Properties

Label 720.2.cp.c
Level $720$
Weight $2$
Character orbit 720.cp
Analytic conductor $5.749$
Analytic rank $0$
Dimension $552$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,2,Mod(43,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([6, 3, 8, 9]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.43");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 720.cp (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.74922894553\)
Analytic rank: \(0\)
Dimension: \(552\)
Relative dimension: \(138\) over \(\Q(\zeta_{12})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 552 q - 4 q^{2} - 4 q^{5} - 2 q^{6} - 10 q^{7} + 8 q^{8} - 24 q^{9} - 24 q^{10} - 2 q^{11} - 22 q^{12} + 6 q^{14} + 4 q^{16} + 22 q^{18} - 24 q^{19} - 10 q^{20} - 26 q^{21} - 12 q^{22} - 2 q^{23} + 24 q^{24}+ \cdots + 38 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
43.1 −1.41409 + 0.0188434i 1.34974 + 1.08545i 1.99929 0.0532925i −2.14376 0.635826i −1.92910 1.50949i −0.966937 3.60866i −2.82617 + 0.113034i 0.643581 + 2.93015i 3.04345 + 0.858717i
43.2 −1.41247 0.0702016i −1.01976 + 1.40003i 1.99014 + 0.198315i 1.05820 1.96983i 1.53866 1.90592i 1.01777 + 3.79837i −2.79710 0.419826i −0.920188 2.85539i −1.63296 + 2.70803i
43.3 −1.41149 + 0.0876752i −0.215200 1.71863i 1.98463 0.247506i −1.01093 1.99450i 0.454434 + 2.40697i 0.411375 + 1.53527i −2.77959 + 0.523355i −2.90738 + 0.739698i 1.60179 + 2.72659i
43.4 −1.40293 + 0.178284i −1.05328 1.37499i 1.93643 0.500241i 0.102813 + 2.23370i 1.72282 + 1.74123i −0.610791 2.27950i −2.62749 + 1.04704i −0.781183 + 2.89651i −0.542473 3.11540i
43.5 −1.40054 0.196170i −0.497387 + 1.65910i 1.92303 + 0.549489i 1.35084 + 1.78192i 1.02208 2.22606i −0.485341 1.81132i −2.58550 1.14682i −2.50521 1.65043i −1.54234 2.76065i
43.6 −1.40025 0.198247i 0.561422 + 1.63854i 1.92140 + 0.555191i −0.603736 + 2.15302i −0.461296 2.40566i 1.00965 + 3.76807i −2.58037 1.15832i −2.36961 + 1.83982i 1.27221 2.89508i
43.7 −1.39798 0.213632i −1.64555 0.540535i 1.90872 + 0.597310i −1.42026 1.72710i 2.18497 + 1.10720i −0.670633 2.50284i −2.54076 1.24279i 2.41564 + 1.77895i 1.61653 + 2.71787i
43.8 −1.39793 0.214009i −1.62901 0.588487i 1.90840 + 0.598338i 1.97483 1.04883i 2.15130 + 1.17129i −0.152150 0.567831i −2.53975 1.24485i 2.30737 + 1.91731i −2.98513 + 1.04356i
43.9 −1.39443 + 0.235709i 1.64006 0.556965i 1.88888 0.657359i −2.15314 0.603319i −2.15567 + 1.16323i 1.12247 + 4.18911i −2.47897 + 1.36187i 2.37958 1.82691i 3.14461 + 0.333775i
43.10 −1.38533 0.284376i 1.72211 + 0.185328i 1.83826 + 0.787907i 2.21864 + 0.278633i −2.33298 0.746465i 0.407786 + 1.52188i −2.32253 1.61427i 2.93131 + 0.638308i −2.99430 1.01693i
43.11 −1.37801 + 0.317940i 0.530337 1.64886i 1.79783 0.876251i 2.23596 0.0223866i −0.206570 + 2.44076i 0.341664 + 1.27511i −2.19883 + 1.77909i −2.43749 1.74890i −3.07405 + 0.741750i
43.12 −1.37740 + 0.320569i −1.36657 + 1.06418i 1.79447 0.883104i −2.02806 + 0.941796i 1.54117 1.90389i −0.282144 1.05298i −2.18861 + 1.79164i 0.735024 2.90856i 2.49154 1.94736i
43.13 −1.37142 0.345271i 1.33343 1.10542i 1.76158 + 0.947022i −2.11392 + 0.728926i −2.21037 + 1.05560i −0.560361 2.09130i −2.08888 1.90698i 0.556096 2.94801i 3.15075 0.269786i
43.14 −1.35712 + 0.397789i −0.369808 + 1.69211i 1.68353 1.07969i 1.59239 1.56981i −0.171230 2.44350i −0.858922 3.20554i −1.85525 + 2.13495i −2.72648 1.25151i −1.53661 + 2.76384i
43.15 −1.34706 + 0.430617i 1.63620 0.568189i 1.62914 1.16013i 0.768163 2.09998i −1.95939 + 1.46996i −0.894573 3.33859i −1.69497 + 2.26430i 2.35432 1.85935i −0.130473 + 3.15958i
43.16 −1.33912 0.454709i 0.196655 1.72085i 1.58648 + 1.21782i −0.252088 + 2.22181i −1.04583 + 2.21500i 0.815512 + 3.04353i −1.57073 2.35219i −2.92265 0.676826i 1.34785 2.86065i
43.17 −1.33849 0.456551i 0.908977 + 1.47437i 1.58312 + 1.22218i 0.280705 2.21838i −0.543534 2.38842i −0.102332 0.381909i −1.56101 2.35865i −1.34752 + 2.68033i −1.38852 + 2.84113i
43.18 −1.33564 + 0.464815i −1.72879 + 0.106310i 1.56789 1.24166i 1.55947 + 1.60251i 2.25963 0.945558i 1.21989 + 4.55271i −1.51701 + 2.38719i 2.97740 0.367576i −2.82777 1.41552i
43.19 −1.26295 0.636368i −1.68434 0.403713i 1.19007 + 1.60740i −2.04303 + 0.908855i 1.87033 + 1.58173i 0.945145 + 3.52733i −0.480101 2.78738i 2.67403 + 1.35998i 3.15861 + 0.152285i
43.20 −1.25666 0.648703i 1.70373 0.311958i 1.15837 + 1.63039i −0.382631 + 2.20309i −2.34337 0.713188i −0.689282 2.57244i −0.398032 2.80028i 2.80536 1.06298i 1.90998 2.52031i
See next 80 embeddings (of 552 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 43.138
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
9.c even 3 1 inner
80.j even 4 1 inner
720.cp even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.2.cp.c 552
5.c odd 4 1 720.2.ct.c yes 552
9.c even 3 1 inner 720.2.cp.c 552
16.f odd 4 1 720.2.ct.c yes 552
45.k odd 12 1 720.2.ct.c yes 552
80.j even 4 1 inner 720.2.cp.c 552
144.v odd 12 1 720.2.ct.c yes 552
720.cp even 12 1 inner 720.2.cp.c 552
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
720.2.cp.c 552 1.a even 1 1 trivial
720.2.cp.c 552 9.c even 3 1 inner
720.2.cp.c 552 80.j even 4 1 inner
720.2.cp.c 552 720.cp even 12 1 inner
720.2.ct.c yes 552 5.c odd 4 1
720.2.ct.c yes 552 16.f odd 4 1
720.2.ct.c yes 552 45.k odd 12 1
720.2.ct.c yes 552 144.v odd 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{552} + 10 T_{7}^{551} + 50 T_{7}^{550} + 264 T_{7}^{549} - 6597 T_{7}^{548} + \cdots + 34\!\cdots\!36 \) acting on \(S_{2}^{\mathrm{new}}(720, [\chi])\). Copy content Toggle raw display