Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [720,2,Mod(179,720)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 2, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("720.179");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 720.u (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.74922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(96\) |
Relative dimension: | \(48\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
179.1 | −1.41373 | + | 0.0371259i | 0 | 1.99724 | − | 0.104972i | −1.81012 | − | 1.31281i | 0 | 1.40695i | −2.81966 | + | 0.222551i | 0 | 2.60775 | + | 1.78875i | ||||||||
179.2 | −1.41373 | + | 0.0371259i | 0 | 1.99724 | − | 0.104972i | 1.31281 | + | 1.81012i | 0 | − | 1.40695i | −2.81966 | + | 0.222551i | 0 | −1.92316 | − | 2.51027i | |||||||
179.3 | −1.39867 | + | 0.209116i | 0 | 1.91254 | − | 0.584968i | 1.41522 | − | 1.73123i | 0 | − | 3.80565i | −2.55268 | + | 1.21812i | 0 | −1.61739 | + | 2.71736i | |||||||
179.4 | −1.39867 | + | 0.209116i | 0 | 1.91254 | − | 0.584968i | 1.73123 | − | 1.41522i | 0 | 3.80565i | −2.55268 | + | 1.21812i | 0 | −2.12547 | + | 2.34145i | ||||||||
179.5 | −1.31018 | − | 0.532382i | 0 | 1.43314 | + | 1.39503i | −1.50698 | − | 1.65197i | 0 | − | 4.30751i | −1.13498 | − | 2.59072i | 0 | 1.09494 | + | 2.96667i | |||||||
179.6 | −1.31018 | − | 0.532382i | 0 | 1.43314 | + | 1.39503i | 1.65197 | + | 1.50698i | 0 | 4.30751i | −1.13498 | − | 2.59072i | 0 | −1.36208 | − | 2.85390i | ||||||||
179.7 | −1.23687 | + | 0.685679i | 0 | 1.05969 | − | 1.69619i | −2.19631 | + | 0.419806i | 0 | 0.263783i | −0.147653 | + | 2.82457i | 0 | 2.42869 | − | 2.02521i | ||||||||
179.8 | −1.23687 | + | 0.685679i | 0 | 1.05969 | − | 1.69619i | −0.419806 | + | 2.19631i | 0 | − | 0.263783i | −0.147653 | + | 2.82457i | 0 | −0.986717 | − | 3.00440i | |||||||
179.9 | −1.22941 | − | 0.698958i | 0 | 1.02291 | + | 1.71862i | −1.91479 | + | 1.15480i | 0 | 3.02955i | −0.0563436 | − | 2.82787i | 0 | 3.16123 | − | 0.0813664i | ||||||||
179.10 | −1.22941 | − | 0.698958i | 0 | 1.02291 | + | 1.71862i | −1.15480 | + | 1.91479i | 0 | − | 3.02955i | −0.0563436 | − | 2.82787i | 0 | 2.75809 | − | 1.54692i | |||||||
179.11 | −1.04776 | − | 0.949842i | 0 | 0.195601 | + | 1.99041i | 0.469629 | − | 2.18619i | 0 | 2.94937i | 1.68563 | − | 2.27126i | 0 | −2.56860 | + | 1.84453i | ||||||||
179.12 | −1.04776 | − | 0.949842i | 0 | 0.195601 | + | 1.99041i | 2.18619 | − | 0.469629i | 0 | − | 2.94937i | 1.68563 | − | 2.27126i | 0 | −2.73668 | − | 1.58448i | |||||||
179.13 | −0.956592 | + | 1.04160i | 0 | −0.169864 | − | 1.99277i | 1.11222 | − | 1.93984i | 0 | − | 1.78786i | 2.23816 | + | 1.72934i | 0 | 0.956594 | + | 3.01412i | |||||||
179.14 | −0.956592 | + | 1.04160i | 0 | −0.169864 | − | 1.99277i | 1.93984 | − | 1.11222i | 0 | 1.78786i | 2.23816 | + | 1.72934i | 0 | −0.697143 | + | 3.08448i | ||||||||
179.15 | −0.638599 | − | 1.26182i | 0 | −1.18438 | + | 1.61160i | −2.14049 | − | 0.646750i | 0 | − | 0.594230i | 2.78989 | + | 0.465314i | 0 | 0.550835 | + | 3.11393i | |||||||
179.16 | −0.638599 | − | 1.26182i | 0 | −1.18438 | + | 1.61160i | 0.646750 | + | 2.14049i | 0 | 0.594230i | 2.78989 | + | 0.465314i | 0 | 2.28790 | − | 2.18300i | ||||||||
179.17 | −0.612434 | − | 1.27473i | 0 | −1.24985 | + | 1.56137i | −0.263678 | − | 2.22047i | 0 | 2.95946i | 2.75577 | + | 0.636981i | 0 | −2.66900 | + | 1.69601i | ||||||||
179.18 | −0.612434 | − | 1.27473i | 0 | −1.24985 | + | 1.56137i | 2.22047 | + | 0.263678i | 0 | − | 2.95946i | 2.75577 | + | 0.636981i | 0 | −1.02377 | − | 2.99197i | |||||||
179.19 | −0.581659 | + | 1.28906i | 0 | −1.32335 | − | 1.49958i | −2.23581 | − | 0.0342493i | 0 | 4.97879i | 2.70279 | − | 0.833625i | 0 | 1.34463 | − | 2.86216i | ||||||||
179.20 | −0.581659 | + | 1.28906i | 0 | −1.32335 | − | 1.49958i | 0.0342493 | + | 2.23581i | 0 | − | 4.97879i | 2.70279 | − | 0.833625i | 0 | −2.90201 | − | 1.25633i | |||||||
See all 96 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
3.b | odd | 2 | 1 | inner |
5.b | even | 2 | 1 | inner |
15.d | odd | 2 | 1 | inner |
16.f | odd | 4 | 1 | inner |
48.k | even | 4 | 1 | inner |
80.k | odd | 4 | 1 | inner |
240.t | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 720.2.u.a | ✓ | 96 |
3.b | odd | 2 | 1 | inner | 720.2.u.a | ✓ | 96 |
4.b | odd | 2 | 1 | 2880.2.u.a | 96 | ||
5.b | even | 2 | 1 | inner | 720.2.u.a | ✓ | 96 |
12.b | even | 2 | 1 | 2880.2.u.a | 96 | ||
15.d | odd | 2 | 1 | inner | 720.2.u.a | ✓ | 96 |
16.e | even | 4 | 1 | 2880.2.u.a | 96 | ||
16.f | odd | 4 | 1 | inner | 720.2.u.a | ✓ | 96 |
20.d | odd | 2 | 1 | 2880.2.u.a | 96 | ||
48.i | odd | 4 | 1 | 2880.2.u.a | 96 | ||
48.k | even | 4 | 1 | inner | 720.2.u.a | ✓ | 96 |
60.h | even | 2 | 1 | 2880.2.u.a | 96 | ||
80.k | odd | 4 | 1 | inner | 720.2.u.a | ✓ | 96 |
80.q | even | 4 | 1 | 2880.2.u.a | 96 | ||
240.t | even | 4 | 1 | inner | 720.2.u.a | ✓ | 96 |
240.bm | odd | 4 | 1 | 2880.2.u.a | 96 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
720.2.u.a | ✓ | 96 | 1.a | even | 1 | 1 | trivial |
720.2.u.a | ✓ | 96 | 3.b | odd | 2 | 1 | inner |
720.2.u.a | ✓ | 96 | 5.b | even | 2 | 1 | inner |
720.2.u.a | ✓ | 96 | 15.d | odd | 2 | 1 | inner |
720.2.u.a | ✓ | 96 | 16.f | odd | 4 | 1 | inner |
720.2.u.a | ✓ | 96 | 48.k | even | 4 | 1 | inner |
720.2.u.a | ✓ | 96 | 80.k | odd | 4 | 1 | inner |
720.2.u.a | ✓ | 96 | 240.t | even | 4 | 1 | inner |
2880.2.u.a | 96 | 4.b | odd | 2 | 1 | ||
2880.2.u.a | 96 | 12.b | even | 2 | 1 | ||
2880.2.u.a | 96 | 16.e | even | 4 | 1 | ||
2880.2.u.a | 96 | 20.d | odd | 2 | 1 | ||
2880.2.u.a | 96 | 48.i | odd | 4 | 1 | ||
2880.2.u.a | 96 | 60.h | even | 2 | 1 | ||
2880.2.u.a | 96 | 80.q | even | 4 | 1 | ||
2880.2.u.a | 96 | 240.bm | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(720, [\chi])\).