gp: [N,k,chi] = [720,2,Mod(163,720)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
sage: from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(720, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 3, 0, 3]))
N = Newforms(chi, 2, names="a")
magma: //Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("720.163");
S:= CuspForms(chi, 2);
N := Newforms(S);
Newform invariants
sage: traces = [6,0,0,2,-6,0,-2]
f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
gp: f = lf[1] \\ Warning: the index may be different
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the q q q -expansion are expressed in terms of a basis 1 , β 1 , … , β 5 1,\beta_1,\ldots,\beta_{5} 1 , β 1 , … , β 5 for the coefficient ring described below.
We also show the integral q q q -expansion of the trace form .
Basis of coefficient ring in terms of a root ν \nu ν of
x 6 − 2 x 5 + 3 x 4 − 6 x 3 + 6 x 2 − 8 x + 8 x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 x 6 − 2 x 5 + 3 x 4 − 6 x 3 + 6 x 2 − 8 x + 8
x^6 - 2*x^5 + 3*x^4 - 6*x^3 + 6*x^2 - 8*x + 8
:
β 1 \beta_{1} β 1 = = =
ν \nu ν
v
β 2 \beta_{2} β 2 = = =
( ν 5 + 3 ν 3 + 2 ν − 8 ) / 4 ( \nu^{5} + 3\nu^{3} + 2\nu - 8 ) / 4 ( ν 5 + 3 ν 3 + 2 ν − 8 ) / 4
(v^5 + 3*v^3 + 2*v - 8) / 4
β 3 \beta_{3} β 3 = = =
( ν 5 + 3 ν 3 − 4 ν 2 + 2 ν − 8 ) / 4 ( \nu^{5} + 3\nu^{3} - 4\nu^{2} + 2\nu - 8 ) / 4 ( ν 5 + 3 ν 3 − 4 ν 2 + 2 ν − 8 ) / 4
(v^5 + 3*v^3 - 4*v^2 + 2*v - 8) / 4
β 4 \beta_{4} β 4 = = =
( − ν 5 − ν 3 + 2 ν 2 + 4 ) / 2 ( -\nu^{5} - \nu^{3} + 2\nu^{2} + 4 ) / 2 ( − ν 5 − ν 3 + 2 ν 2 + 4 ) / 2
(-v^5 - v^3 + 2*v^2 + 4) / 2
β 5 \beta_{5} β 5 = = =
− ν 5 + ν 4 − 2 ν 3 + 3 ν 2 − 2 ν + 5 -\nu^{5} + \nu^{4} - 2\nu^{3} + 3\nu^{2} - 2\nu + 5 − ν 5 + ν 4 − 2 ν 3 + 3 ν 2 − 2 ν + 5
-v^5 + v^4 - 2*v^3 + 3*v^2 - 2*v + 5
ν \nu ν = = =
β 1 \beta_1 β 1
b1
ν 2 \nu^{2} ν 2 = = =
− β 3 + β 2 -\beta_{3} + \beta_{2} − β 3 + β 2
-b3 + b2
ν 3 \nu^{3} ν 3 = = =
β 4 + β 3 + β 2 − β 1 + 2 \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 2 β 4 + β 3 + β 2 − β 1 + 2
b4 + b3 + b2 - b1 + 2
ν 4 \nu^{4} ν 4 = = =
β 5 − β 4 + 2 β 3 + β 1 + 1 \beta_{5} - \beta_{4} + 2\beta_{3} + \beta _1 + 1 β 5 − β 4 + 2 β 3 + β 1 + 1
b5 - b4 + 2*b3 + b1 + 1
ν 5 \nu^{5} ν 5 = = =
− 3 β 4 − 3 β 3 + β 2 + β 1 + 2 -3\beta_{4} - 3\beta_{3} + \beta_{2} + \beta _1 + 2 − 3 β 4 − 3 β 3 + β 2 + β 1 + 2
-3*b4 - 3*b3 + b2 + b1 + 2
Character values
We give the values of χ \chi χ on generators for ( Z / 720 Z ) × \left(\mathbb{Z}/720\mathbb{Z}\right)^\times ( Z / 7 2 0 Z ) × .
n n n
181 181 1 8 1
271 271 2 7 1
577 577 5 7 7
641 641 6 4 1
χ ( n ) \chi(n) χ ( n )
− β 3 -\beta_{3} − β 3
− 1 -1 − 1
− β 3 -\beta_{3} − β 3
1 1 1
For each embedding ι m \iota_m ι m of the coefficient field, the values ι m ( a n ) \iota_m(a_n) ι m ( a n ) are shown below.
For more information on an embedded modular form you can click on its label.
gp: mfembed(f)
Refresh table
This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S 2 n e w ( 720 , [ χ ] ) S_{2}^{\mathrm{new}}(720, [\chi]) S 2 n e w ( 7 2 0 , [ χ ] ) :
T 7 6 + 2 T 7 5 + 2 T 7 4 − 32 T 7 3 + 196 T 7 2 − 56 T 7 + 8 T_{7}^{6} + 2T_{7}^{5} + 2T_{7}^{4} - 32T_{7}^{3} + 196T_{7}^{2} - 56T_{7} + 8 T 7 6 + 2 T 7 5 + 2 T 7 4 − 3 2 T 7 3 + 1 9 6 T 7 2 − 5 6 T 7 + 8
T7^6 + 2*T7^5 + 2*T7^4 - 32*T7^3 + 196*T7^2 - 56*T7 + 8
T 11 6 − 2 T 11 5 + 2 T 11 4 + 32 T 11 3 + 196 T 11 2 + 56 T 11 + 8 T_{11}^{6} - 2T_{11}^{5} + 2T_{11}^{4} + 32T_{11}^{3} + 196T_{11}^{2} + 56T_{11} + 8 T 1 1 6 − 2 T 1 1 5 + 2 T 1 1 4 + 3 2 T 1 1 3 + 1 9 6 T 1 1 2 + 5 6 T 1 1 + 8
T11^6 - 2*T11^5 + 2*T11^4 + 32*T11^3 + 196*T11^2 + 56*T11 + 8
p p p
F p ( T ) F_p(T) F p ( T )
2 2 2
T 6 − T 4 + 2 T 3 + ⋯ + 8 T^{6} - T^{4} + 2 T^{3} + \cdots + 8 T 6 − T 4 + 2 T 3 + ⋯ + 8
T^6 - T^4 + 2*T^3 - 2*T^2 + 8
3 3 3
T 6 T^{6} T 6
T^6
5 5 5
( T 2 + 2 T + 5 ) 3 (T^{2} + 2 T + 5)^{3} ( T 2 + 2 T + 5 ) 3
(T^2 + 2*T + 5)^3
7 7 7
T 6 + 2 T 5 + ⋯ + 8 T^{6} + 2 T^{5} + \cdots + 8 T 6 + 2 T 5 + ⋯ + 8
T^6 + 2*T^5 + 2*T^4 - 32*T^3 + 196*T^2 - 56*T + 8
11 11 1 1
T 6 − 2 T 5 + ⋯ + 8 T^{6} - 2 T^{5} + \cdots + 8 T 6 − 2 T 5 + ⋯ + 8
T^6 - 2*T^5 + 2*T^4 + 32*T^3 + 196*T^2 + 56*T + 8
13 13 1 3
T 6 T^{6} T 6
T^6
17 17 1 7
T 6 − 2 T 5 + ⋯ + 8 T^{6} - 2 T^{5} + \cdots + 8 T 6 − 2 T 5 + ⋯ + 8
T^6 - 2*T^5 + 2*T^4 + 64*T^3 + 1156*T^2 - 136*T + 8
19 19 1 9
T 6 + 10 T 5 + ⋯ + 14792 T^{6} + 10 T^{5} + \cdots + 14792 T 6 + 1 0 T 5 + ⋯ + 1 4 7 9 2
T^6 + 10*T^5 + 50*T^4 + 32*T^3 + 196*T^2 + 2408*T + 14792
23 23 2 3
T 6 + 10 T 5 + ⋯ + 14792 T^{6} + 10 T^{5} + \cdots + 14792 T 6 + 1 0 T 5 + ⋯ + 1 4 7 9 2
T^6 + 10*T^5 + 50*T^4 + 32*T^3 + 196*T^2 + 2408*T + 14792
29 29 2 9
( T 2 − 2 T + 2 ) 3 (T^{2} - 2 T + 2)^{3} ( T 2 − 2 T + 2 ) 3
(T^2 - 2*T + 2)^3
31 31 3 1
T 6 + 60 T 4 + ⋯ + 64 T^{6} + 60 T^{4} + \cdots + 64 T 6 + 6 0 T 4 + ⋯ + 6 4
T^6 + 60*T^4 + 752*T^2 + 64
37 37 3 7
T 6 + 144 T 4 + ⋯ + 16384 T^{6} + 144 T^{4} + \cdots + 16384 T 6 + 1 4 4 T 4 + ⋯ + 1 6 3 8 4
T^6 + 144*T^4 + 5120*T^2 + 16384
41 41 4 1
( T 2 + 16 ) 3 (T^{2} + 16)^{3} ( T 2 + 1 6 ) 3
(T^2 + 16)^3
43 43 4 3
T 6 + 124 T 4 + ⋯ + 18496 T^{6} + 124 T^{4} + \cdots + 18496 T 6 + 1 2 4 T 4 + ⋯ + 1 8 4 9 6
T^6 + 124*T^4 + 3056*T^2 + 18496
47 47 4 7
T 6 + 10 T 5 + ⋯ + 412232 T^{6} + 10 T^{5} + \cdots + 412232 T 6 + 1 0 T 5 + ⋯ + 4 1 2 2 3 2
T^6 + 10*T^5 + 50*T^4 - 32*T^3 + 8836*T^2 + 85352*T + 412232
53 53 5 3
( T 3 − 6 T 2 + ⋯ + 344 ) 2 (T^{3} - 6 T^{2} + \cdots + 344)^{2} ( T 3 − 6 T 2 + ⋯ + 3 4 4 ) 2
(T^3 - 6*T^2 - 100*T + 344)^2
59 59 5 9
T 6 − 6 T 5 + ⋯ + 35912 T^{6} - 6 T^{5} + \cdots + 35912 T 6 − 6 T 5 + ⋯ + 3 5 9 1 2
T^6 - 6*T^5 + 18*T^4 + 928*T^3 + 12100*T^2 + 29480*T + 35912
61 61 6 1
T 6 + 14 T 5 + ⋯ + 4232 T^{6} + 14 T^{5} + \cdots + 4232 T 6 + 1 4 T 5 + ⋯ + 4 2 3 2
T^6 + 14*T^5 + 98*T^4 + 64*T^3 + 4*T^2 + 184*T + 4232
67 67 6 7
T 6 + 380 T 4 + ⋯ + 1459264 T^{6} + 380 T^{4} + \cdots + 1459264 T 6 + 3 8 0 T 4 + ⋯ + 1 4 5 9 2 6 4
T^6 + 380*T^4 + 44272*T^2 + 1459264
71 71 7 1
( T 3 − 8 T 2 + ⋯ + 512 ) 2 (T^{3} - 8 T^{2} + \cdots + 512)^{2} ( T 3 − 8 T 2 + ⋯ + 5 1 2 ) 2
(T^3 - 8*T^2 - 96*T + 512)^2
73 73 7 3
T 6 + 10 T 5 + ⋯ + 42632 T^{6} + 10 T^{5} + \cdots + 42632 T 6 + 1 0 T 5 + ⋯ + 4 2 6 3 2
T^6 + 10*T^5 + 50*T^4 - 928*T^3 + 14884*T^2 + 35624*T + 42632
79 79 7 9
( T 3 − 8 T 2 + ⋯ + 512 ) 2 (T^{3} - 8 T^{2} + \cdots + 512)^{2} ( T 3 − 8 T 2 + ⋯ + 5 1 2 ) 2
(T^3 - 8*T^2 - 96*T + 512)^2
83 83 8 3
( T 3 − 20 T 2 + ⋯ + 704 ) 2 (T^{3} - 20 T^{2} + \cdots + 704)^{2} ( T 3 − 2 0 T 2 + ⋯ + 7 0 4 ) 2
(T^3 - 20*T^2 + 16*T + 704)^2
89 89 8 9
( T 3 − 14 T 2 + ⋯ + 184 ) 2 (T^{3} - 14 T^{2} + \cdots + 184)^{2} ( T 3 − 1 4 T 2 + ⋯ + 1 8 4 ) 2
(T^3 - 14*T^2 - 4*T + 184)^2
97 97 9 7
T 6 + 10 T 5 + ⋯ + 1338248 T^{6} + 10 T^{5} + \cdots + 1338248 T 6 + 1 0 T 5 + ⋯ + 1 3 3 8 2 4 8
T^6 + 10*T^5 + 50*T^4 - 544*T^3 + 47524*T^2 + 356648*T + 1338248
show more
show less