Properties

Label 720.2.z.e
Level 720720
Weight 22
Character orbit 720.z
Analytic conductor 5.7495.749
Analytic rank 00
Dimension 66
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [720,2,Mod(163,720)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(720, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([2, 3, 0, 3])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("720.163"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 720=24325 720 = 2^{4} \cdot 3^{2} \cdot 5
Weight: k k == 2 2
Character orbit: [χ][\chi] == 720.z (of order 44, degree 22, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,2,-6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.749228945535.74922894553
Analytic rank: 00
Dimension: 66
Relative dimension: 33 over Q(i)\Q(i)
Coefficient field: 6.0.399424.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x62x5+3x46x3+6x28x+8 x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 240)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β51,\beta_1,\ldots,\beta_{5} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β4q2+(β3β2)q4+(2β31)q5+(β5+β4+β2β1)q7+(β5+β4+2β3+1)q8+(β4+2β1)q10++(4β5+8β33β14)q98+O(q100) q + \beta_{4} q^{2} + (\beta_{3} - \beta_{2}) q^{4} + (2 \beta_{3} - 1) q^{5} + (\beta_{5} + \beta_{4} + \beta_{2} - \beta_1) q^{7} + ( - \beta_{5} + \beta_{4} + 2 \beta_{3} + \cdots - 1) q^{8} + ( - \beta_{4} + 2 \beta_1) q^{10}+ \cdots + (4 \beta_{5} + 8 \beta_{3} - 3 \beta_1 - 4) q^{98}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 6q+2q46q52q76q8+4q10+2q11+6q14+10q16+2q1710q1910q2014q2210q2318q2526q28+6q2910q3226q34+22q98+O(q100) 6 q + 2 q^{4} - 6 q^{5} - 2 q^{7} - 6 q^{8} + 4 q^{10} + 2 q^{11} + 6 q^{14} + 10 q^{16} + 2 q^{17} - 10 q^{19} - 10 q^{20} - 14 q^{22} - 10 q^{23} - 18 q^{25} - 26 q^{28} + 6 q^{29} - 10 q^{32} - 26 q^{34}+ \cdots - 22 q^{98}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x62x5+3x46x3+6x28x+8 x^{6} - 2x^{5} + 3x^{4} - 6x^{3} + 6x^{2} - 8x + 8 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== (ν5+3ν3+2ν8)/4 ( \nu^{5} + 3\nu^{3} + 2\nu - 8 ) / 4 Copy content Toggle raw display
β3\beta_{3}== (ν5+3ν34ν2+2ν8)/4 ( \nu^{5} + 3\nu^{3} - 4\nu^{2} + 2\nu - 8 ) / 4 Copy content Toggle raw display
β4\beta_{4}== (ν5ν3+2ν2+4)/2 ( -\nu^{5} - \nu^{3} + 2\nu^{2} + 4 ) / 2 Copy content Toggle raw display
β5\beta_{5}== ν5+ν42ν3+3ν22ν+5 -\nu^{5} + \nu^{4} - 2\nu^{3} + 3\nu^{2} - 2\nu + 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β3+β2 -\beta_{3} + \beta_{2} Copy content Toggle raw display
ν3\nu^{3}== β4+β3+β2β1+2 \beta_{4} + \beta_{3} + \beta_{2} - \beta _1 + 2 Copy content Toggle raw display
ν4\nu^{4}== β5β4+2β3+β1+1 \beta_{5} - \beta_{4} + 2\beta_{3} + \beta _1 + 1 Copy content Toggle raw display
ν5\nu^{5}== 3β43β3+β2+β1+2 -3\beta_{4} - 3\beta_{3} + \beta_{2} + \beta _1 + 2 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/720Z)×\left(\mathbb{Z}/720\mathbb{Z}\right)^\times.

nn 181181 271271 577577 641641
χ(n)\chi(n) β3-\beta_{3} 1-1 β3-\beta_{3} 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
163.1
0.264658 1.38923i
1.40680 + 0.144584i
−0.671462 + 1.24464i
0.264658 + 1.38923i
1.40680 0.144584i
−0.671462 1.24464i
−1.38923 0.264658i 0 1.85991 + 0.735342i −1.00000 + 2.00000i 0 −3.24914 + 3.24914i −2.38923 1.51380i 0 1.91855 2.51380i
163.2 0.144584 1.40680i 0 −1.95819 0.406803i −1.00000 + 2.00000i 0 2.10278 2.10278i −0.855416 + 2.69597i 0 2.66902 + 1.69597i
163.3 1.24464 + 0.671462i 0 1.09828 + 1.67146i −1.00000 + 2.00000i 0 0.146365 0.146365i 0.244644 + 2.81783i 0 −2.58757 + 1.81783i
667.1 −1.38923 + 0.264658i 0 1.85991 0.735342i −1.00000 2.00000i 0 −3.24914 3.24914i −2.38923 + 1.51380i 0 1.91855 + 2.51380i
667.2 0.144584 + 1.40680i 0 −1.95819 + 0.406803i −1.00000 2.00000i 0 2.10278 + 2.10278i −0.855416 2.69597i 0 2.66902 1.69597i
667.3 1.24464 0.671462i 0 1.09828 1.67146i −1.00000 2.00000i 0 0.146365 + 0.146365i 0.244644 2.81783i 0 −2.58757 1.81783i
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 163.3
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
80.s even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 720.2.z.e 6
3.b odd 2 1 240.2.y.d 6
5.c odd 4 1 720.2.bd.e 6
12.b even 2 1 960.2.y.d 6
15.e even 4 1 240.2.bc.d yes 6
16.f odd 4 1 720.2.bd.e 6
24.f even 2 1 1920.2.y.h 6
24.h odd 2 1 1920.2.y.g 6
48.i odd 4 1 960.2.bc.d 6
48.i odd 4 1 1920.2.bc.h 6
48.k even 4 1 240.2.bc.d yes 6
48.k even 4 1 1920.2.bc.g 6
60.l odd 4 1 960.2.bc.d 6
80.s even 4 1 inner 720.2.z.e 6
120.q odd 4 1 1920.2.bc.h 6
120.w even 4 1 1920.2.bc.g 6
240.z odd 4 1 240.2.y.d 6
240.bb even 4 1 960.2.y.d 6
240.bd odd 4 1 1920.2.y.g 6
240.bf even 4 1 1920.2.y.h 6
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
240.2.y.d 6 3.b odd 2 1
240.2.y.d 6 240.z odd 4 1
240.2.bc.d yes 6 15.e even 4 1
240.2.bc.d yes 6 48.k even 4 1
720.2.z.e 6 1.a even 1 1 trivial
720.2.z.e 6 80.s even 4 1 inner
720.2.bd.e 6 5.c odd 4 1
720.2.bd.e 6 16.f odd 4 1
960.2.y.d 6 12.b even 2 1
960.2.y.d 6 240.bb even 4 1
960.2.bc.d 6 48.i odd 4 1
960.2.bc.d 6 60.l odd 4 1
1920.2.y.g 6 24.h odd 2 1
1920.2.y.g 6 240.bd odd 4 1
1920.2.y.h 6 24.f even 2 1
1920.2.y.h 6 240.bf even 4 1
1920.2.bc.g 6 48.k even 4 1
1920.2.bc.g 6 120.w even 4 1
1920.2.bc.h 6 48.i odd 4 1
1920.2.bc.h 6 120.q odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(720,[χ])S_{2}^{\mathrm{new}}(720, [\chi]):

T76+2T75+2T7432T73+196T7256T7+8 T_{7}^{6} + 2T_{7}^{5} + 2T_{7}^{4} - 32T_{7}^{3} + 196T_{7}^{2} - 56T_{7} + 8 Copy content Toggle raw display
T1162T115+2T114+32T113+196T112+56T11+8 T_{11}^{6} - 2T_{11}^{5} + 2T_{11}^{4} + 32T_{11}^{3} + 196T_{11}^{2} + 56T_{11} + 8 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T6T4+2T3++8 T^{6} - T^{4} + 2 T^{3} + \cdots + 8 Copy content Toggle raw display
33 T6 T^{6} Copy content Toggle raw display
55 (T2+2T+5)3 (T^{2} + 2 T + 5)^{3} Copy content Toggle raw display
77 T6+2T5++8 T^{6} + 2 T^{5} + \cdots + 8 Copy content Toggle raw display
1111 T62T5++8 T^{6} - 2 T^{5} + \cdots + 8 Copy content Toggle raw display
1313 T6 T^{6} Copy content Toggle raw display
1717 T62T5++8 T^{6} - 2 T^{5} + \cdots + 8 Copy content Toggle raw display
1919 T6+10T5++14792 T^{6} + 10 T^{5} + \cdots + 14792 Copy content Toggle raw display
2323 T6+10T5++14792 T^{6} + 10 T^{5} + \cdots + 14792 Copy content Toggle raw display
2929 (T22T+2)3 (T^{2} - 2 T + 2)^{3} Copy content Toggle raw display
3131 T6+60T4++64 T^{6} + 60 T^{4} + \cdots + 64 Copy content Toggle raw display
3737 T6+144T4++16384 T^{6} + 144 T^{4} + \cdots + 16384 Copy content Toggle raw display
4141 (T2+16)3 (T^{2} + 16)^{3} Copy content Toggle raw display
4343 T6+124T4++18496 T^{6} + 124 T^{4} + \cdots + 18496 Copy content Toggle raw display
4747 T6+10T5++412232 T^{6} + 10 T^{5} + \cdots + 412232 Copy content Toggle raw display
5353 (T36T2++344)2 (T^{3} - 6 T^{2} + \cdots + 344)^{2} Copy content Toggle raw display
5959 T66T5++35912 T^{6} - 6 T^{5} + \cdots + 35912 Copy content Toggle raw display
6161 T6+14T5++4232 T^{6} + 14 T^{5} + \cdots + 4232 Copy content Toggle raw display
6767 T6+380T4++1459264 T^{6} + 380 T^{4} + \cdots + 1459264 Copy content Toggle raw display
7171 (T38T2++512)2 (T^{3} - 8 T^{2} + \cdots + 512)^{2} Copy content Toggle raw display
7373 T6+10T5++42632 T^{6} + 10 T^{5} + \cdots + 42632 Copy content Toggle raw display
7979 (T38T2++512)2 (T^{3} - 8 T^{2} + \cdots + 512)^{2} Copy content Toggle raw display
8383 (T320T2++704)2 (T^{3} - 20 T^{2} + \cdots + 704)^{2} Copy content Toggle raw display
8989 (T314T2++184)2 (T^{3} - 14 T^{2} + \cdots + 184)^{2} Copy content Toggle raw display
9797 T6+10T5++1338248 T^{6} + 10 T^{5} + \cdots + 1338248 Copy content Toggle raw display
show more
show less