Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [7200,2,Mod(1,7200)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("7200.1");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 7200.a (trivial) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | yes |
Analytic conductor: | \(57.4922894553\) |
Analytic rank: | \(0\) |
Dimension: | \(1\) |
Coefficient field: | \(\mathbb{Q}\) |
Coefficient ring: | \(\mathbb{Z}\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 480) |
Fricke sign: | \(-1\) |
Sato-Tate group: | $\mathrm{SU}(2)$ |
Embedding invariants
Embedding label | 1.1 | ||
Character | \(\chi\) | \(=\) | 7200.1 |
$q$-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficient data
For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))
\(n\) | \(a_n\) | \(a_n / n^{(k-1)/2}\) | \( \alpha_n \) | \( \theta_n \) | ||||||
---|---|---|---|---|---|---|---|---|---|---|
\(p\) | \(a_p\) | \(a_p / p^{(k-1)/2}\) | \( \alpha_p\) | \( \theta_p \) | ||||||
\(2\) | 0 | 0 | ||||||||
\(3\) | 0 | 0 | ||||||||
\(4\) | 0 | 0 | ||||||||
\(5\) | 0 | 0 | ||||||||
\(6\) | 0 | 0 | ||||||||
\(7\) | 4.00000 | 1.51186 | 0.755929 | − | 0.654654i | \(-0.227186\pi\) | ||||
0.755929 | + | 0.654654i | \(0.227186\pi\) | |||||||
\(8\) | 0 | 0 | ||||||||
\(9\) | 0 | 0 | ||||||||
\(10\) | 0 | 0 | ||||||||
\(11\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(12\) | 0 | 0 | ||||||||
\(13\) | 4.00000 | 1.10940 | 0.554700 | − | 0.832050i | \(-0.312833\pi\) | ||||
0.554700 | + | 0.832050i | \(0.312833\pi\) | |||||||
\(14\) | 0 | 0 | ||||||||
\(15\) | 0 | 0 | ||||||||
\(16\) | 0 | 0 | ||||||||
\(17\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(18\) | 0 | 0 | ||||||||
\(19\) | 8.00000 | 1.83533 | 0.917663 | − | 0.397360i | \(-0.130073\pi\) | ||||
0.917663 | + | 0.397360i | \(0.130073\pi\) | |||||||
\(20\) | 0 | 0 | ||||||||
\(21\) | 0 | 0 | ||||||||
\(22\) | 0 | 0 | ||||||||
\(23\) | 4.00000 | 0.834058 | 0.417029 | − | 0.908893i | \(-0.363071\pi\) | ||||
0.417029 | + | 0.908893i | \(0.363071\pi\) | |||||||
\(24\) | 0 | 0 | ||||||||
\(25\) | 0 | 0 | ||||||||
\(26\) | 0 | 0 | ||||||||
\(27\) | 0 | 0 | ||||||||
\(28\) | 0 | 0 | ||||||||
\(29\) | 6.00000 | 1.11417 | 0.557086 | − | 0.830455i | \(-0.311919\pi\) | ||||
0.557086 | + | 0.830455i | \(0.311919\pi\) | |||||||
\(30\) | 0 | 0 | ||||||||
\(31\) | 8.00000 | 1.43684 | 0.718421 | − | 0.695608i | \(-0.244865\pi\) | ||||
0.718421 | + | 0.695608i | \(0.244865\pi\) | |||||||
\(32\) | 0 | 0 | ||||||||
\(33\) | 0 | 0 | ||||||||
\(34\) | 0 | 0 | ||||||||
\(35\) | 0 | 0 | ||||||||
\(36\) | 0 | 0 | ||||||||
\(37\) | −4.00000 | −0.657596 | −0.328798 | − | 0.944400i | \(-0.606644\pi\) | ||||
−0.328798 | + | 0.944400i | \(0.606644\pi\) | |||||||
\(38\) | 0 | 0 | ||||||||
\(39\) | 0 | 0 | ||||||||
\(40\) | 0 | 0 | ||||||||
\(41\) | −6.00000 | −0.937043 | −0.468521 | − | 0.883452i | \(-0.655213\pi\) | ||||
−0.468521 | + | 0.883452i | \(0.655213\pi\) | |||||||
\(42\) | 0 | 0 | ||||||||
\(43\) | −4.00000 | −0.609994 | −0.304997 | − | 0.952353i | \(-0.598656\pi\) | ||||
−0.304997 | + | 0.952353i | \(0.598656\pi\) | |||||||
\(44\) | 0 | 0 | ||||||||
\(45\) | 0 | 0 | ||||||||
\(46\) | 0 | 0 | ||||||||
\(47\) | −4.00000 | −0.583460 | −0.291730 | − | 0.956501i | \(-0.594231\pi\) | ||||
−0.291730 | + | 0.956501i | \(0.594231\pi\) | |||||||
\(48\) | 0 | 0 | ||||||||
\(49\) | 9.00000 | 1.28571 | ||||||||
\(50\) | 0 | 0 | ||||||||
\(51\) | 0 | 0 | ||||||||
\(52\) | 0 | 0 | ||||||||
\(53\) | 12.0000 | 1.64833 | 0.824163 | − | 0.566352i | \(-0.191646\pi\) | ||||
0.824163 | + | 0.566352i | \(0.191646\pi\) | |||||||
\(54\) | 0 | 0 | ||||||||
\(55\) | 0 | 0 | ||||||||
\(56\) | 0 | 0 | ||||||||
\(57\) | 0 | 0 | ||||||||
\(58\) | 0 | 0 | ||||||||
\(59\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(60\) | 0 | 0 | ||||||||
\(61\) | −6.00000 | −0.768221 | −0.384111 | − | 0.923287i | \(-0.625492\pi\) | ||||
−0.384111 | + | 0.923287i | \(0.625492\pi\) | |||||||
\(62\) | 0 | 0 | ||||||||
\(63\) | 0 | 0 | ||||||||
\(64\) | 0 | 0 | ||||||||
\(65\) | 0 | 0 | ||||||||
\(66\) | 0 | 0 | ||||||||
\(67\) | −12.0000 | −1.46603 | −0.733017 | − | 0.680211i | \(-0.761888\pi\) | ||||
−0.733017 | + | 0.680211i | \(0.761888\pi\) | |||||||
\(68\) | 0 | 0 | ||||||||
\(69\) | 0 | 0 | ||||||||
\(70\) | 0 | 0 | ||||||||
\(71\) | −16.0000 | −1.89885 | −0.949425 | − | 0.313993i | \(-0.898333\pi\) | ||||
−0.949425 | + | 0.313993i | \(0.898333\pi\) | |||||||
\(72\) | 0 | 0 | ||||||||
\(73\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(74\) | 0 | 0 | ||||||||
\(75\) | 0 | 0 | ||||||||
\(76\) | 0 | 0 | ||||||||
\(77\) | 0 | 0 | ||||||||
\(78\) | 0 | 0 | ||||||||
\(79\) | 8.00000 | 0.900070 | 0.450035 | − | 0.893011i | \(-0.351411\pi\) | ||||
0.450035 | + | 0.893011i | \(0.351411\pi\) | |||||||
\(80\) | 0 | 0 | ||||||||
\(81\) | 0 | 0 | ||||||||
\(82\) | 0 | 0 | ||||||||
\(83\) | −12.0000 | −1.31717 | −0.658586 | − | 0.752506i | \(-0.728845\pi\) | ||||
−0.658586 | + | 0.752506i | \(0.728845\pi\) | |||||||
\(84\) | 0 | 0 | ||||||||
\(85\) | 0 | 0 | ||||||||
\(86\) | 0 | 0 | ||||||||
\(87\) | 0 | 0 | ||||||||
\(88\) | 0 | 0 | ||||||||
\(89\) | 10.0000 | 1.06000 | 0.529999 | − | 0.847998i | \(-0.322192\pi\) | ||||
0.529999 | + | 0.847998i | \(0.322192\pi\) | |||||||
\(90\) | 0 | 0 | ||||||||
\(91\) | 16.0000 | 1.67726 | ||||||||
\(92\) | 0 | 0 | ||||||||
\(93\) | 0 | 0 | ||||||||
\(94\) | 0 | 0 | ||||||||
\(95\) | 0 | 0 | ||||||||
\(96\) | 0 | 0 | ||||||||
\(97\) | 8.00000 | 0.812277 | 0.406138 | − | 0.913812i | \(-0.366875\pi\) | ||||
0.406138 | + | 0.913812i | \(0.366875\pi\) | |||||||
\(98\) | 0 | 0 | ||||||||
\(99\) | 0 | 0 | ||||||||
\(100\) | 0 | 0 | ||||||||
\(101\) | −14.0000 | −1.39305 | −0.696526 | − | 0.717532i | \(-0.745272\pi\) | ||||
−0.696526 | + | 0.717532i | \(0.745272\pi\) | |||||||
\(102\) | 0 | 0 | ||||||||
\(103\) | 12.0000 | 1.18240 | 0.591198 | − | 0.806527i | \(-0.298655\pi\) | ||||
0.591198 | + | 0.806527i | \(0.298655\pi\) | |||||||
\(104\) | 0 | 0 | ||||||||
\(105\) | 0 | 0 | ||||||||
\(106\) | 0 | 0 | ||||||||
\(107\) | 12.0000 | 1.16008 | 0.580042 | − | 0.814587i | \(-0.303036\pi\) | ||||
0.580042 | + | 0.814587i | \(0.303036\pi\) | |||||||
\(108\) | 0 | 0 | ||||||||
\(109\) | −10.0000 | −0.957826 | −0.478913 | − | 0.877862i | \(-0.658969\pi\) | ||||
−0.478913 | + | 0.877862i | \(0.658969\pi\) | |||||||
\(110\) | 0 | 0 | ||||||||
\(111\) | 0 | 0 | ||||||||
\(112\) | 0 | 0 | ||||||||
\(113\) | 8.00000 | 0.752577 | 0.376288 | − | 0.926503i | \(-0.377200\pi\) | ||||
0.376288 | + | 0.926503i | \(0.377200\pi\) | |||||||
\(114\) | 0 | 0 | ||||||||
\(115\) | 0 | 0 | ||||||||
\(116\) | 0 | 0 | ||||||||
\(117\) | 0 | 0 | ||||||||
\(118\) | 0 | 0 | ||||||||
\(119\) | 0 | 0 | ||||||||
\(120\) | 0 | 0 | ||||||||
\(121\) | −11.0000 | −1.00000 | ||||||||
\(122\) | 0 | 0 | ||||||||
\(123\) | 0 | 0 | ||||||||
\(124\) | 0 | 0 | ||||||||
\(125\) | 0 | 0 | ||||||||
\(126\) | 0 | 0 | ||||||||
\(127\) | 4.00000 | 0.354943 | 0.177471 | − | 0.984126i | \(-0.443208\pi\) | ||||
0.177471 | + | 0.984126i | \(0.443208\pi\) | |||||||
\(128\) | 0 | 0 | ||||||||
\(129\) | 0 | 0 | ||||||||
\(130\) | 0 | 0 | ||||||||
\(131\) | −16.0000 | −1.39793 | −0.698963 | − | 0.715158i | \(-0.746355\pi\) | ||||
−0.698963 | + | 0.715158i | \(0.746355\pi\) | |||||||
\(132\) | 0 | 0 | ||||||||
\(133\) | 32.0000 | 2.77475 | ||||||||
\(134\) | 0 | 0 | ||||||||
\(135\) | 0 | 0 | ||||||||
\(136\) | 0 | 0 | ||||||||
\(137\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(138\) | 0 | 0 | ||||||||
\(139\) | −8.00000 | −0.678551 | −0.339276 | − | 0.940687i | \(-0.610182\pi\) | ||||
−0.339276 | + | 0.940687i | \(0.610182\pi\) | |||||||
\(140\) | 0 | 0 | ||||||||
\(141\) | 0 | 0 | ||||||||
\(142\) | 0 | 0 | ||||||||
\(143\) | 0 | 0 | ||||||||
\(144\) | 0 | 0 | ||||||||
\(145\) | 0 | 0 | ||||||||
\(146\) | 0 | 0 | ||||||||
\(147\) | 0 | 0 | ||||||||
\(148\) | 0 | 0 | ||||||||
\(149\) | −14.0000 | −1.14692 | −0.573462 | − | 0.819232i | \(-0.694400\pi\) | ||||
−0.573462 | + | 0.819232i | \(0.694400\pi\) | |||||||
\(150\) | 0 | 0 | ||||||||
\(151\) | 8.00000 | 0.651031 | 0.325515 | − | 0.945537i | \(-0.394462\pi\) | ||||
0.325515 | + | 0.945537i | \(0.394462\pi\) | |||||||
\(152\) | 0 | 0 | ||||||||
\(153\) | 0 | 0 | ||||||||
\(154\) | 0 | 0 | ||||||||
\(155\) | 0 | 0 | ||||||||
\(156\) | 0 | 0 | ||||||||
\(157\) | 4.00000 | 0.319235 | 0.159617 | − | 0.987179i | \(-0.448974\pi\) | ||||
0.159617 | + | 0.987179i | \(0.448974\pi\) | |||||||
\(158\) | 0 | 0 | ||||||||
\(159\) | 0 | 0 | ||||||||
\(160\) | 0 | 0 | ||||||||
\(161\) | 16.0000 | 1.26098 | ||||||||
\(162\) | 0 | 0 | ||||||||
\(163\) | −4.00000 | −0.313304 | −0.156652 | − | 0.987654i | \(-0.550070\pi\) | ||||
−0.156652 | + | 0.987654i | \(0.550070\pi\) | |||||||
\(164\) | 0 | 0 | ||||||||
\(165\) | 0 | 0 | ||||||||
\(166\) | 0 | 0 | ||||||||
\(167\) | −4.00000 | −0.309529 | −0.154765 | − | 0.987951i | \(-0.549462\pi\) | ||||
−0.154765 | + | 0.987951i | \(0.549462\pi\) | |||||||
\(168\) | 0 | 0 | ||||||||
\(169\) | 3.00000 | 0.230769 | ||||||||
\(170\) | 0 | 0 | ||||||||
\(171\) | 0 | 0 | ||||||||
\(172\) | 0 | 0 | ||||||||
\(173\) | −4.00000 | −0.304114 | −0.152057 | − | 0.988372i | \(-0.548590\pi\) | ||||
−0.152057 | + | 0.988372i | \(0.548590\pi\) | |||||||
\(174\) | 0 | 0 | ||||||||
\(175\) | 0 | 0 | ||||||||
\(176\) | 0 | 0 | ||||||||
\(177\) | 0 | 0 | ||||||||
\(178\) | 0 | 0 | ||||||||
\(179\) | −16.0000 | −1.19590 | −0.597948 | − | 0.801535i | \(-0.704017\pi\) | ||||
−0.597948 | + | 0.801535i | \(0.704017\pi\) | |||||||
\(180\) | 0 | 0 | ||||||||
\(181\) | 14.0000 | 1.04061 | 0.520306 | − | 0.853980i | \(-0.325818\pi\) | ||||
0.520306 | + | 0.853980i | \(0.325818\pi\) | |||||||
\(182\) | 0 | 0 | ||||||||
\(183\) | 0 | 0 | ||||||||
\(184\) | 0 | 0 | ||||||||
\(185\) | 0 | 0 | ||||||||
\(186\) | 0 | 0 | ||||||||
\(187\) | 0 | 0 | ||||||||
\(188\) | 0 | 0 | ||||||||
\(189\) | 0 | 0 | ||||||||
\(190\) | 0 | 0 | ||||||||
\(191\) | 16.0000 | 1.15772 | 0.578860 | − | 0.815427i | \(-0.303498\pi\) | ||||
0.578860 | + | 0.815427i | \(0.303498\pi\) | |||||||
\(192\) | 0 | 0 | ||||||||
\(193\) | 24.0000 | 1.72756 | 0.863779 | − | 0.503871i | \(-0.168091\pi\) | ||||
0.863779 | + | 0.503871i | \(0.168091\pi\) | |||||||
\(194\) | 0 | 0 | ||||||||
\(195\) | 0 | 0 | ||||||||
\(196\) | 0 | 0 | ||||||||
\(197\) | −12.0000 | −0.854965 | −0.427482 | − | 0.904024i | \(-0.640599\pi\) | ||||
−0.427482 | + | 0.904024i | \(0.640599\pi\) | |||||||
\(198\) | 0 | 0 | ||||||||
\(199\) | −8.00000 | −0.567105 | −0.283552 | − | 0.958957i | \(-0.591513\pi\) | ||||
−0.283552 | + | 0.958957i | \(0.591513\pi\) | |||||||
\(200\) | 0 | 0 | ||||||||
\(201\) | 0 | 0 | ||||||||
\(202\) | 0 | 0 | ||||||||
\(203\) | 24.0000 | 1.68447 | ||||||||
\(204\) | 0 | 0 | ||||||||
\(205\) | 0 | 0 | ||||||||
\(206\) | 0 | 0 | ||||||||
\(207\) | 0 | 0 | ||||||||
\(208\) | 0 | 0 | ||||||||
\(209\) | 0 | 0 | ||||||||
\(210\) | 0 | 0 | ||||||||
\(211\) | −8.00000 | −0.550743 | −0.275371 | − | 0.961338i | \(-0.588801\pi\) | ||||
−0.275371 | + | 0.961338i | \(0.588801\pi\) | |||||||
\(212\) | 0 | 0 | ||||||||
\(213\) | 0 | 0 | ||||||||
\(214\) | 0 | 0 | ||||||||
\(215\) | 0 | 0 | ||||||||
\(216\) | 0 | 0 | ||||||||
\(217\) | 32.0000 | 2.17230 | ||||||||
\(218\) | 0 | 0 | ||||||||
\(219\) | 0 | 0 | ||||||||
\(220\) | 0 | 0 | ||||||||
\(221\) | 0 | 0 | ||||||||
\(222\) | 0 | 0 | ||||||||
\(223\) | −4.00000 | −0.267860 | −0.133930 | − | 0.990991i | \(-0.542760\pi\) | ||||
−0.133930 | + | 0.990991i | \(0.542760\pi\) | |||||||
\(224\) | 0 | 0 | ||||||||
\(225\) | 0 | 0 | ||||||||
\(226\) | 0 | 0 | ||||||||
\(227\) | −4.00000 | −0.265489 | −0.132745 | − | 0.991150i | \(-0.542379\pi\) | ||||
−0.132745 | + | 0.991150i | \(0.542379\pi\) | |||||||
\(228\) | 0 | 0 | ||||||||
\(229\) | 2.00000 | 0.132164 | 0.0660819 | − | 0.997814i | \(-0.478950\pi\) | ||||
0.0660819 | + | 0.997814i | \(0.478950\pi\) | |||||||
\(230\) | 0 | 0 | ||||||||
\(231\) | 0 | 0 | ||||||||
\(232\) | 0 | 0 | ||||||||
\(233\) | −8.00000 | −0.524097 | −0.262049 | − | 0.965055i | \(-0.584398\pi\) | ||||
−0.262049 | + | 0.965055i | \(0.584398\pi\) | |||||||
\(234\) | 0 | 0 | ||||||||
\(235\) | 0 | 0 | ||||||||
\(236\) | 0 | 0 | ||||||||
\(237\) | 0 | 0 | ||||||||
\(238\) | 0 | 0 | ||||||||
\(239\) | −16.0000 | −1.03495 | −0.517477 | − | 0.855697i | \(-0.673129\pi\) | ||||
−0.517477 | + | 0.855697i | \(0.673129\pi\) | |||||||
\(240\) | 0 | 0 | ||||||||
\(241\) | 14.0000 | 0.901819 | 0.450910 | − | 0.892570i | \(-0.351100\pi\) | ||||
0.450910 | + | 0.892570i | \(0.351100\pi\) | |||||||
\(242\) | 0 | 0 | ||||||||
\(243\) | 0 | 0 | ||||||||
\(244\) | 0 | 0 | ||||||||
\(245\) | 0 | 0 | ||||||||
\(246\) | 0 | 0 | ||||||||
\(247\) | 32.0000 | 2.03611 | ||||||||
\(248\) | 0 | 0 | ||||||||
\(249\) | 0 | 0 | ||||||||
\(250\) | 0 | 0 | ||||||||
\(251\) | −16.0000 | −1.00991 | −0.504956 | − | 0.863145i | \(-0.668491\pi\) | ||||
−0.504956 | + | 0.863145i | \(0.668491\pi\) | |||||||
\(252\) | 0 | 0 | ||||||||
\(253\) | 0 | 0 | ||||||||
\(254\) | 0 | 0 | ||||||||
\(255\) | 0 | 0 | ||||||||
\(256\) | 0 | 0 | ||||||||
\(257\) | 24.0000 | 1.49708 | 0.748539 | − | 0.663090i | \(-0.230755\pi\) | ||||
0.748539 | + | 0.663090i | \(0.230755\pi\) | |||||||
\(258\) | 0 | 0 | ||||||||
\(259\) | −16.0000 | −0.994192 | ||||||||
\(260\) | 0 | 0 | ||||||||
\(261\) | 0 | 0 | ||||||||
\(262\) | 0 | 0 | ||||||||
\(263\) | −12.0000 | −0.739952 | −0.369976 | − | 0.929041i | \(-0.620634\pi\) | ||||
−0.369976 | + | 0.929041i | \(0.620634\pi\) | |||||||
\(264\) | 0 | 0 | ||||||||
\(265\) | 0 | 0 | ||||||||
\(266\) | 0 | 0 | ||||||||
\(267\) | 0 | 0 | ||||||||
\(268\) | 0 | 0 | ||||||||
\(269\) | −6.00000 | −0.365826 | −0.182913 | − | 0.983129i | \(-0.558553\pi\) | ||||
−0.182913 | + | 0.983129i | \(0.558553\pi\) | |||||||
\(270\) | 0 | 0 | ||||||||
\(271\) | −24.0000 | −1.45790 | −0.728948 | − | 0.684569i | \(-0.759990\pi\) | ||||
−0.728948 | + | 0.684569i | \(0.759990\pi\) | |||||||
\(272\) | 0 | 0 | ||||||||
\(273\) | 0 | 0 | ||||||||
\(274\) | 0 | 0 | ||||||||
\(275\) | 0 | 0 | ||||||||
\(276\) | 0 | 0 | ||||||||
\(277\) | −4.00000 | −0.240337 | −0.120168 | − | 0.992754i | \(-0.538343\pi\) | ||||
−0.120168 | + | 0.992754i | \(0.538343\pi\) | |||||||
\(278\) | 0 | 0 | ||||||||
\(279\) | 0 | 0 | ||||||||
\(280\) | 0 | 0 | ||||||||
\(281\) | 26.0000 | 1.55103 | 0.775515 | − | 0.631329i | \(-0.217490\pi\) | ||||
0.775515 | + | 0.631329i | \(0.217490\pi\) | |||||||
\(282\) | 0 | 0 | ||||||||
\(283\) | −20.0000 | −1.18888 | −0.594438 | − | 0.804141i | \(-0.702626\pi\) | ||||
−0.594438 | + | 0.804141i | \(0.702626\pi\) | |||||||
\(284\) | 0 | 0 | ||||||||
\(285\) | 0 | 0 | ||||||||
\(286\) | 0 | 0 | ||||||||
\(287\) | −24.0000 | −1.41668 | ||||||||
\(288\) | 0 | 0 | ||||||||
\(289\) | −17.0000 | −1.00000 | ||||||||
\(290\) | 0 | 0 | ||||||||
\(291\) | 0 | 0 | ||||||||
\(292\) | 0 | 0 | ||||||||
\(293\) | 20.0000 | 1.16841 | 0.584206 | − | 0.811605i | \(-0.301406\pi\) | ||||
0.584206 | + | 0.811605i | \(0.301406\pi\) | |||||||
\(294\) | 0 | 0 | ||||||||
\(295\) | 0 | 0 | ||||||||
\(296\) | 0 | 0 | ||||||||
\(297\) | 0 | 0 | ||||||||
\(298\) | 0 | 0 | ||||||||
\(299\) | 16.0000 | 0.925304 | ||||||||
\(300\) | 0 | 0 | ||||||||
\(301\) | −16.0000 | −0.922225 | ||||||||
\(302\) | 0 | 0 | ||||||||
\(303\) | 0 | 0 | ||||||||
\(304\) | 0 | 0 | ||||||||
\(305\) | 0 | 0 | ||||||||
\(306\) | 0 | 0 | ||||||||
\(307\) | −12.0000 | −0.684876 | −0.342438 | − | 0.939540i | \(-0.611253\pi\) | ||||
−0.342438 | + | 0.939540i | \(0.611253\pi\) | |||||||
\(308\) | 0 | 0 | ||||||||
\(309\) | 0 | 0 | ||||||||
\(310\) | 0 | 0 | ||||||||
\(311\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(312\) | 0 | 0 | ||||||||
\(313\) | −8.00000 | −0.452187 | −0.226093 | − | 0.974106i | \(-0.572595\pi\) | ||||
−0.226093 | + | 0.974106i | \(0.572595\pi\) | |||||||
\(314\) | 0 | 0 | ||||||||
\(315\) | 0 | 0 | ||||||||
\(316\) | 0 | 0 | ||||||||
\(317\) | 12.0000 | 0.673987 | 0.336994 | − | 0.941507i | \(-0.390590\pi\) | ||||
0.336994 | + | 0.941507i | \(0.390590\pi\) | |||||||
\(318\) | 0 | 0 | ||||||||
\(319\) | 0 | 0 | ||||||||
\(320\) | 0 | 0 | ||||||||
\(321\) | 0 | 0 | ||||||||
\(322\) | 0 | 0 | ||||||||
\(323\) | 0 | 0 | ||||||||
\(324\) | 0 | 0 | ||||||||
\(325\) | 0 | 0 | ||||||||
\(326\) | 0 | 0 | ||||||||
\(327\) | 0 | 0 | ||||||||
\(328\) | 0 | 0 | ||||||||
\(329\) | −16.0000 | −0.882109 | ||||||||
\(330\) | 0 | 0 | ||||||||
\(331\) | −8.00000 | −0.439720 | −0.219860 | − | 0.975531i | \(-0.570560\pi\) | ||||
−0.219860 | + | 0.975531i | \(0.570560\pi\) | |||||||
\(332\) | 0 | 0 | ||||||||
\(333\) | 0 | 0 | ||||||||
\(334\) | 0 | 0 | ||||||||
\(335\) | 0 | 0 | ||||||||
\(336\) | 0 | 0 | ||||||||
\(337\) | −16.0000 | −0.871576 | −0.435788 | − | 0.900049i | \(-0.643530\pi\) | ||||
−0.435788 | + | 0.900049i | \(0.643530\pi\) | |||||||
\(338\) | 0 | 0 | ||||||||
\(339\) | 0 | 0 | ||||||||
\(340\) | 0 | 0 | ||||||||
\(341\) | 0 | 0 | ||||||||
\(342\) | 0 | 0 | ||||||||
\(343\) | 8.00000 | 0.431959 | ||||||||
\(344\) | 0 | 0 | ||||||||
\(345\) | 0 | 0 | ||||||||
\(346\) | 0 | 0 | ||||||||
\(347\) | 28.0000 | 1.50312 | 0.751559 | − | 0.659665i | \(-0.229302\pi\) | ||||
0.751559 | + | 0.659665i | \(0.229302\pi\) | |||||||
\(348\) | 0 | 0 | ||||||||
\(349\) | 10.0000 | 0.535288 | 0.267644 | − | 0.963518i | \(-0.413755\pi\) | ||||
0.267644 | + | 0.963518i | \(0.413755\pi\) | |||||||
\(350\) | 0 | 0 | ||||||||
\(351\) | 0 | 0 | ||||||||
\(352\) | 0 | 0 | ||||||||
\(353\) | 24.0000 | 1.27739 | 0.638696 | − | 0.769460i | \(-0.279474\pi\) | ||||
0.638696 | + | 0.769460i | \(0.279474\pi\) | |||||||
\(354\) | 0 | 0 | ||||||||
\(355\) | 0 | 0 | ||||||||
\(356\) | 0 | 0 | ||||||||
\(357\) | 0 | 0 | ||||||||
\(358\) | 0 | 0 | ||||||||
\(359\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(360\) | 0 | 0 | ||||||||
\(361\) | 45.0000 | 2.36842 | ||||||||
\(362\) | 0 | 0 | ||||||||
\(363\) | 0 | 0 | ||||||||
\(364\) | 0 | 0 | ||||||||
\(365\) | 0 | 0 | ||||||||
\(366\) | 0 | 0 | ||||||||
\(367\) | −28.0000 | −1.46159 | −0.730794 | − | 0.682598i | \(-0.760850\pi\) | ||||
−0.730794 | + | 0.682598i | \(0.760850\pi\) | |||||||
\(368\) | 0 | 0 | ||||||||
\(369\) | 0 | 0 | ||||||||
\(370\) | 0 | 0 | ||||||||
\(371\) | 48.0000 | 2.49204 | ||||||||
\(372\) | 0 | 0 | ||||||||
\(373\) | 20.0000 | 1.03556 | 0.517780 | − | 0.855514i | \(-0.326758\pi\) | ||||
0.517780 | + | 0.855514i | \(0.326758\pi\) | |||||||
\(374\) | 0 | 0 | ||||||||
\(375\) | 0 | 0 | ||||||||
\(376\) | 0 | 0 | ||||||||
\(377\) | 24.0000 | 1.23606 | ||||||||
\(378\) | 0 | 0 | ||||||||
\(379\) | 8.00000 | 0.410932 | 0.205466 | − | 0.978664i | \(-0.434129\pi\) | ||||
0.205466 | + | 0.978664i | \(0.434129\pi\) | |||||||
\(380\) | 0 | 0 | ||||||||
\(381\) | 0 | 0 | ||||||||
\(382\) | 0 | 0 | ||||||||
\(383\) | −12.0000 | −0.613171 | −0.306586 | − | 0.951843i | \(-0.599187\pi\) | ||||
−0.306586 | + | 0.951843i | \(0.599187\pi\) | |||||||
\(384\) | 0 | 0 | ||||||||
\(385\) | 0 | 0 | ||||||||
\(386\) | 0 | 0 | ||||||||
\(387\) | 0 | 0 | ||||||||
\(388\) | 0 | 0 | ||||||||
\(389\) | −30.0000 | −1.52106 | −0.760530 | − | 0.649303i | \(-0.775061\pi\) | ||||
−0.760530 | + | 0.649303i | \(0.775061\pi\) | |||||||
\(390\) | 0 | 0 | ||||||||
\(391\) | 0 | 0 | ||||||||
\(392\) | 0 | 0 | ||||||||
\(393\) | 0 | 0 | ||||||||
\(394\) | 0 | 0 | ||||||||
\(395\) | 0 | 0 | ||||||||
\(396\) | 0 | 0 | ||||||||
\(397\) | 28.0000 | 1.40528 | 0.702640 | − | 0.711546i | \(-0.252005\pi\) | ||||
0.702640 | + | 0.711546i | \(0.252005\pi\) | |||||||
\(398\) | 0 | 0 | ||||||||
\(399\) | 0 | 0 | ||||||||
\(400\) | 0 | 0 | ||||||||
\(401\) | 30.0000 | 1.49813 | 0.749064 | − | 0.662497i | \(-0.230503\pi\) | ||||
0.749064 | + | 0.662497i | \(0.230503\pi\) | |||||||
\(402\) | 0 | 0 | ||||||||
\(403\) | 32.0000 | 1.59403 | ||||||||
\(404\) | 0 | 0 | ||||||||
\(405\) | 0 | 0 | ||||||||
\(406\) | 0 | 0 | ||||||||
\(407\) | 0 | 0 | ||||||||
\(408\) | 0 | 0 | ||||||||
\(409\) | 10.0000 | 0.494468 | 0.247234 | − | 0.968956i | \(-0.420478\pi\) | ||||
0.247234 | + | 0.968956i | \(0.420478\pi\) | |||||||
\(410\) | 0 | 0 | ||||||||
\(411\) | 0 | 0 | ||||||||
\(412\) | 0 | 0 | ||||||||
\(413\) | 0 | 0 | ||||||||
\(414\) | 0 | 0 | ||||||||
\(415\) | 0 | 0 | ||||||||
\(416\) | 0 | 0 | ||||||||
\(417\) | 0 | 0 | ||||||||
\(418\) | 0 | 0 | ||||||||
\(419\) | 16.0000 | 0.781651 | 0.390826 | − | 0.920465i | \(-0.372190\pi\) | ||||
0.390826 | + | 0.920465i | \(0.372190\pi\) | |||||||
\(420\) | 0 | 0 | ||||||||
\(421\) | −14.0000 | −0.682318 | −0.341159 | − | 0.940006i | \(-0.610819\pi\) | ||||
−0.341159 | + | 0.940006i | \(0.610819\pi\) | |||||||
\(422\) | 0 | 0 | ||||||||
\(423\) | 0 | 0 | ||||||||
\(424\) | 0 | 0 | ||||||||
\(425\) | 0 | 0 | ||||||||
\(426\) | 0 | 0 | ||||||||
\(427\) | −24.0000 | −1.16144 | ||||||||
\(428\) | 0 | 0 | ||||||||
\(429\) | 0 | 0 | ||||||||
\(430\) | 0 | 0 | ||||||||
\(431\) | −16.0000 | −0.770693 | −0.385346 | − | 0.922772i | \(-0.625918\pi\) | ||||
−0.385346 | + | 0.922772i | \(0.625918\pi\) | |||||||
\(432\) | 0 | 0 | ||||||||
\(433\) | 40.0000 | 1.92228 | 0.961139 | − | 0.276066i | \(-0.0890309\pi\) | ||||
0.961139 | + | 0.276066i | \(0.0890309\pi\) | |||||||
\(434\) | 0 | 0 | ||||||||
\(435\) | 0 | 0 | ||||||||
\(436\) | 0 | 0 | ||||||||
\(437\) | 32.0000 | 1.53077 | ||||||||
\(438\) | 0 | 0 | ||||||||
\(439\) | −8.00000 | −0.381819 | −0.190910 | − | 0.981608i | \(-0.561144\pi\) | ||||
−0.190910 | + | 0.981608i | \(0.561144\pi\) | |||||||
\(440\) | 0 | 0 | ||||||||
\(441\) | 0 | 0 | ||||||||
\(442\) | 0 | 0 | ||||||||
\(443\) | 20.0000 | 0.950229 | 0.475114 | − | 0.879924i | \(-0.342407\pi\) | ||||
0.475114 | + | 0.879924i | \(0.342407\pi\) | |||||||
\(444\) | 0 | 0 | ||||||||
\(445\) | 0 | 0 | ||||||||
\(446\) | 0 | 0 | ||||||||
\(447\) | 0 | 0 | ||||||||
\(448\) | 0 | 0 | ||||||||
\(449\) | 30.0000 | 1.41579 | 0.707894 | − | 0.706319i | \(-0.249646\pi\) | ||||
0.707894 | + | 0.706319i | \(0.249646\pi\) | |||||||
\(450\) | 0 | 0 | ||||||||
\(451\) | 0 | 0 | ||||||||
\(452\) | 0 | 0 | ||||||||
\(453\) | 0 | 0 | ||||||||
\(454\) | 0 | 0 | ||||||||
\(455\) | 0 | 0 | ||||||||
\(456\) | 0 | 0 | ||||||||
\(457\) | −8.00000 | −0.374224 | −0.187112 | − | 0.982339i | \(-0.559913\pi\) | ||||
−0.187112 | + | 0.982339i | \(0.559913\pi\) | |||||||
\(458\) | 0 | 0 | ||||||||
\(459\) | 0 | 0 | ||||||||
\(460\) | 0 | 0 | ||||||||
\(461\) | −22.0000 | −1.02464 | −0.512321 | − | 0.858794i | \(-0.671214\pi\) | ||||
−0.512321 | + | 0.858794i | \(0.671214\pi\) | |||||||
\(462\) | 0 | 0 | ||||||||
\(463\) | −20.0000 | −0.929479 | −0.464739 | − | 0.885448i | \(-0.653852\pi\) | ||||
−0.464739 | + | 0.885448i | \(0.653852\pi\) | |||||||
\(464\) | 0 | 0 | ||||||||
\(465\) | 0 | 0 | ||||||||
\(466\) | 0 | 0 | ||||||||
\(467\) | −4.00000 | −0.185098 | −0.0925490 | − | 0.995708i | \(-0.529501\pi\) | ||||
−0.0925490 | + | 0.995708i | \(0.529501\pi\) | |||||||
\(468\) | 0 | 0 | ||||||||
\(469\) | −48.0000 | −2.21643 | ||||||||
\(470\) | 0 | 0 | ||||||||
\(471\) | 0 | 0 | ||||||||
\(472\) | 0 | 0 | ||||||||
\(473\) | 0 | 0 | ||||||||
\(474\) | 0 | 0 | ||||||||
\(475\) | 0 | 0 | ||||||||
\(476\) | 0 | 0 | ||||||||
\(477\) | 0 | 0 | ||||||||
\(478\) | 0 | 0 | ||||||||
\(479\) | 32.0000 | 1.46212 | 0.731059 | − | 0.682315i | \(-0.239027\pi\) | ||||
0.731059 | + | 0.682315i | \(0.239027\pi\) | |||||||
\(480\) | 0 | 0 | ||||||||
\(481\) | −16.0000 | −0.729537 | ||||||||
\(482\) | 0 | 0 | ||||||||
\(483\) | 0 | 0 | ||||||||
\(484\) | 0 | 0 | ||||||||
\(485\) | 0 | 0 | ||||||||
\(486\) | 0 | 0 | ||||||||
\(487\) | 4.00000 | 0.181257 | 0.0906287 | − | 0.995885i | \(-0.471112\pi\) | ||||
0.0906287 | + | 0.995885i | \(0.471112\pi\) | |||||||
\(488\) | 0 | 0 | ||||||||
\(489\) | 0 | 0 | ||||||||
\(490\) | 0 | 0 | ||||||||
\(491\) | 32.0000 | 1.44414 | 0.722070 | − | 0.691820i | \(-0.243191\pi\) | ||||
0.722070 | + | 0.691820i | \(0.243191\pi\) | |||||||
\(492\) | 0 | 0 | ||||||||
\(493\) | 0 | 0 | ||||||||
\(494\) | 0 | 0 | ||||||||
\(495\) | 0 | 0 | ||||||||
\(496\) | 0 | 0 | ||||||||
\(497\) | −64.0000 | −2.87079 | ||||||||
\(498\) | 0 | 0 | ||||||||
\(499\) | 24.0000 | 1.07439 | 0.537194 | − | 0.843459i | \(-0.319484\pi\) | ||||
0.537194 | + | 0.843459i | \(0.319484\pi\) | |||||||
\(500\) | 0 | 0 | ||||||||
\(501\) | 0 | 0 | ||||||||
\(502\) | 0 | 0 | ||||||||
\(503\) | −28.0000 | −1.24846 | −0.624229 | − | 0.781241i | \(-0.714587\pi\) | ||||
−0.624229 | + | 0.781241i | \(0.714587\pi\) | |||||||
\(504\) | 0 | 0 | ||||||||
\(505\) | 0 | 0 | ||||||||
\(506\) | 0 | 0 | ||||||||
\(507\) | 0 | 0 | ||||||||
\(508\) | 0 | 0 | ||||||||
\(509\) | 6.00000 | 0.265945 | 0.132973 | − | 0.991120i | \(-0.457548\pi\) | ||||
0.132973 | + | 0.991120i | \(0.457548\pi\) | |||||||
\(510\) | 0 | 0 | ||||||||
\(511\) | 0 | 0 | ||||||||
\(512\) | 0 | 0 | ||||||||
\(513\) | 0 | 0 | ||||||||
\(514\) | 0 | 0 | ||||||||
\(515\) | 0 | 0 | ||||||||
\(516\) | 0 | 0 | ||||||||
\(517\) | 0 | 0 | ||||||||
\(518\) | 0 | 0 | ||||||||
\(519\) | 0 | 0 | ||||||||
\(520\) | 0 | 0 | ||||||||
\(521\) | −10.0000 | −0.438108 | −0.219054 | − | 0.975713i | \(-0.570297\pi\) | ||||
−0.219054 | + | 0.975713i | \(0.570297\pi\) | |||||||
\(522\) | 0 | 0 | ||||||||
\(523\) | 12.0000 | 0.524723 | 0.262362 | − | 0.964970i | \(-0.415499\pi\) | ||||
0.262362 | + | 0.964970i | \(0.415499\pi\) | |||||||
\(524\) | 0 | 0 | ||||||||
\(525\) | 0 | 0 | ||||||||
\(526\) | 0 | 0 | ||||||||
\(527\) | 0 | 0 | ||||||||
\(528\) | 0 | 0 | ||||||||
\(529\) | −7.00000 | −0.304348 | ||||||||
\(530\) | 0 | 0 | ||||||||
\(531\) | 0 | 0 | ||||||||
\(532\) | 0 | 0 | ||||||||
\(533\) | −24.0000 | −1.03956 | ||||||||
\(534\) | 0 | 0 | ||||||||
\(535\) | 0 | 0 | ||||||||
\(536\) | 0 | 0 | ||||||||
\(537\) | 0 | 0 | ||||||||
\(538\) | 0 | 0 | ||||||||
\(539\) | 0 | 0 | ||||||||
\(540\) | 0 | 0 | ||||||||
\(541\) | −10.0000 | −0.429934 | −0.214967 | − | 0.976621i | \(-0.568964\pi\) | ||||
−0.214967 | + | 0.976621i | \(0.568964\pi\) | |||||||
\(542\) | 0 | 0 | ||||||||
\(543\) | 0 | 0 | ||||||||
\(544\) | 0 | 0 | ||||||||
\(545\) | 0 | 0 | ||||||||
\(546\) | 0 | 0 | ||||||||
\(547\) | 36.0000 | 1.53925 | 0.769624 | − | 0.638497i | \(-0.220443\pi\) | ||||
0.769624 | + | 0.638497i | \(0.220443\pi\) | |||||||
\(548\) | 0 | 0 | ||||||||
\(549\) | 0 | 0 | ||||||||
\(550\) | 0 | 0 | ||||||||
\(551\) | 48.0000 | 2.04487 | ||||||||
\(552\) | 0 | 0 | ||||||||
\(553\) | 32.0000 | 1.36078 | ||||||||
\(554\) | 0 | 0 | ||||||||
\(555\) | 0 | 0 | ||||||||
\(556\) | 0 | 0 | ||||||||
\(557\) | 4.00000 | 0.169485 | 0.0847427 | − | 0.996403i | \(-0.472993\pi\) | ||||
0.0847427 | + | 0.996403i | \(0.472993\pi\) | |||||||
\(558\) | 0 | 0 | ||||||||
\(559\) | −16.0000 | −0.676728 | ||||||||
\(560\) | 0 | 0 | ||||||||
\(561\) | 0 | 0 | ||||||||
\(562\) | 0 | 0 | ||||||||
\(563\) | −28.0000 | −1.18006 | −0.590030 | − | 0.807382i | \(-0.700884\pi\) | ||||
−0.590030 | + | 0.807382i | \(0.700884\pi\) | |||||||
\(564\) | 0 | 0 | ||||||||
\(565\) | 0 | 0 | ||||||||
\(566\) | 0 | 0 | ||||||||
\(567\) | 0 | 0 | ||||||||
\(568\) | 0 | 0 | ||||||||
\(569\) | −10.0000 | −0.419222 | −0.209611 | − | 0.977785i | \(-0.567220\pi\) | ||||
−0.209611 | + | 0.977785i | \(0.567220\pi\) | |||||||
\(570\) | 0 | 0 | ||||||||
\(571\) | −40.0000 | −1.67395 | −0.836974 | − | 0.547243i | \(-0.815677\pi\) | ||||
−0.836974 | + | 0.547243i | \(0.815677\pi\) | |||||||
\(572\) | 0 | 0 | ||||||||
\(573\) | 0 | 0 | ||||||||
\(574\) | 0 | 0 | ||||||||
\(575\) | 0 | 0 | ||||||||
\(576\) | 0 | 0 | ||||||||
\(577\) | −16.0000 | −0.666089 | −0.333044 | − | 0.942911i | \(-0.608076\pi\) | ||||
−0.333044 | + | 0.942911i | \(0.608076\pi\) | |||||||
\(578\) | 0 | 0 | ||||||||
\(579\) | 0 | 0 | ||||||||
\(580\) | 0 | 0 | ||||||||
\(581\) | −48.0000 | −1.99138 | ||||||||
\(582\) | 0 | 0 | ||||||||
\(583\) | 0 | 0 | ||||||||
\(584\) | 0 | 0 | ||||||||
\(585\) | 0 | 0 | ||||||||
\(586\) | 0 | 0 | ||||||||
\(587\) | 28.0000 | 1.15568 | 0.577842 | − | 0.816149i | \(-0.303895\pi\) | ||||
0.577842 | + | 0.816149i | \(0.303895\pi\) | |||||||
\(588\) | 0 | 0 | ||||||||
\(589\) | 64.0000 | 2.63707 | ||||||||
\(590\) | 0 | 0 | ||||||||
\(591\) | 0 | 0 | ||||||||
\(592\) | 0 | 0 | ||||||||
\(593\) | 8.00000 | 0.328521 | 0.164260 | − | 0.986417i | \(-0.447476\pi\) | ||||
0.164260 | + | 0.986417i | \(0.447476\pi\) | |||||||
\(594\) | 0 | 0 | ||||||||
\(595\) | 0 | 0 | ||||||||
\(596\) | 0 | 0 | ||||||||
\(597\) | 0 | 0 | ||||||||
\(598\) | 0 | 0 | ||||||||
\(599\) | 32.0000 | 1.30748 | 0.653742 | − | 0.756717i | \(-0.273198\pi\) | ||||
0.653742 | + | 0.756717i | \(0.273198\pi\) | |||||||
\(600\) | 0 | 0 | ||||||||
\(601\) | −26.0000 | −1.06056 | −0.530281 | − | 0.847822i | \(-0.677914\pi\) | ||||
−0.530281 | + | 0.847822i | \(0.677914\pi\) | |||||||
\(602\) | 0 | 0 | ||||||||
\(603\) | 0 | 0 | ||||||||
\(604\) | 0 | 0 | ||||||||
\(605\) | 0 | 0 | ||||||||
\(606\) | 0 | 0 | ||||||||
\(607\) | 20.0000 | 0.811775 | 0.405887 | − | 0.913923i | \(-0.366962\pi\) | ||||
0.405887 | + | 0.913923i | \(0.366962\pi\) | |||||||
\(608\) | 0 | 0 | ||||||||
\(609\) | 0 | 0 | ||||||||
\(610\) | 0 | 0 | ||||||||
\(611\) | −16.0000 | −0.647291 | ||||||||
\(612\) | 0 | 0 | ||||||||
\(613\) | −20.0000 | −0.807792 | −0.403896 | − | 0.914805i | \(-0.632344\pi\) | ||||
−0.403896 | + | 0.914805i | \(0.632344\pi\) | |||||||
\(614\) | 0 | 0 | ||||||||
\(615\) | 0 | 0 | ||||||||
\(616\) | 0 | 0 | ||||||||
\(617\) | 8.00000 | 0.322068 | 0.161034 | − | 0.986949i | \(-0.448517\pi\) | ||||
0.161034 | + | 0.986949i | \(0.448517\pi\) | |||||||
\(618\) | 0 | 0 | ||||||||
\(619\) | 24.0000 | 0.964641 | 0.482321 | − | 0.875995i | \(-0.339794\pi\) | ||||
0.482321 | + | 0.875995i | \(0.339794\pi\) | |||||||
\(620\) | 0 | 0 | ||||||||
\(621\) | 0 | 0 | ||||||||
\(622\) | 0 | 0 | ||||||||
\(623\) | 40.0000 | 1.60257 | ||||||||
\(624\) | 0 | 0 | ||||||||
\(625\) | 0 | 0 | ||||||||
\(626\) | 0 | 0 | ||||||||
\(627\) | 0 | 0 | ||||||||
\(628\) | 0 | 0 | ||||||||
\(629\) | 0 | 0 | ||||||||
\(630\) | 0 | 0 | ||||||||
\(631\) | −8.00000 | −0.318475 | −0.159237 | − | 0.987240i | \(-0.550904\pi\) | ||||
−0.159237 | + | 0.987240i | \(0.550904\pi\) | |||||||
\(632\) | 0 | 0 | ||||||||
\(633\) | 0 | 0 | ||||||||
\(634\) | 0 | 0 | ||||||||
\(635\) | 0 | 0 | ||||||||
\(636\) | 0 | 0 | ||||||||
\(637\) | 36.0000 | 1.42637 | ||||||||
\(638\) | 0 | 0 | ||||||||
\(639\) | 0 | 0 | ||||||||
\(640\) | 0 | 0 | ||||||||
\(641\) | 34.0000 | 1.34292 | 0.671460 | − | 0.741041i | \(-0.265668\pi\) | ||||
0.671460 | + | 0.741041i | \(0.265668\pi\) | |||||||
\(642\) | 0 | 0 | ||||||||
\(643\) | 12.0000 | 0.473234 | 0.236617 | − | 0.971603i | \(-0.423961\pi\) | ||||
0.236617 | + | 0.971603i | \(0.423961\pi\) | |||||||
\(644\) | 0 | 0 | ||||||||
\(645\) | 0 | 0 | ||||||||
\(646\) | 0 | 0 | ||||||||
\(647\) | 12.0000 | 0.471769 | 0.235884 | − | 0.971781i | \(-0.424201\pi\) | ||||
0.235884 | + | 0.971781i | \(0.424201\pi\) | |||||||
\(648\) | 0 | 0 | ||||||||
\(649\) | 0 | 0 | ||||||||
\(650\) | 0 | 0 | ||||||||
\(651\) | 0 | 0 | ||||||||
\(652\) | 0 | 0 | ||||||||
\(653\) | 20.0000 | 0.782660 | 0.391330 | − | 0.920250i | \(-0.372015\pi\) | ||||
0.391330 | + | 0.920250i | \(0.372015\pi\) | |||||||
\(654\) | 0 | 0 | ||||||||
\(655\) | 0 | 0 | ||||||||
\(656\) | 0 | 0 | ||||||||
\(657\) | 0 | 0 | ||||||||
\(658\) | 0 | 0 | ||||||||
\(659\) | 0 | 0 | − | 1.00000i | \(-0.5\pi\) | |||||
1.00000i | \(0.5\pi\) | |||||||||
\(660\) | 0 | 0 | ||||||||
\(661\) | −30.0000 | −1.16686 | −0.583432 | − | 0.812162i | \(-0.698291\pi\) | ||||
−0.583432 | + | 0.812162i | \(0.698291\pi\) | |||||||
\(662\) | 0 | 0 | ||||||||
\(663\) | 0 | 0 | ||||||||
\(664\) | 0 | 0 | ||||||||
\(665\) | 0 | 0 | ||||||||
\(666\) | 0 | 0 | ||||||||
\(667\) | 24.0000 | 0.929284 | ||||||||
\(668\) | 0 | 0 | ||||||||
\(669\) | 0 | 0 | ||||||||
\(670\) | 0 | 0 | ||||||||
\(671\) | 0 | 0 | ||||||||
\(672\) | 0 | 0 | ||||||||
\(673\) | 8.00000 | 0.308377 | 0.154189 | − | 0.988041i | \(-0.450724\pi\) | ||||
0.154189 | + | 0.988041i | \(0.450724\pi\) | |||||||
\(674\) | 0 | 0 | ||||||||
\(675\) | 0 | 0 | ||||||||
\(676\) | 0 | 0 | ||||||||
\(677\) | −12.0000 | −0.461197 | −0.230599 | − | 0.973049i | \(-0.574068\pi\) | ||||
−0.230599 | + | 0.973049i | \(0.574068\pi\) | |||||||
\(678\) | 0 | 0 | ||||||||
\(679\) | 32.0000 | 1.22805 | ||||||||
\(680\) | 0 | 0 | ||||||||
\(681\) | 0 | 0 | ||||||||
\(682\) | 0 | 0 | ||||||||
\(683\) | 36.0000 | 1.37750 | 0.688751 | − | 0.724998i | \(-0.258159\pi\) | ||||
0.688751 | + | 0.724998i | \(0.258159\pi\) | |||||||
\(684\) | 0 | 0 | ||||||||
\(685\) | 0 | 0 | ||||||||
\(686\) | 0 | 0 | ||||||||
\(687\) | 0 | 0 | ||||||||
\(688\) | 0 | 0 | ||||||||
\(689\) | 48.0000 | 1.82865 | ||||||||
\(690\) | 0 | 0 | ||||||||
\(691\) | −8.00000 | −0.304334 | −0.152167 | − | 0.988355i | \(-0.548625\pi\) | ||||
−0.152167 | + | 0.988355i | \(0.548625\pi\) | |||||||
\(692\) | 0 | 0 | ||||||||
\(693\) | 0 | 0 | ||||||||
\(694\) | 0 | 0 | ||||||||
\(695\) | 0 | 0 | ||||||||
\(696\) | 0 | 0 | ||||||||
\(697\) | 0 | 0 | ||||||||
\(698\) | 0 | 0 | ||||||||
\(699\) | 0 | 0 | ||||||||
\(700\) | 0 | 0 | ||||||||
\(701\) | −42.0000 | −1.58632 | −0.793159 | − | 0.609015i | \(-0.791565\pi\) | ||||
−0.793159 | + | 0.609015i | \(0.791565\pi\) | |||||||
\(702\) | 0 | 0 | ||||||||
\(703\) | −32.0000 | −1.20690 | ||||||||
\(704\) | 0 | 0 | ||||||||
\(705\) | 0 | 0 | ||||||||
\(706\) | 0 | 0 | ||||||||
\(707\) | −56.0000 | −2.10610 | ||||||||
\(708\) | 0 | 0 | ||||||||
\(709\) | 2.00000 | 0.0751116 | 0.0375558 | − | 0.999295i | \(-0.488043\pi\) | ||||
0.0375558 | + | 0.999295i | \(0.488043\pi\) | |||||||
\(710\) | 0 | 0 | ||||||||
\(711\) | 0 | 0 | ||||||||
\(712\) | 0 | 0 | ||||||||
\(713\) | 32.0000 | 1.19841 | ||||||||
\(714\) | 0 | 0 | ||||||||
\(715\) | 0 | 0 | ||||||||
\(716\) | 0 | 0 | ||||||||
\(717\) | 0 | 0 | ||||||||
\(718\) | 0 | 0 | ||||||||
\(719\) | −16.0000 | −0.596699 | −0.298350 | − | 0.954457i | \(-0.596436\pi\) | ||||
−0.298350 | + | 0.954457i | \(0.596436\pi\) | |||||||
\(720\) | 0 | 0 | ||||||||
\(721\) | 48.0000 | 1.78761 | ||||||||
\(722\) | 0 | 0 | ||||||||
\(723\) | 0 | 0 | ||||||||
\(724\) | 0 | 0 | ||||||||
\(725\) | 0 | 0 | ||||||||
\(726\) | 0 | 0 | ||||||||
\(727\) | −28.0000 | −1.03846 | −0.519231 | − | 0.854634i | \(-0.673782\pi\) | ||||
−0.519231 | + | 0.854634i | \(0.673782\pi\) | |||||||
\(728\) | 0 | 0 | ||||||||
\(729\) | 0 | 0 | ||||||||
\(730\) | 0 | 0 | ||||||||
\(731\) | 0 | 0 | ||||||||
\(732\) | 0 | 0 | ||||||||
\(733\) | −4.00000 | −0.147743 | −0.0738717 | − | 0.997268i | \(-0.523536\pi\) | ||||
−0.0738717 | + | 0.997268i | \(0.523536\pi\) | |||||||
\(734\) | 0 | 0 | ||||||||
\(735\) | 0 | 0 | ||||||||
\(736\) | 0 | 0 | ||||||||
\(737\) | 0 | 0 | ||||||||
\(738\) | 0 | 0 | ||||||||
\(739\) | −40.0000 | −1.47142 | −0.735712 | − | 0.677295i | \(-0.763152\pi\) | ||||
−0.735712 | + | 0.677295i | \(0.763152\pi\) | |||||||
\(740\) | 0 | 0 | ||||||||
\(741\) | 0 | 0 | ||||||||
\(742\) | 0 | 0 | ||||||||
\(743\) | −12.0000 | −0.440237 | −0.220119 | − | 0.975473i | \(-0.570644\pi\) | ||||
−0.220119 | + | 0.975473i | \(0.570644\pi\) | |||||||
\(744\) | 0 | 0 | ||||||||
\(745\) | 0 | 0 | ||||||||
\(746\) | 0 | 0 | ||||||||
\(747\) | 0 | 0 | ||||||||
\(748\) | 0 | 0 | ||||||||
\(749\) | 48.0000 | 1.75388 | ||||||||
\(750\) | 0 | 0 | ||||||||
\(751\) | 8.00000 | 0.291924 | 0.145962 | − | 0.989290i | \(-0.453372\pi\) | ||||
0.145962 | + | 0.989290i | \(0.453372\pi\) | |||||||
\(752\) | 0 | 0 | ||||||||
\(753\) | 0 | 0 | ||||||||
\(754\) | 0 | 0 | ||||||||
\(755\) | 0 | 0 | ||||||||
\(756\) | 0 | 0 | ||||||||
\(757\) | 12.0000 | 0.436147 | 0.218074 | − | 0.975932i | \(-0.430023\pi\) | ||||
0.218074 | + | 0.975932i | \(0.430023\pi\) | |||||||
\(758\) | 0 | 0 | ||||||||
\(759\) | 0 | 0 | ||||||||
\(760\) | 0 | 0 | ||||||||
\(761\) | 6.00000 | 0.217500 | 0.108750 | − | 0.994069i | \(-0.465315\pi\) | ||||
0.108750 | + | 0.994069i | \(0.465315\pi\) | |||||||
\(762\) | 0 | 0 | ||||||||
\(763\) | −40.0000 | −1.44810 | ||||||||
\(764\) | 0 | 0 | ||||||||
\(765\) | 0 | 0 | ||||||||
\(766\) | 0 | 0 | ||||||||
\(767\) | 0 | 0 | ||||||||
\(768\) | 0 | 0 | ||||||||
\(769\) | 14.0000 | 0.504853 | 0.252426 | − | 0.967616i | \(-0.418771\pi\) | ||||
0.252426 | + | 0.967616i | \(0.418771\pi\) | |||||||
\(770\) | 0 | 0 | ||||||||
\(771\) | 0 | 0 | ||||||||
\(772\) | 0 | 0 | ||||||||
\(773\) | 28.0000 | 1.00709 | 0.503545 | − | 0.863969i | \(-0.332029\pi\) | ||||
0.503545 | + | 0.863969i | \(0.332029\pi\) | |||||||
\(774\) | 0 | 0 | ||||||||
\(775\) | 0 | 0 | ||||||||
\(776\) | 0 | 0 | ||||||||
\(777\) | 0 | 0 | ||||||||
\(778\) | 0 | 0 | ||||||||
\(779\) | −48.0000 | −1.71978 | ||||||||
\(780\) | 0 | 0 | ||||||||
\(781\) | 0 | 0 | ||||||||
\(782\) | 0 | 0 | ||||||||
\(783\) | 0 | 0 | ||||||||
\(784\) | 0 | 0 | ||||||||
\(785\) | 0 | 0 | ||||||||
\(786\) | 0 | 0 | ||||||||
\(787\) | −12.0000 | −0.427754 | −0.213877 | − | 0.976861i | \(-0.568609\pi\) | ||||
−0.213877 | + | 0.976861i | \(0.568609\pi\) | |||||||
\(788\) | 0 | 0 | ||||||||
\(789\) | 0 | 0 | ||||||||
\(790\) | 0 | 0 | ||||||||
\(791\) | 32.0000 | 1.13779 | ||||||||
\(792\) | 0 | 0 | ||||||||
\(793\) | −24.0000 | −0.852265 | ||||||||
\(794\) | 0 | 0 | ||||||||
\(795\) | 0 | 0 | ||||||||
\(796\) | 0 | 0 | ||||||||
\(797\) | 12.0000 | 0.425062 | 0.212531 | − | 0.977154i | \(-0.431829\pi\) | ||||
0.212531 | + | 0.977154i | \(0.431829\pi\) | |||||||
\(798\) | 0 | 0 | ||||||||
\(799\) | 0 | 0 | ||||||||
\(800\) | 0 | 0 | ||||||||
\(801\) | 0 | 0 | ||||||||
\(802\) | 0 | 0 | ||||||||
\(803\) | 0 | 0 | ||||||||
\(804\) | 0 | 0 | ||||||||
\(805\) | 0 | 0 | ||||||||
\(806\) | 0 | 0 | ||||||||
\(807\) | 0 | 0 | ||||||||
\(808\) | 0 | 0 | ||||||||
\(809\) | −22.0000 | −0.773479 | −0.386739 | − | 0.922189i | \(-0.626399\pi\) | ||||
−0.386739 | + | 0.922189i | \(0.626399\pi\) | |||||||
\(810\) | 0 | 0 | ||||||||
\(811\) | −8.00000 | −0.280918 | −0.140459 | − | 0.990086i | \(-0.544858\pi\) | ||||
−0.140459 | + | 0.990086i | \(0.544858\pi\) | |||||||
\(812\) | 0 | 0 | ||||||||
\(813\) | 0 | 0 | ||||||||
\(814\) | 0 | 0 | ||||||||
\(815\) | 0 | 0 | ||||||||
\(816\) | 0 | 0 | ||||||||
\(817\) | −32.0000 | −1.11954 | ||||||||
\(818\) | 0 | 0 | ||||||||
\(819\) | 0 | 0 | ||||||||
\(820\) | 0 | 0 | ||||||||
\(821\) | −18.0000 | −0.628204 | −0.314102 | − | 0.949389i | \(-0.601703\pi\) | ||||
−0.314102 | + | 0.949389i | \(0.601703\pi\) | |||||||
\(822\) | 0 | 0 | ||||||||
\(823\) | 44.0000 | 1.53374 | 0.766872 | − | 0.641800i | \(-0.221812\pi\) | ||||
0.766872 | + | 0.641800i | \(0.221812\pi\) | |||||||
\(824\) | 0 | 0 | ||||||||
\(825\) | 0 | 0 | ||||||||
\(826\) | 0 | 0 | ||||||||
\(827\) | −36.0000 | −1.25184 | −0.625921 | − | 0.779886i | \(-0.715277\pi\) | ||||
−0.625921 | + | 0.779886i | \(0.715277\pi\) | |||||||
\(828\) | 0 | 0 | ||||||||
\(829\) | −26.0000 | −0.903017 | −0.451509 | − | 0.892267i | \(-0.649114\pi\) | ||||
−0.451509 | + | 0.892267i | \(0.649114\pi\) | |||||||
\(830\) | 0 | 0 | ||||||||
\(831\) | 0 | 0 | ||||||||
\(832\) | 0 | 0 | ||||||||
\(833\) | 0 | 0 | ||||||||
\(834\) | 0 | 0 | ||||||||
\(835\) | 0 | 0 | ||||||||
\(836\) | 0 | 0 | ||||||||
\(837\) | 0 | 0 | ||||||||
\(838\) | 0 | 0 | ||||||||
\(839\) | −32.0000 | −1.10476 | −0.552381 | − | 0.833592i | \(-0.686281\pi\) | ||||
−0.552381 | + | 0.833592i | \(0.686281\pi\) | |||||||
\(840\) | 0 | 0 | ||||||||
\(841\) | 7.00000 | 0.241379 | ||||||||
\(842\) | 0 | 0 | ||||||||
\(843\) | 0 | 0 | ||||||||
\(844\) | 0 | 0 | ||||||||
\(845\) | 0 | 0 | ||||||||
\(846\) | 0 | 0 | ||||||||
\(847\) | −44.0000 | −1.51186 | ||||||||
\(848\) | 0 | 0 | ||||||||
\(849\) | 0 | 0 | ||||||||
\(850\) | 0 | 0 | ||||||||
\(851\) | −16.0000 | −0.548473 | ||||||||
\(852\) | 0 | 0 | ||||||||
\(853\) | 12.0000 | 0.410872 | 0.205436 | − | 0.978671i | \(-0.434139\pi\) | ||||
0.205436 | + | 0.978671i | \(0.434139\pi\) | |||||||
\(854\) | 0 | 0 | ||||||||
\(855\) | 0 | 0 | ||||||||
\(856\) | 0 | 0 | ||||||||
\(857\) | −48.0000 | −1.63965 | −0.819824 | − | 0.572615i | \(-0.805929\pi\) | ||||
−0.819824 | + | 0.572615i | \(0.805929\pi\) | |||||||
\(858\) | 0 | 0 | ||||||||
\(859\) | −56.0000 | −1.91070 | −0.955348 | − | 0.295484i | \(-0.904519\pi\) | ||||
−0.955348 | + | 0.295484i | \(0.904519\pi\) | |||||||
\(860\) | 0 | 0 | ||||||||
\(861\) | 0 | 0 | ||||||||
\(862\) | 0 | 0 | ||||||||
\(863\) | 36.0000 | 1.22545 | 0.612727 | − | 0.790295i | \(-0.290072\pi\) | ||||
0.612727 | + | 0.790295i | \(0.290072\pi\) | |||||||
\(864\) | 0 | 0 | ||||||||
\(865\) | 0 | 0 | ||||||||
\(866\) | 0 | 0 | ||||||||
\(867\) | 0 | 0 | ||||||||
\(868\) | 0 | 0 | ||||||||
\(869\) | 0 | 0 | ||||||||
\(870\) | 0 | 0 | ||||||||
\(871\) | −48.0000 | −1.62642 | ||||||||
\(872\) | 0 | 0 | ||||||||
\(873\) | 0 | 0 | ||||||||
\(874\) | 0 | 0 | ||||||||
\(875\) | 0 | 0 | ||||||||
\(876\) | 0 | 0 | ||||||||
\(877\) | −28.0000 | −0.945493 | −0.472746 | − | 0.881199i | \(-0.656737\pi\) | ||||
−0.472746 | + | 0.881199i | \(0.656737\pi\) | |||||||
\(878\) | 0 | 0 | ||||||||
\(879\) | 0 | 0 | ||||||||
\(880\) | 0 | 0 | ||||||||
\(881\) | 2.00000 | 0.0673817 | 0.0336909 | − | 0.999432i | \(-0.489274\pi\) | ||||
0.0336909 | + | 0.999432i | \(0.489274\pi\) | |||||||
\(882\) | 0 | 0 | ||||||||
\(883\) | −4.00000 | −0.134611 | −0.0673054 | − | 0.997732i | \(-0.521440\pi\) | ||||
−0.0673054 | + | 0.997732i | \(0.521440\pi\) | |||||||
\(884\) | 0 | 0 | ||||||||
\(885\) | 0 | 0 | ||||||||
\(886\) | 0 | 0 | ||||||||
\(887\) | 12.0000 | 0.402921 | 0.201460 | − | 0.979497i | \(-0.435431\pi\) | ||||
0.201460 | + | 0.979497i | \(0.435431\pi\) | |||||||
\(888\) | 0 | 0 | ||||||||
\(889\) | 16.0000 | 0.536623 | ||||||||
\(890\) | 0 | 0 | ||||||||
\(891\) | 0 | 0 | ||||||||
\(892\) | 0 | 0 | ||||||||
\(893\) | −32.0000 | −1.07084 | ||||||||
\(894\) | 0 | 0 | ||||||||
\(895\) | 0 | 0 | ||||||||
\(896\) | 0 | 0 | ||||||||
\(897\) | 0 | 0 | ||||||||
\(898\) | 0 | 0 | ||||||||
\(899\) | 48.0000 | 1.60089 | ||||||||
\(900\) | 0 | 0 | ||||||||
\(901\) | 0 | 0 | ||||||||
\(902\) | 0 | 0 | ||||||||
\(903\) | 0 | 0 | ||||||||
\(904\) | 0 | 0 | ||||||||
\(905\) | 0 | 0 | ||||||||
\(906\) | 0 | 0 | ||||||||
\(907\) | 20.0000 | 0.664089 | 0.332045 | − | 0.943264i | \(-0.392262\pi\) | ||||
0.332045 | + | 0.943264i | \(0.392262\pi\) | |||||||
\(908\) | 0 | 0 | ||||||||
\(909\) | 0 | 0 | ||||||||
\(910\) | 0 | 0 | ||||||||
\(911\) | −32.0000 | −1.06021 | −0.530104 | − | 0.847933i | \(-0.677847\pi\) | ||||
−0.530104 | + | 0.847933i | \(0.677847\pi\) | |||||||
\(912\) | 0 | 0 | ||||||||
\(913\) | 0 | 0 | ||||||||
\(914\) | 0 | 0 | ||||||||
\(915\) | 0 | 0 | ||||||||
\(916\) | 0 | 0 | ||||||||
\(917\) | −64.0000 | −2.11347 | ||||||||
\(918\) | 0 | 0 | ||||||||
\(919\) | 24.0000 | 0.791687 | 0.395843 | − | 0.918318i | \(-0.370452\pi\) | ||||
0.395843 | + | 0.918318i | \(0.370452\pi\) | |||||||
\(920\) | 0 | 0 | ||||||||
\(921\) | 0 | 0 | ||||||||
\(922\) | 0 | 0 | ||||||||
\(923\) | −64.0000 | −2.10659 | ||||||||
\(924\) | 0 | 0 | ||||||||
\(925\) | 0 | 0 | ||||||||
\(926\) | 0 | 0 | ||||||||
\(927\) | 0 | 0 | ||||||||
\(928\) | 0 | 0 | ||||||||
\(929\) | −2.00000 | −0.0656179 | −0.0328089 | − | 0.999462i | \(-0.510445\pi\) | ||||
−0.0328089 | + | 0.999462i | \(0.510445\pi\) | |||||||
\(930\) | 0 | 0 | ||||||||
\(931\) | 72.0000 | 2.35970 | ||||||||
\(932\) | 0 | 0 | ||||||||
\(933\) | 0 | 0 | ||||||||
\(934\) | 0 | 0 | ||||||||
\(935\) | 0 | 0 | ||||||||
\(936\) | 0 | 0 | ||||||||
\(937\) | 16.0000 | 0.522697 | 0.261349 | − | 0.965244i | \(-0.415833\pi\) | ||||
0.261349 | + | 0.965244i | \(0.415833\pi\) | |||||||
\(938\) | 0 | 0 | ||||||||
\(939\) | 0 | 0 | ||||||||
\(940\) | 0 | 0 | ||||||||
\(941\) | 10.0000 | 0.325991 | 0.162995 | − | 0.986627i | \(-0.447884\pi\) | ||||
0.162995 | + | 0.986627i | \(0.447884\pi\) | |||||||
\(942\) | 0 | 0 | ||||||||
\(943\) | −24.0000 | −0.781548 | ||||||||
\(944\) | 0 | 0 | ||||||||
\(945\) | 0 | 0 | ||||||||
\(946\) | 0 | 0 | ||||||||
\(947\) | −20.0000 | −0.649913 | −0.324956 | − | 0.945729i | \(-0.605350\pi\) | ||||
−0.324956 | + | 0.945729i | \(0.605350\pi\) | |||||||
\(948\) | 0 | 0 | ||||||||
\(949\) | 0 | 0 | ||||||||
\(950\) | 0 | 0 | ||||||||
\(951\) | 0 | 0 | ||||||||
\(952\) | 0 | 0 | ||||||||
\(953\) | −48.0000 | −1.55487 | −0.777436 | − | 0.628962i | \(-0.783480\pi\) | ||||
−0.777436 | + | 0.628962i | \(0.783480\pi\) | |||||||
\(954\) | 0 | 0 | ||||||||
\(955\) | 0 | 0 | ||||||||
\(956\) | 0 | 0 | ||||||||
\(957\) | 0 | 0 | ||||||||
\(958\) | 0 | 0 | ||||||||
\(959\) | 0 | 0 | ||||||||
\(960\) | 0 | 0 | ||||||||
\(961\) | 33.0000 | 1.06452 | ||||||||
\(962\) | 0 | 0 | ||||||||
\(963\) | 0 | 0 | ||||||||
\(964\) | 0 | 0 | ||||||||
\(965\) | 0 | 0 | ||||||||
\(966\) | 0 | 0 | ||||||||
\(967\) | −12.0000 | −0.385894 | −0.192947 | − | 0.981209i | \(-0.561805\pi\) | ||||
−0.192947 | + | 0.981209i | \(0.561805\pi\) | |||||||
\(968\) | 0 | 0 | ||||||||
\(969\) | 0 | 0 | ||||||||
\(970\) | 0 | 0 | ||||||||
\(971\) | −16.0000 | −0.513464 | −0.256732 | − | 0.966483i | \(-0.582646\pi\) | ||||
−0.256732 | + | 0.966483i | \(0.582646\pi\) | |||||||
\(972\) | 0 | 0 | ||||||||
\(973\) | −32.0000 | −1.02587 | ||||||||
\(974\) | 0 | 0 | ||||||||
\(975\) | 0 | 0 | ||||||||
\(976\) | 0 | 0 | ||||||||
\(977\) | 48.0000 | 1.53566 | 0.767828 | − | 0.640656i | \(-0.221338\pi\) | ||||
0.767828 | + | 0.640656i | \(0.221338\pi\) | |||||||
\(978\) | 0 | 0 | ||||||||
\(979\) | 0 | 0 | ||||||||
\(980\) | 0 | 0 | ||||||||
\(981\) | 0 | 0 | ||||||||
\(982\) | 0 | 0 | ||||||||
\(983\) | −12.0000 | −0.382741 | −0.191370 | − | 0.981518i | \(-0.561293\pi\) | ||||
−0.191370 | + | 0.981518i | \(0.561293\pi\) | |||||||
\(984\) | 0 | 0 | ||||||||
\(985\) | 0 | 0 | ||||||||
\(986\) | 0 | 0 | ||||||||
\(987\) | 0 | 0 | ||||||||
\(988\) | 0 | 0 | ||||||||
\(989\) | −16.0000 | −0.508770 | ||||||||
\(990\) | 0 | 0 | ||||||||
\(991\) | 24.0000 | 0.762385 | 0.381193 | − | 0.924496i | \(-0.375513\pi\) | ||||
0.381193 | + | 0.924496i | \(0.375513\pi\) | |||||||
\(992\) | 0 | 0 | ||||||||
\(993\) | 0 | 0 | ||||||||
\(994\) | 0 | 0 | ||||||||
\(995\) | 0 | 0 | ||||||||
\(996\) | 0 | 0 | ||||||||
\(997\) | −28.0000 | −0.886769 | −0.443384 | − | 0.896332i | \(-0.646222\pi\) | ||||
−0.443384 | + | 0.896332i | \(0.646222\pi\) | |||||||
\(998\) | 0 | 0 | ||||||||
\(999\) | 0 | 0 |
(See \(a_n\) instead)
(See \(a_n\) instead)
(See \(a_n\) instead)
(See only \(a_p\))
(See only \(a_p\))
(See only \(a_p\))