0.872170 0.872170i
\(932\) 26.5765 + 9.59792i 0.870542 + 0.314390i
\(933\) 0 0
\(934\) −7.64764 34.2935i −0.250239 1.12212i
\(935\) 5.28692 4.42397i 0.172901 0.144679i
\(936\) 0 0
\(937\) −23.9511 + 23.9511i −0.782449 + 0.782449i −0.980243 0.197795i \(-0.936622\pi\)
0.197795 + 0.980243i \(0.436622\pi\)
\(938\) 1.63730 2.57715i 0.0534599 0.0841470i
\(939\) 0 0
\(940\) 24.5988 8.98480i 0.802323 0.293052i
\(941\) −14.2496 14.2496i −0.464525 0.464525i 0.435610 0.900135i \(-0.356533\pi\)
−0.900135 + 0.435610i \(0.856533\pi\)
\(942\) 0 0
\(943\) −8.23171 8.23171i −0.268061 0.268061i
\(944\) −1.88940 20.4200i −0.0614946 0.664616i
\(945\) 0 0
\(946\) 3.96325 6.23824i 0.128856 0.202823i
\(947\) −20.2943 −0.659477 −0.329738 0.944072i \(-0.606961\pi\)
−0.329738 + 0.944072i \(0.606961\pi\)
\(948\) 0 0
\(949\) −11.5301 11.5301i −0.374282 0.374282i
\(950\) −29.7829 27.3723i −0.966286 0.888075i
\(951\) 0 0
\(952\) −6.42391 + 4.96761i −0.208200 + 0.161001i
\(953\) 10.9257 + 10.9257i 0.353919 + 0.353919i 0.861565 0.507647i \(-0.169484\pi\)
−0.507647 + 0.861565i \(0.669484\pi\)
\(954\) 0 0
\(955\) −25.9077 + 21.6789i −0.838353 + 0.701514i
\(956\) 47.5730 22.3285i 1.53862 0.722157i
\(957\) 0 0
\(958\) 7.25726 + 32.5429i 0.234471 + 1.05141i
\(959\) −3.39836 −0.109739
\(960\) 0 0
\(961\) 30.9804 0.999368
\(962\) 8.13193 + 36.4651i 0.262184 + 1.17568i
\(963\) 0 0
\(964\) 0.205024 0.0962289i 0.00660339 0.00309932i
\(965\) −13.2032 1.17329i −0.425025 0.0377696i
\(966\) 0 0
\(967\) 10.7569 + 10.7569i 0.345918 + 0.345918i 0.858586 0.512669i \(-0.171343\pi\)
−0.512669 + 0.858586i \(0.671343\pi\)
\(968\) −23.5256 + 18.1923i −0.756142 + 0.584724i
\(969\) 0 0
\(970\) −21.9738 + 2.89032i −0.705537 + 0.0928025i
\(971\) 18.7456 + 18.7456i 0.601574 + 0.601574i 0.940730 0.339156i \(-0.110142\pi\)
−0.339156 + 0.940730i \(0.610142\pi\)
\(972\) 0 0
\(973\) −5.01811 −0.160873
\(974\) 2.82077 4.43995i 0.0903832 0.142265i
\(975\) 0 0
\(976\) 20.9980 1.94287i 0.672130 0.0621899i
\(977\) 26.3906 + 26.3906i 0.844309 + 0.844309i 0.989416 0.145107i \(-0.0463526\pi\)
−0.145107 + 0.989416i \(0.546353\pi\)
\(978\) 0 0
\(979\) 1.65081 + 1.65081i 0.0527602 + 0.0527602i
\(980\) 12.4038 26.6789i 0.396225 0.852228i
\(981\) 0 0
\(982\) −20.0448 + 31.5509i −0.639655 + 1.00683i
\(983\) 4.87875 4.87875i 0.155608 0.155608i −0.625009 0.780617i \(-0.714905\pi\)
0.780617 + 0.625009i \(0.214905\pi\)
\(984\) 0 0
\(985\) −5.78559 6.91415i −0.184344 0.220303i
\(986\) 7.39381 + 33.1553i 0.235467 + 1.05588i
\(987\) 0 0
\(988\) −48.6513 17.5701i −1.54781 0.558979i
\(989\) −13.5482 + 13.5482i −0.430807 + 0.430807i
\(990\) 0 0
\(991\) 61.2103i 1.94441i 0.234130 + 0.972205i \(0.424776\pi\)
−0.234130 + 0.972205i \(0.575224\pi\)
\(992\) −0.361160 + 0.704492i −0.0114668 + 0.0223677i
\(993\) 0 0
\(994\) −0.674533 + 1.06173i −0.0213949 + 0.0336760i
\(995\) −9.31279 + 7.79271i −0.295235 + 0.247046i
\(996\) 0 0
\(997\) 39.1082 1.23857 0.619284 0.785167i \(-0.287423\pi\)
0.619284 + 0.785167i \(0.287423\pi\)
\(998\) 10.3961 16.3637i 0.329083 0.517984i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.2.bd.g.307.5 18
3.2 odd 2 80.2.j.b.67.5 yes 18
5.3 odd 4 720.2.z.g.163.9 18
12.11 even 2 320.2.j.b.47.9 18
15.2 even 4 400.2.s.d.243.9 18
15.8 even 4 80.2.s.b.3.1 yes 18
15.14 odd 2 400.2.j.d.307.5 18
16.11 odd 4 720.2.z.g.667.9 18
24.5 odd 2 640.2.j.d.607.9 18
24.11 even 2 640.2.j.c.607.1 18
48.5 odd 4 320.2.s.b.207.1 18
48.11 even 4 80.2.s.b.27.1 yes 18
48.29 odd 4 640.2.s.c.287.9 18
48.35 even 4 640.2.s.d.287.1 18
60.23 odd 4 320.2.s.b.303.1 18
60.47 odd 4 1600.2.s.d.943.9 18
60.59 even 2 1600.2.j.d.1007.1 18
80.43 even 4 inner 720.2.bd.g.523.5 18
120.53 even 4 640.2.s.d.223.1 18
120.83 odd 4 640.2.s.c.223.9 18
240.53 even 4 320.2.j.b.143.1 18
240.59 even 4 400.2.s.d.107.9 18
240.83 odd 4 640.2.j.d.543.1 18
240.107 odd 4 400.2.j.d.43.5 18
240.149 odd 4 1600.2.s.d.207.9 18
240.173 even 4 640.2.j.c.543.9 18
240.197 even 4 1600.2.j.d.143.9 18
240.203 odd 4 80.2.j.b.43.5 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
80.2.j.b.43.5 18 240.203 odd 4
80.2.j.b.67.5 yes 18 3.2 odd 2
80.2.s.b.3.1 yes 18 15.8 even 4
80.2.s.b.27.1 yes 18 48.11 even 4
320.2.j.b.47.9 18 12.11 even 2
320.2.j.b.143.1 18 240.53 even 4
320.2.s.b.207.1 18 48.5 odd 4
320.2.s.b.303.1 18 60.23 odd 4
400.2.j.d.43.5 18 240.107 odd 4
400.2.j.d.307.5 18 15.14 odd 2
400.2.s.d.107.9 18 240.59 even 4
400.2.s.d.243.9 18 15.2 even 4
640.2.j.c.543.9 18 240.173 even 4
640.2.j.c.607.1 18 24.11 even 2
640.2.j.d.543.1 18 240.83 odd 4
640.2.j.d.607.9 18 24.5 odd 2
640.2.s.c.223.9 18 120.83 odd 4
640.2.s.c.287.9 18 48.29 odd 4
640.2.s.d.223.1 18 120.53 even 4
640.2.s.d.287.1 18 48.35 even 4
720.2.z.g.163.9 18 5.3 odd 4
720.2.z.g.667.9 18 16.11 odd 4
720.2.bd.g.307.5 18 1.1 even 1 trivial
720.2.bd.g.523.5 18 80.43 even 4 inner
1600.2.j.d.143.9 18 240.197 even 4
1600.2.j.d.1007.1 18 60.59 even 2
1600.2.s.d.207.9 18 240.149 odd 4
1600.2.s.d.943.9 18 60.47 odd 4