Properties

Label 720.3.c.c.449.1
Level $720$
Weight $3$
Character 720.449
Analytic conductor $19.619$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [720,3,Mod(449,720)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(720, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1, 1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("720.449");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 720 = 2^{4} \cdot 3^{2} \cdot 5 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 720.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(19.6185790339\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{8})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 90)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 449.1
Root \(-0.707107 - 0.707107i\) of defining polynomial
Character \(\chi\) \(=\) 720.449
Dual form 720.3.c.c.449.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.53553 - 3.53553i) q^{5} +4.00000i q^{7} +11.3137i q^{11} -18.0000i q^{13} -1.41421 q^{17} +24.0000 q^{19} -39.5980 q^{23} +25.0000i q^{25} +38.1838i q^{29} -4.00000 q^{31} +(14.1421 - 14.1421i) q^{35} +56.0000i q^{37} -24.0416i q^{41} +80.0000i q^{43} +28.2843 q^{47} +33.0000 q^{49} -4.24264 q^{53} +(40.0000 - 40.0000i) q^{55} +62.2254i q^{59} +110.000 q^{61} +(-63.6396 + 63.6396i) q^{65} +32.0000i q^{67} +50.9117i q^{71} +46.0000i q^{73} -45.2548 q^{77} -36.0000 q^{79} -5.65685 q^{83} +(5.00000 + 5.00000i) q^{85} +57.9828i q^{89} +72.0000 q^{91} +(-84.8528 - 84.8528i) q^{95} -14.0000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 96 q^{19} - 16 q^{31} + 132 q^{49} + 160 q^{55} + 440 q^{61} - 144 q^{79} + 20 q^{85} + 288 q^{91}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/720\mathbb{Z}\right)^\times\).

\(n\) \(181\) \(271\) \(577\) \(641\)
\(\chi(n)\) \(1\) \(1\) \(-1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) −3.53553 3.53553i −0.707107 0.707107i
\(6\) 0 0
\(7\) 4.00000i 0.571429i 0.958315 + 0.285714i \(0.0922308\pi\)
−0.958315 + 0.285714i \(0.907769\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 11.3137i 1.02852i 0.857635 + 0.514259i \(0.171933\pi\)
−0.857635 + 0.514259i \(0.828067\pi\)
\(12\) 0 0
\(13\) 18.0000i 1.38462i −0.721602 0.692308i \(-0.756594\pi\)
0.721602 0.692308i \(-0.243406\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −1.41421 −0.0831890 −0.0415945 0.999135i \(-0.513244\pi\)
−0.0415945 + 0.999135i \(0.513244\pi\)
\(18\) 0 0
\(19\) 24.0000 1.26316 0.631579 0.775312i \(-0.282407\pi\)
0.631579 + 0.775312i \(0.282407\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −39.5980 −1.72165 −0.860826 0.508900i \(-0.830052\pi\)
−0.860826 + 0.508900i \(0.830052\pi\)
\(24\) 0 0
\(25\) 25.0000i 1.00000i
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 38.1838i 1.31668i 0.752720 + 0.658341i \(0.228741\pi\)
−0.752720 + 0.658341i \(0.771259\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.129032 −0.0645161 0.997917i \(-0.520550\pi\)
−0.0645161 + 0.997917i \(0.520550\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 14.1421 14.1421i 0.404061 0.404061i
\(36\) 0 0
\(37\) 56.0000i 1.51351i 0.653697 + 0.756757i \(0.273217\pi\)
−0.653697 + 0.756757i \(0.726783\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 24.0416i 0.586381i −0.956054 0.293191i \(-0.905283\pi\)
0.956054 0.293191i \(-0.0947171\pi\)
\(42\) 0 0
\(43\) 80.0000i 1.86047i 0.366971 + 0.930233i \(0.380395\pi\)
−0.366971 + 0.930233i \(0.619605\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) 28.2843 0.601793 0.300897 0.953657i \(-0.402714\pi\)
0.300897 + 0.953657i \(0.402714\pi\)
\(48\) 0 0
\(49\) 33.0000 0.673469
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −4.24264 −0.0800498 −0.0400249 0.999199i \(-0.512744\pi\)
−0.0400249 + 0.999199i \(0.512744\pi\)
\(54\) 0 0
\(55\) 40.0000 40.0000i 0.727273 0.727273i
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 62.2254i 1.05467i 0.849658 + 0.527334i \(0.176808\pi\)
−0.849658 + 0.527334i \(0.823192\pi\)
\(60\) 0 0
\(61\) 110.000 1.80328 0.901639 0.432489i \(-0.142364\pi\)
0.901639 + 0.432489i \(0.142364\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) −63.6396 + 63.6396i −0.979071 + 0.979071i
\(66\) 0 0
\(67\) 32.0000i 0.477612i 0.971067 + 0.238806i \(0.0767560\pi\)
−0.971067 + 0.238806i \(0.923244\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) 50.9117i 0.717066i 0.933517 + 0.358533i \(0.116723\pi\)
−0.933517 + 0.358533i \(0.883277\pi\)
\(72\) 0 0
\(73\) 46.0000i 0.630137i 0.949069 + 0.315068i \(0.102027\pi\)
−0.949069 + 0.315068i \(0.897973\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) −45.2548 −0.587725
\(78\) 0 0
\(79\) −36.0000 −0.455696 −0.227848 0.973697i \(-0.573169\pi\)
−0.227848 + 0.973697i \(0.573169\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) −5.65685 −0.0681549 −0.0340774 0.999419i \(-0.510849\pi\)
−0.0340774 + 0.999419i \(0.510849\pi\)
\(84\) 0 0
\(85\) 5.00000 + 5.00000i 0.0588235 + 0.0588235i
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 57.9828i 0.651492i 0.945457 + 0.325746i \(0.105615\pi\)
−0.945457 + 0.325746i \(0.894385\pi\)
\(90\) 0 0
\(91\) 72.0000 0.791209
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) −84.8528 84.8528i −0.893188 0.893188i
\(96\) 0 0
\(97\) 14.0000i 0.144330i −0.997393 0.0721649i \(-0.977009\pi\)
0.997393 0.0721649i \(-0.0229908\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 26.8701i 0.266040i −0.991113 0.133020i \(-0.957533\pi\)
0.991113 0.133020i \(-0.0424675\pi\)
\(102\) 0 0
\(103\) 68.0000i 0.660194i −0.943947 0.330097i \(-0.892919\pi\)
0.943947 0.330097i \(-0.107081\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −169.706 −1.58603 −0.793017 0.609200i \(-0.791491\pi\)
−0.793017 + 0.609200i \(0.791491\pi\)
\(108\) 0 0
\(109\) −136.000 −1.24771 −0.623853 0.781542i \(-0.714434\pi\)
−0.623853 + 0.781542i \(0.714434\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 12.7279 0.112636 0.0563182 0.998413i \(-0.482064\pi\)
0.0563182 + 0.998413i \(0.482064\pi\)
\(114\) 0 0
\(115\) 140.000 + 140.000i 1.21739 + 1.21739i
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 5.65685i 0.0475366i
\(120\) 0 0
\(121\) −7.00000 −0.0578512
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 88.3883 88.3883i 0.707107 0.707107i
\(126\) 0 0
\(127\) 28.0000i 0.220472i 0.993905 + 0.110236i \(0.0351607\pi\)
−0.993905 + 0.110236i \(0.964839\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 84.8528i 0.647731i 0.946103 + 0.323866i \(0.104983\pi\)
−0.946103 + 0.323866i \(0.895017\pi\)
\(132\) 0 0
\(133\) 96.0000i 0.721805i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.7279 0.0929045 0.0464523 0.998921i \(-0.485208\pi\)
0.0464523 + 0.998921i \(0.485208\pi\)
\(138\) 0 0
\(139\) −8.00000 −0.0575540 −0.0287770 0.999586i \(-0.509161\pi\)
−0.0287770 + 0.999586i \(0.509161\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 203.647 1.42410
\(144\) 0 0
\(145\) 135.000 135.000i 0.931034 0.931034i
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 120.208i 0.806766i 0.915031 + 0.403383i \(0.132166\pi\)
−0.915031 + 0.403383i \(0.867834\pi\)
\(150\) 0 0
\(151\) −172.000 −1.13907 −0.569536 0.821966i \(-0.692877\pi\)
−0.569536 + 0.821966i \(0.692877\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 14.1421 + 14.1421i 0.0912396 + 0.0912396i
\(156\) 0 0
\(157\) 152.000i 0.968153i −0.875026 0.484076i \(-0.839156\pi\)
0.875026 0.484076i \(-0.160844\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 158.392i 0.983801i
\(162\) 0 0
\(163\) 104.000i 0.638037i −0.947749 0.319018i \(-0.896647\pi\)
0.947749 0.319018i \(-0.103353\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 203.647 1.21944 0.609721 0.792616i \(-0.291282\pi\)
0.609721 + 0.792616i \(0.291282\pi\)
\(168\) 0 0
\(169\) −155.000 −0.917160
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −230.517 −1.33247 −0.666234 0.745743i \(-0.732095\pi\)
−0.666234 + 0.745743i \(0.732095\pi\)
\(174\) 0 0
\(175\) −100.000 −0.571429
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 164.049i 0.916474i 0.888830 + 0.458237i \(0.151519\pi\)
−0.888830 + 0.458237i \(0.848481\pi\)
\(180\) 0 0
\(181\) 8.00000 0.0441989 0.0220994 0.999756i \(-0.492965\pi\)
0.0220994 + 0.999756i \(0.492965\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 197.990 197.990i 1.07022 1.07022i
\(186\) 0 0
\(187\) 16.0000i 0.0855615i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 305.470i 1.59932i −0.600453 0.799660i \(-0.705013\pi\)
0.600453 0.799660i \(-0.294987\pi\)
\(192\) 0 0
\(193\) 64.0000i 0.331606i 0.986159 + 0.165803i \(0.0530216\pi\)
−0.986159 + 0.165803i \(0.946978\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 230.517 1.17014 0.585068 0.810984i \(-0.301068\pi\)
0.585068 + 0.810984i \(0.301068\pi\)
\(198\) 0 0
\(199\) −300.000 −1.50754 −0.753769 0.657140i \(-0.771766\pi\)
−0.753769 + 0.657140i \(0.771766\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) −152.735 −0.752389
\(204\) 0 0
\(205\) −85.0000 + 85.0000i −0.414634 + 0.414634i
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 271.529i 1.29918i
\(210\) 0 0
\(211\) 264.000 1.25118 0.625592 0.780150i \(-0.284857\pi\)
0.625592 + 0.780150i \(0.284857\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 282.843 282.843i 1.31555 1.31555i
\(216\) 0 0
\(217\) 16.0000i 0.0737327i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 25.4558i 0.115185i
\(222\) 0 0
\(223\) 316.000i 1.41704i −0.705691 0.708520i \(-0.749363\pi\)
0.705691 0.708520i \(-0.250637\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −96.1665 −0.423641 −0.211821 0.977309i \(-0.567939\pi\)
−0.211821 + 0.977309i \(0.567939\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.0349345 −0.0174672 0.999847i \(-0.505560\pi\)
−0.0174672 + 0.999847i \(0.505560\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 227.688 0.977203 0.488602 0.872507i \(-0.337507\pi\)
0.488602 + 0.872507i \(0.337507\pi\)
\(234\) 0 0
\(235\) −100.000 100.000i −0.425532 0.425532i
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 192.333i 0.804741i 0.915477 + 0.402370i \(0.131814\pi\)
−0.915477 + 0.402370i \(0.868186\pi\)
\(240\) 0 0
\(241\) −128.000 −0.531120 −0.265560 0.964094i \(-0.585557\pi\)
−0.265560 + 0.964094i \(0.585557\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) −116.673 116.673i −0.476215 0.476215i
\(246\) 0 0
\(247\) 432.000i 1.74899i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 475.176i 1.89313i −0.322512 0.946565i \(-0.604527\pi\)
0.322512 0.946565i \(-0.395473\pi\)
\(252\) 0 0
\(253\) 448.000i 1.77075i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −326.683 −1.27114 −0.635571 0.772043i \(-0.719235\pi\)
−0.635571 + 0.772043i \(0.719235\pi\)
\(258\) 0 0
\(259\) −224.000 −0.864865
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 79.1960 0.301125 0.150563 0.988600i \(-0.451891\pi\)
0.150563 + 0.988600i \(0.451891\pi\)
\(264\) 0 0
\(265\) 15.0000 + 15.0000i 0.0566038 + 0.0566038i
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 165.463i 0.615104i −0.951531 0.307552i \(-0.900490\pi\)
0.951531 0.307552i \(-0.0995098\pi\)
\(270\) 0 0
\(271\) −220.000 −0.811808 −0.405904 0.913916i \(-0.633043\pi\)
−0.405904 + 0.913916i \(0.633043\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −282.843 −1.02852
\(276\) 0 0
\(277\) 2.00000i 0.00722022i 0.999993 + 0.00361011i \(0.00114914\pi\)
−0.999993 + 0.00361011i \(0.998851\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 12.7279i 0.0452951i −0.999744 0.0226475i \(-0.992790\pi\)
0.999744 0.0226475i \(-0.00720955\pi\)
\(282\) 0 0
\(283\) 472.000i 1.66784i 0.551882 + 0.833922i \(0.313910\pi\)
−0.551882 + 0.833922i \(0.686090\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 96.1665 0.335075
\(288\) 0 0
\(289\) −287.000 −0.993080
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 411.536 1.40456 0.702280 0.711901i \(-0.252165\pi\)
0.702280 + 0.711901i \(0.252165\pi\)
\(294\) 0 0
\(295\) 220.000 220.000i 0.745763 0.745763i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 712.764i 2.38382i
\(300\) 0 0
\(301\) −320.000 −1.06312
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) −388.909 388.909i −1.27511 1.27511i
\(306\) 0 0
\(307\) 360.000i 1.17264i 0.810080 + 0.586319i \(0.199424\pi\)
−0.810080 + 0.586319i \(0.800576\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 33.9411i 0.109135i 0.998510 + 0.0545677i \(0.0173781\pi\)
−0.998510 + 0.0545677i \(0.982622\pi\)
\(312\) 0 0
\(313\) 416.000i 1.32907i −0.747256 0.664537i \(-0.768629\pi\)
0.747256 0.664537i \(-0.231371\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 74.9533 0.236446 0.118223 0.992987i \(-0.462280\pi\)
0.118223 + 0.992987i \(0.462280\pi\)
\(318\) 0 0
\(319\) −432.000 −1.35423
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) −33.9411 −0.105081
\(324\) 0 0
\(325\) 450.000 1.38462
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 113.137i 0.343882i
\(330\) 0 0
\(331\) 464.000 1.40181 0.700906 0.713253i \(-0.252779\pi\)
0.700906 + 0.713253i \(0.252779\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 113.137 113.137i 0.337723 0.337723i
\(336\) 0 0
\(337\) 62.0000i 0.183976i 0.995760 + 0.0919881i \(0.0293222\pi\)
−0.995760 + 0.0919881i \(0.970678\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 45.2548i 0.132712i
\(342\) 0 0
\(343\) 328.000i 0.956268i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 458.205 1.32048 0.660238 0.751056i \(-0.270455\pi\)
0.660238 + 0.751056i \(0.270455\pi\)
\(348\) 0 0
\(349\) −142.000 −0.406877 −0.203438 0.979088i \(-0.565212\pi\)
−0.203438 + 0.979088i \(0.565212\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 100.409 0.284445 0.142223 0.989835i \(-0.454575\pi\)
0.142223 + 0.989835i \(0.454575\pi\)
\(354\) 0 0
\(355\) 180.000 180.000i 0.507042 0.507042i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 390.323i 1.08725i −0.839328 0.543625i \(-0.817051\pi\)
0.839328 0.543625i \(-0.182949\pi\)
\(360\) 0 0
\(361\) 215.000 0.595568
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 162.635 162.635i 0.445574 0.445574i
\(366\) 0 0
\(367\) 284.000i 0.773842i −0.922113 0.386921i \(-0.873539\pi\)
0.922113 0.386921i \(-0.126461\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 16.9706i 0.0457428i
\(372\) 0 0
\(373\) 360.000i 0.965147i 0.875855 + 0.482574i \(0.160298\pi\)
−0.875855 + 0.482574i \(0.839702\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 687.308 1.82310
\(378\) 0 0
\(379\) 320.000 0.844327 0.422164 0.906520i \(-0.361271\pi\)
0.422164 + 0.906520i \(0.361271\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) −181.019 −0.472635 −0.236318 0.971676i \(-0.575941\pi\)
−0.236318 + 0.971676i \(0.575941\pi\)
\(384\) 0 0
\(385\) 160.000 + 160.000i 0.415584 + 0.415584i
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 685.894i 1.76322i 0.471976 + 0.881611i \(0.343541\pi\)
−0.471976 + 0.881611i \(0.656459\pi\)
\(390\) 0 0
\(391\) 56.0000 0.143223
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 127.279 + 127.279i 0.322226 + 0.322226i
\(396\) 0 0
\(397\) 296.000i 0.745592i 0.927913 + 0.372796i \(0.121601\pi\)
−0.927913 + 0.372796i \(0.878399\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 439.820i 1.09681i 0.836213 + 0.548405i \(0.184765\pi\)
−0.836213 + 0.548405i \(0.815235\pi\)
\(402\) 0 0
\(403\) 72.0000i 0.178660i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −633.568 −1.55668
\(408\) 0 0
\(409\) −368.000 −0.899756 −0.449878 0.893090i \(-0.648532\pi\)
−0.449878 + 0.893090i \(0.648532\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) −248.902 −0.602667
\(414\) 0 0
\(415\) 20.0000 + 20.0000i 0.0481928 + 0.0481928i
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 192.333i 0.459029i 0.973305 + 0.229514i \(0.0737138\pi\)
−0.973305 + 0.229514i \(0.926286\pi\)
\(420\) 0 0
\(421\) 280.000 0.665083 0.332542 0.943089i \(-0.392094\pi\)
0.332542 + 0.943089i \(0.392094\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 35.3553i 0.0831890i
\(426\) 0 0
\(427\) 440.000i 1.03044i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 96.1665i 0.223124i 0.993757 + 0.111562i \(0.0355854\pi\)
−0.993757 + 0.111562i \(0.964415\pi\)
\(432\) 0 0
\(433\) 688.000i 1.58891i 0.607320 + 0.794457i \(0.292245\pi\)
−0.607320 + 0.794457i \(0.707755\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −950.352 −2.17472
\(438\) 0 0
\(439\) −324.000 −0.738041 −0.369021 0.929421i \(-0.620307\pi\)
−0.369021 + 0.929421i \(0.620307\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −322.441 −0.727857 −0.363929 0.931427i \(-0.618565\pi\)
−0.363929 + 0.931427i \(0.618565\pi\)
\(444\) 0 0
\(445\) 205.000 205.000i 0.460674 0.460674i
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 123.037i 0.274024i 0.990569 + 0.137012i \(0.0437498\pi\)
−0.990569 + 0.137012i \(0.956250\pi\)
\(450\) 0 0
\(451\) 272.000 0.603104
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) −254.558 254.558i −0.559469 0.559469i
\(456\) 0 0
\(457\) 130.000i 0.284464i −0.989833 0.142232i \(-0.954572\pi\)
0.989833 0.142232i \(-0.0454279\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 470.933i 1.02155i −0.859715 0.510773i \(-0.829359\pi\)
0.859715 0.510773i \(-0.170641\pi\)
\(462\) 0 0
\(463\) 444.000i 0.958963i −0.877552 0.479482i \(-0.840825\pi\)
0.877552 0.479482i \(-0.159175\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) 186.676 0.399735 0.199867 0.979823i \(-0.435949\pi\)
0.199867 + 0.979823i \(0.435949\pi\)
\(468\) 0 0
\(469\) −128.000 −0.272921
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −905.097 −1.91352
\(474\) 0 0
\(475\) 600.000i 1.26316i
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 582.656i 1.21640i 0.793784 + 0.608200i \(0.208108\pi\)
−0.793784 + 0.608200i \(0.791892\pi\)
\(480\) 0 0
\(481\) 1008.00 2.09563
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) −49.4975 + 49.4975i −0.102057 + 0.102057i
\(486\) 0 0
\(487\) 84.0000i 0.172485i 0.996274 + 0.0862423i \(0.0274859\pi\)
−0.996274 + 0.0862423i \(0.972514\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 322.441i 0.656702i −0.944556 0.328351i \(-0.893507\pi\)
0.944556 0.328351i \(-0.106493\pi\)
\(492\) 0 0
\(493\) 54.0000i 0.109533i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −203.647 −0.409752
\(498\) 0 0
\(499\) −456.000 −0.913828 −0.456914 0.889511i \(-0.651045\pi\)
−0.456914 + 0.889511i \(0.651045\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 492.146 0.978422 0.489211 0.872165i \(-0.337285\pi\)
0.489211 + 0.872165i \(0.337285\pi\)
\(504\) 0 0
\(505\) −95.0000 + 95.0000i −0.188119 + 0.188119i
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 581.242i 1.14193i 0.820975 + 0.570964i \(0.193431\pi\)
−0.820975 + 0.570964i \(0.806569\pi\)
\(510\) 0 0
\(511\) −184.000 −0.360078
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) −240.416 + 240.416i −0.466828 + 0.466828i
\(516\) 0 0
\(517\) 320.000i 0.618956i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 408.708i 0.784468i −0.919866 0.392234i \(-0.871702\pi\)
0.919866 0.392234i \(-0.128298\pi\)
\(522\) 0 0
\(523\) 656.000i 1.25430i −0.778898 0.627151i \(-0.784221\pi\)
0.778898 0.627151i \(-0.215779\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.65685 0.0107341
\(528\) 0 0
\(529\) 1039.00 1.96408
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −432.749 −0.811912
\(534\) 0 0
\(535\) 600.000 + 600.000i 1.12150 + 1.12150i
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 373.352i 0.692676i
\(540\) 0 0
\(541\) −248.000 −0.458410 −0.229205 0.973378i \(-0.573613\pi\)
−0.229205 + 0.973378i \(0.573613\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 480.833 + 480.833i 0.882262 + 0.882262i
\(546\) 0 0
\(547\) 304.000i 0.555759i 0.960616 + 0.277879i \(0.0896315\pi\)
−0.960616 + 0.277879i \(0.910368\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 916.410i 1.66318i
\(552\) 0 0
\(553\) 144.000i 0.260398i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 886.712 1.59194 0.795971 0.605335i \(-0.206961\pi\)
0.795971 + 0.605335i \(0.206961\pi\)
\(558\) 0 0
\(559\) 1440.00 2.57603
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 39.5980 0.0703339 0.0351669 0.999381i \(-0.488804\pi\)
0.0351669 + 0.999381i \(0.488804\pi\)
\(564\) 0 0
\(565\) −45.0000 45.0000i −0.0796460 0.0796460i
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 43.8406i 0.0770485i −0.999258 0.0385243i \(-0.987734\pi\)
0.999258 0.0385243i \(-0.0122657\pi\)
\(570\) 0 0
\(571\) 392.000 0.686515 0.343257 0.939241i \(-0.388470\pi\)
0.343257 + 0.939241i \(0.388470\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 989.949i 1.72165i
\(576\) 0 0
\(577\) 112.000i 0.194107i −0.995279 0.0970537i \(-0.969058\pi\)
0.995279 0.0970537i \(-0.0309419\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 22.6274i 0.0389456i
\(582\) 0 0
\(583\) 48.0000i 0.0823328i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −1154.00 −1.96593 −0.982963 0.183805i \(-0.941159\pi\)
−0.982963 + 0.183805i \(0.941159\pi\)
\(588\) 0 0
\(589\) −96.0000 −0.162988
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 258.801 0.436427 0.218213 0.975901i \(-0.429977\pi\)
0.218213 + 0.975901i \(0.429977\pi\)
\(594\) 0 0
\(595\) −20.0000 + 20.0000i −0.0336134 + 0.0336134i
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 288.500i 0.481635i 0.970570 + 0.240818i \(0.0774156\pi\)
−0.970570 + 0.240818i \(0.922584\pi\)
\(600\) 0 0
\(601\) −862.000 −1.43428 −0.717138 0.696931i \(-0.754548\pi\)
−0.717138 + 0.696931i \(0.754548\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 24.7487 + 24.7487i 0.0409070 + 0.0409070i
\(606\) 0 0
\(607\) 788.000i 1.29819i 0.760708 + 0.649094i \(0.224852\pi\)
−0.760708 + 0.649094i \(0.775148\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 509.117i 0.833252i
\(612\) 0 0
\(613\) 952.000i 1.55302i 0.630106 + 0.776509i \(0.283011\pi\)
−0.630106 + 0.776509i \(0.716989\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −383.252 −0.621154 −0.310577 0.950548i \(-0.600522\pi\)
−0.310577 + 0.950548i \(0.600522\pi\)
\(618\) 0 0
\(619\) −304.000 −0.491115 −0.245557 0.969382i \(-0.578971\pi\)
−0.245557 + 0.969382i \(0.578971\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −231.931 −0.372281
\(624\) 0 0
\(625\) −625.000 −1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 79.1960i 0.125908i
\(630\) 0 0
\(631\) −860.000 −1.36292 −0.681458 0.731857i \(-0.738654\pi\)
−0.681458 + 0.731857i \(0.738654\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 98.9949 98.9949i 0.155898 0.155898i
\(636\) 0 0
\(637\) 594.000i 0.932496i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 442.649i 0.690560i 0.938500 + 0.345280i \(0.112216\pi\)
−0.938500 + 0.345280i \(0.887784\pi\)
\(642\) 0 0
\(643\) 648.000i 1.00778i 0.863769 + 0.503888i \(0.168098\pi\)
−0.863769 + 0.503888i \(0.831902\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 390.323 0.603281 0.301641 0.953422i \(-0.402466\pi\)
0.301641 + 0.953422i \(0.402466\pi\)
\(648\) 0 0
\(649\) −704.000 −1.08475
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 909.339 1.39256 0.696278 0.717772i \(-0.254838\pi\)
0.696278 + 0.717772i \(0.254838\pi\)
\(654\) 0 0
\(655\) 300.000 300.000i 0.458015 0.458015i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 345.068i 0.523624i −0.965119 0.261812i \(-0.915680\pi\)
0.965119 0.261812i \(-0.0843200\pi\)
\(660\) 0 0
\(661\) 962.000 1.45537 0.727685 0.685911i \(-0.240596\pi\)
0.727685 + 0.685911i \(0.240596\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 339.411 339.411i 0.510393 0.510393i
\(666\) 0 0
\(667\) 1512.00i 2.26687i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 1244.51i 1.85471i
\(672\) 0 0
\(673\) 240.000i 0.356612i 0.983975 + 0.178306i \(0.0570617\pi\)
−0.983975 + 0.178306i \(0.942938\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) −332.340 −0.490901 −0.245451 0.969409i \(-0.578936\pi\)
−0.245451 + 0.969409i \(0.578936\pi\)
\(678\) 0 0
\(679\) 56.0000 0.0824742
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 1012.58 1.48254 0.741272 0.671205i \(-0.234223\pi\)
0.741272 + 0.671205i \(0.234223\pi\)
\(684\) 0 0
\(685\) −45.0000 45.0000i −0.0656934 0.0656934i
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 76.3675i 0.110838i
\(690\) 0 0
\(691\) 80.0000 0.115774 0.0578871 0.998323i \(-0.481564\pi\)
0.0578871 + 0.998323i \(0.481564\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 28.2843 + 28.2843i 0.0406968 + 0.0406968i
\(696\) 0 0
\(697\) 34.0000i 0.0487805i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 558.614i 0.796882i −0.917194 0.398441i \(-0.869551\pi\)
0.917194 0.398441i \(-0.130449\pi\)
\(702\) 0 0
\(703\) 1344.00i 1.91181i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 107.480 0.152023
\(708\) 0 0
\(709\) 312.000 0.440056 0.220028 0.975494i \(-0.429385\pi\)
0.220028 + 0.975494i \(0.429385\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 158.392 0.222149
\(714\) 0 0
\(715\) −720.000 720.000i −1.00699 1.00699i
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 1148.34i 1.59714i −0.601904 0.798568i \(-0.705591\pi\)
0.601904 0.798568i \(-0.294409\pi\)
\(720\) 0 0
\(721\) 272.000 0.377254
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) −954.594 −1.31668
\(726\) 0 0
\(727\) 468.000i 0.643741i 0.946784 + 0.321871i \(0.104312\pi\)
−0.946784 + 0.321871i \(0.895688\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) 113.137i 0.154770i
\(732\) 0 0
\(733\) 526.000i 0.717599i −0.933415 0.358799i \(-0.883186\pi\)
0.933415 0.358799i \(-0.116814\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −362.039 −0.491233
\(738\) 0 0
\(739\) −344.000 −0.465494 −0.232747 0.972537i \(-0.574771\pi\)
−0.232747 + 0.972537i \(0.574771\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) −678.823 −0.913624 −0.456812 0.889563i \(-0.651009\pi\)
−0.456812 + 0.889563i \(0.651009\pi\)
\(744\) 0 0
\(745\) 425.000 425.000i 0.570470 0.570470i
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 678.823i 0.906305i
\(750\) 0 0
\(751\) −308.000 −0.410120 −0.205060 0.978749i \(-0.565739\pi\)
−0.205060 + 0.978749i \(0.565739\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 608.112 + 608.112i 0.805446 + 0.805446i
\(756\) 0 0
\(757\) 610.000i 0.805812i −0.915241 0.402906i \(-0.868000\pi\)
0.915241 0.402906i \(-0.132000\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 1175.21i 1.54430i −0.635441 0.772149i \(-0.719182\pi\)
0.635441 0.772149i \(-0.280818\pi\)
\(762\) 0 0
\(763\) 544.000i 0.712975i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 1120.06 1.46031
\(768\) 0 0
\(769\) −270.000 −0.351105 −0.175553 0.984470i \(-0.556171\pi\)
−0.175553 + 0.984470i \(0.556171\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 267.286 0.345778 0.172889 0.984941i \(-0.444690\pi\)
0.172889 + 0.984941i \(0.444690\pi\)
\(774\) 0 0
\(775\) 100.000i 0.129032i
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 576.999i 0.740692i
\(780\) 0 0
\(781\) −576.000 −0.737516
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) −537.401 + 537.401i −0.684587 + 0.684587i
\(786\) 0 0
\(787\) 1520.00i 1.93139i −0.259688 0.965693i \(-0.583620\pi\)
0.259688 0.965693i \(-0.416380\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 50.9117i 0.0643637i
\(792\) 0 0
\(793\) 1980.00i 2.49685i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 388.909 0.487966 0.243983 0.969780i \(-0.421546\pi\)
0.243983 + 0.969780i \(0.421546\pi\)
\(798\) 0 0
\(799\) −40.0000 −0.0500626
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −520.431 −0.648108
\(804\) 0 0
\(805\) −560.000 + 560.000i −0.695652 + 0.695652i
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 46.6690i 0.0576873i 0.999584 + 0.0288437i \(0.00918250\pi\)
−0.999584 + 0.0288437i \(0.990818\pi\)
\(810\) 0 0
\(811\) −1120.00 −1.38101 −0.690506 0.723327i \(-0.742612\pi\)
−0.690506 + 0.723327i \(0.742612\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) −367.696 + 367.696i −0.451160 + 0.451160i
\(816\) 0 0
\(817\) 1920.00i 2.35006i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 1271.38i 1.54857i 0.632836 + 0.774286i \(0.281891\pi\)
−0.632836 + 0.774286i \(0.718109\pi\)
\(822\) 0 0
\(823\) 828.000i 1.00608i −0.864264 0.503038i \(-0.832216\pi\)
0.864264 0.503038i \(-0.167784\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 158.392 0.191526 0.0957629 0.995404i \(-0.469471\pi\)
0.0957629 + 0.995404i \(0.469471\pi\)
\(828\) 0 0
\(829\) −552.000 −0.665862 −0.332931 0.942951i \(-0.608038\pi\)
−0.332931 + 0.942951i \(0.608038\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −46.6690 −0.0560253
\(834\) 0 0
\(835\) −720.000 720.000i −0.862275 0.862275i
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 854.185i 1.01810i −0.860737 0.509049i \(-0.829997\pi\)
0.860737 0.509049i \(-0.170003\pi\)
\(840\) 0 0
\(841\) −617.000 −0.733650
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 548.008 + 548.008i 0.648530 + 0.648530i
\(846\) 0 0
\(847\) 28.0000i 0.0330579i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 2217.49i 2.60574i
\(852\) 0 0
\(853\) 856.000i 1.00352i −0.865008 0.501758i \(-0.832687\pi\)
0.865008 0.501758i \(-0.167313\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 555.786 0.648525 0.324263 0.945967i \(-0.394884\pi\)
0.324263 + 0.945967i \(0.394884\pi\)
\(858\) 0 0
\(859\) −472.000 −0.549476 −0.274738 0.961519i \(-0.588591\pi\)
−0.274738 + 0.961519i \(0.588591\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −441.235 −0.511280 −0.255640 0.966772i \(-0.582286\pi\)
−0.255640 + 0.966772i \(0.582286\pi\)
\(864\) 0 0
\(865\) 815.000 + 815.000i 0.942197 + 0.942197i
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 407.294i 0.468692i
\(870\) 0 0
\(871\) 576.000 0.661309
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 353.553 + 353.553i 0.404061 + 0.404061i
\(876\) 0 0
\(877\) 680.000i 0.775371i −0.921792 0.387685i \(-0.873275\pi\)
0.921792 0.387685i \(-0.126725\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 292.742i 0.332284i −0.986102 0.166142i \(-0.946869\pi\)
0.986102 0.166142i \(-0.0531310\pi\)
\(882\) 0 0
\(883\) 696.000i 0.788222i −0.919063 0.394111i \(-0.871053\pi\)
0.919063 0.394111i \(-0.128947\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −882.469 −0.994892 −0.497446 0.867495i \(-0.665729\pi\)
−0.497446 + 0.867495i \(0.665729\pi\)
\(888\) 0 0
\(889\) −112.000 −0.125984
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 678.823 0.760160
\(894\) 0 0
\(895\) 580.000 580.000i 0.648045 0.648045i
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 152.735i 0.169894i
\(900\) 0 0
\(901\) 6.00000 0.00665927
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) −28.2843 28.2843i −0.0312533 0.0312533i
\(906\) 0 0
\(907\) 528.000i 0.582139i 0.956702 + 0.291069i \(0.0940111\pi\)
−0.956702 + 0.291069i \(0.905989\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 1595.23i 1.75108i 0.483147 + 0.875539i \(0.339494\pi\)
−0.483147 + 0.875539i \(0.660506\pi\)
\(912\) 0 0
\(913\) 64.0000i 0.0700986i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −339.411 −0.370132
\(918\) 0 0
\(919\) 660.000 0.718172 0.359086 0.933304i \(-0.383088\pi\)
0.359086 + 0.933304i \(0.383088\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 916.410 0.992861
\(924\) 0 0
\(925\) −1400.00 −1.51351
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 1005.51i 1.08235i −0.840909 0.541176i \(-0.817979\pi\)
0.840909 0.541176i \(-0.182021\pi\)
\(930\) 0 0
\(931\) 792.000 0.850698
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) −56.5685 + 56.5685i −0.0605011 + 0.0605011i
\(936\) 0 0
\(937\) 1568.00i 1.67343i −0.547642 0.836713i \(-0.684474\pi\)
0.547642 0.836713i \(-0.315526\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 637.810i 0.677801i 0.940822 + 0.338900i \(0.110055\pi\)
−0.940822 + 0.338900i \(0.889945\pi\)
\(942\) 0 0
\(943\) 952.000i 1.00954i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 1629.17 1.72035 0.860176 0.509997i \(-0.170353\pi\)
0.860176 + 0.509997i \(0.170353\pi\)
\(948\) 0 0
\(949\) 828.000 0.872497
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) 914.996 0.960122 0.480061 0.877235i \(-0.340615\pi\)
0.480061 + 0.877235i \(0.340615\pi\)
\(954\) 0 0
\(955\) −1080.00 + 1080.00i −1.13089 + 1.13089i
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 50.9117i 0.0530883i
\(960\) 0 0
\(961\) −945.000 −0.983351
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 226.274 226.274i 0.234481 0.234481i
\(966\) 0 0
\(967\) 500.000i 0.517063i 0.966003 + 0.258532i \(0.0832386\pi\)
−0.966003 + 0.258532i \(0.916761\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 1221.88i 1.25837i −0.777254 0.629187i \(-0.783388\pi\)
0.777254 0.629187i \(-0.216612\pi\)
\(972\) 0 0
\(973\) 32.0000i 0.0328880i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) 1743.73 1.78478 0.892388 0.451270i \(-0.149029\pi\)
0.892388 + 0.451270i \(0.149029\pi\)
\(978\) 0 0
\(979\) −656.000 −0.670072
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −79.1960 −0.0805656 −0.0402828 0.999188i \(-0.512826\pi\)
−0.0402828 + 0.999188i \(0.512826\pi\)
\(984\) 0 0
\(985\) −815.000 815.000i −0.827411 0.827411i
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 3167.84i 3.20307i
\(990\) 0 0
\(991\) −748.000 −0.754793 −0.377397 0.926052i \(-0.623181\pi\)
−0.377397 + 0.926052i \(0.623181\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 1060.66 + 1060.66i 1.06599 + 1.06599i
\(996\) 0 0
\(997\) 1464.00i 1.46841i 0.678930 + 0.734203i \(0.262444\pi\)
−0.678930 + 0.734203i \(0.737556\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 720.3.c.c.449.1 4
3.2 odd 2 inner 720.3.c.c.449.4 4
4.3 odd 2 90.3.b.a.89.1 4
5.2 odd 4 3600.3.l.c.1601.2 2
5.3 odd 4 3600.3.l.i.1601.2 2
5.4 even 2 inner 720.3.c.c.449.3 4
8.3 odd 2 2880.3.c.h.449.4 4
8.5 even 2 2880.3.c.a.449.4 4
12.11 even 2 90.3.b.a.89.4 yes 4
15.2 even 4 3600.3.l.c.1601.1 2
15.8 even 4 3600.3.l.i.1601.1 2
15.14 odd 2 inner 720.3.c.c.449.2 4
20.3 even 4 450.3.d.b.251.2 2
20.7 even 4 450.3.d.e.251.1 2
20.19 odd 2 90.3.b.a.89.3 yes 4
24.5 odd 2 2880.3.c.a.449.1 4
24.11 even 2 2880.3.c.h.449.1 4
36.7 odd 6 810.3.j.d.539.4 8
36.11 even 6 810.3.j.d.539.1 8
36.23 even 6 810.3.j.d.269.2 8
36.31 odd 6 810.3.j.d.269.3 8
40.19 odd 2 2880.3.c.h.449.2 4
40.29 even 2 2880.3.c.a.449.2 4
60.23 odd 4 450.3.d.b.251.1 2
60.47 odd 4 450.3.d.e.251.2 2
60.59 even 2 90.3.b.a.89.2 yes 4
120.29 odd 2 2880.3.c.a.449.3 4
120.59 even 2 2880.3.c.h.449.3 4
180.59 even 6 810.3.j.d.269.4 8
180.79 odd 6 810.3.j.d.539.2 8
180.119 even 6 810.3.j.d.539.3 8
180.139 odd 6 810.3.j.d.269.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
90.3.b.a.89.1 4 4.3 odd 2
90.3.b.a.89.2 yes 4 60.59 even 2
90.3.b.a.89.3 yes 4 20.19 odd 2
90.3.b.a.89.4 yes 4 12.11 even 2
450.3.d.b.251.1 2 60.23 odd 4
450.3.d.b.251.2 2 20.3 even 4
450.3.d.e.251.1 2 20.7 even 4
450.3.d.e.251.2 2 60.47 odd 4
720.3.c.c.449.1 4 1.1 even 1 trivial
720.3.c.c.449.2 4 15.14 odd 2 inner
720.3.c.c.449.3 4 5.4 even 2 inner
720.3.c.c.449.4 4 3.2 odd 2 inner
810.3.j.d.269.1 8 180.139 odd 6
810.3.j.d.269.2 8 36.23 even 6
810.3.j.d.269.3 8 36.31 odd 6
810.3.j.d.269.4 8 180.59 even 6
810.3.j.d.539.1 8 36.11 even 6
810.3.j.d.539.2 8 180.79 odd 6
810.3.j.d.539.3 8 180.119 even 6
810.3.j.d.539.4 8 36.7 odd 6
2880.3.c.a.449.1 4 24.5 odd 2
2880.3.c.a.449.2 4 40.29 even 2
2880.3.c.a.449.3 4 120.29 odd 2
2880.3.c.a.449.4 4 8.5 even 2
2880.3.c.h.449.1 4 24.11 even 2
2880.3.c.h.449.2 4 40.19 odd 2
2880.3.c.h.449.3 4 120.59 even 2
2880.3.c.h.449.4 4 8.3 odd 2
3600.3.l.c.1601.1 2 15.2 even 4
3600.3.l.c.1601.2 2 5.2 odd 4
3600.3.l.i.1601.1 2 15.8 even 4
3600.3.l.i.1601.2 2 5.3 odd 4