Properties

Label 7200.2.a.cd.1.1
Level $7200$
Weight $2$
Character 7200.1
Self dual yes
Analytic conductor $57.492$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(1,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.4922894553\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{13}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(2.30278\) of defining polynomial
Character \(\chi\) \(=\) 7200.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.60555 q^{7} -2.00000 q^{11} -3.00000 q^{13} +7.21110 q^{17} +3.60555 q^{19} +6.00000 q^{23} -7.21110 q^{29} -3.60555 q^{31} +2.00000 q^{37} +7.21110 q^{41} -3.60555 q^{43} -4.00000 q^{47} +6.00000 q^{49} +7.21110 q^{53} -12.0000 q^{59} -1.00000 q^{61} +10.8167 q^{67} -6.00000 q^{71} +10.0000 q^{73} +7.21110 q^{77} -14.4222 q^{79} +4.00000 q^{83} +10.8167 q^{91} +1.00000 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 4 q^{11} - 6 q^{13} + 12 q^{23} + 4 q^{37} - 8 q^{47} + 12 q^{49} - 24 q^{59} - 2 q^{61} - 12 q^{71} + 20 q^{73} + 8 q^{83} + 2 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −3.60555 −1.36277 −0.681385 0.731925i \(-0.738622\pi\)
−0.681385 + 0.731925i \(0.738622\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) −3.00000 −0.832050 −0.416025 0.909353i \(-0.636577\pi\)
−0.416025 + 0.909353i \(0.636577\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 7.21110 1.74895 0.874475 0.485071i \(-0.161206\pi\)
0.874475 + 0.485071i \(0.161206\pi\)
\(18\) 0 0
\(19\) 3.60555 0.827170 0.413585 0.910465i \(-0.364276\pi\)
0.413585 + 0.910465i \(0.364276\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 6.00000 1.25109 0.625543 0.780189i \(-0.284877\pi\)
0.625543 + 0.780189i \(0.284877\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) −7.21110 −1.33907 −0.669534 0.742781i \(-0.733506\pi\)
−0.669534 + 0.742781i \(0.733506\pi\)
\(30\) 0 0
\(31\) −3.60555 −0.647576 −0.323788 0.946130i \(-0.604956\pi\)
−0.323788 + 0.946130i \(0.604956\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) 2.00000 0.328798 0.164399 0.986394i \(-0.447432\pi\)
0.164399 + 0.986394i \(0.447432\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 7.21110 1.12619 0.563093 0.826394i \(-0.309611\pi\)
0.563093 + 0.826394i \(0.309611\pi\)
\(42\) 0 0
\(43\) −3.60555 −0.549841 −0.274921 0.961467i \(-0.588652\pi\)
−0.274921 + 0.961467i \(0.588652\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −4.00000 −0.583460 −0.291730 0.956501i \(-0.594231\pi\)
−0.291730 + 0.956501i \(0.594231\pi\)
\(48\) 0 0
\(49\) 6.00000 0.857143
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 7.21110 0.990521 0.495261 0.868744i \(-0.335073\pi\)
0.495261 + 0.868744i \(0.335073\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −12.0000 −1.56227 −0.781133 0.624364i \(-0.785358\pi\)
−0.781133 + 0.624364i \(0.785358\pi\)
\(60\) 0 0
\(61\) −1.00000 −0.128037 −0.0640184 0.997949i \(-0.520392\pi\)
−0.0640184 + 0.997949i \(0.520392\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 10.8167 1.32146 0.660732 0.750622i \(-0.270246\pi\)
0.660732 + 0.750622i \(0.270246\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −6.00000 −0.712069 −0.356034 0.934473i \(-0.615871\pi\)
−0.356034 + 0.934473i \(0.615871\pi\)
\(72\) 0 0
\(73\) 10.0000 1.17041 0.585206 0.810885i \(-0.301014\pi\)
0.585206 + 0.810885i \(0.301014\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 7.21110 0.821781
\(78\) 0 0
\(79\) −14.4222 −1.62262 −0.811312 0.584613i \(-0.801246\pi\)
−0.811312 + 0.584613i \(0.801246\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.00000 0.439057 0.219529 0.975606i \(-0.429548\pi\)
0.219529 + 0.975606i \(0.429548\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(90\) 0 0
\(91\) 10.8167 1.13389
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 1.00000 0.101535 0.0507673 0.998711i \(-0.483833\pi\)
0.0507673 + 0.998711i \(0.483833\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) 7.21110 0.717532 0.358766 0.933428i \(-0.383198\pi\)
0.358766 + 0.933428i \(0.383198\pi\)
\(102\) 0 0
\(103\) 14.4222 1.42106 0.710531 0.703666i \(-0.248455\pi\)
0.710531 + 0.703666i \(0.248455\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −18.0000 −1.74013 −0.870063 0.492941i \(-0.835922\pi\)
−0.870063 + 0.492941i \(0.835922\pi\)
\(108\) 0 0
\(109\) −11.0000 −1.05361 −0.526804 0.849987i \(-0.676610\pi\)
−0.526804 + 0.849987i \(0.676610\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −26.0000 −2.38342
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) 2.00000 0.174741 0.0873704 0.996176i \(-0.472154\pi\)
0.0873704 + 0.996176i \(0.472154\pi\)
\(132\) 0 0
\(133\) −13.0000 −1.12724
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −14.4222 −1.23217 −0.616086 0.787679i \(-0.711283\pi\)
−0.616086 + 0.787679i \(0.711283\pi\)
\(138\) 0 0
\(139\) 14.4222 1.22328 0.611638 0.791138i \(-0.290511\pi\)
0.611638 + 0.791138i \(0.290511\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 6.00000 0.501745
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 14.4222 1.18151 0.590757 0.806850i \(-0.298829\pi\)
0.590757 + 0.806850i \(0.298829\pi\)
\(150\) 0 0
\(151\) 3.60555 0.293416 0.146708 0.989180i \(-0.453132\pi\)
0.146708 + 0.989180i \(0.453132\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −17.0000 −1.35675 −0.678374 0.734717i \(-0.737315\pi\)
−0.678374 + 0.734717i \(0.737315\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −21.6333 −1.70494
\(162\) 0 0
\(163\) −10.8167 −0.847226 −0.423613 0.905843i \(-0.639238\pi\)
−0.423613 + 0.905843i \(0.639238\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −14.0000 −1.08335 −0.541676 0.840587i \(-0.682210\pi\)
−0.541676 + 0.840587i \(0.682210\pi\)
\(168\) 0 0
\(169\) −4.00000 −0.307692
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) −21.6333 −1.64475 −0.822375 0.568946i \(-0.807351\pi\)
−0.822375 + 0.568946i \(0.807351\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −24.0000 −1.79384 −0.896922 0.442189i \(-0.854202\pi\)
−0.896922 + 0.442189i \(0.854202\pi\)
\(180\) 0 0
\(181\) 21.0000 1.56092 0.780459 0.625207i \(-0.214986\pi\)
0.780459 + 0.625207i \(0.214986\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −14.4222 −1.05466
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −14.0000 −1.01300 −0.506502 0.862239i \(-0.669062\pi\)
−0.506502 + 0.862239i \(0.669062\pi\)
\(192\) 0 0
\(193\) 11.0000 0.791797 0.395899 0.918294i \(-0.370433\pi\)
0.395899 + 0.918294i \(0.370433\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) −14.4222 −1.02754 −0.513770 0.857928i \(-0.671751\pi\)
−0.513770 + 0.857928i \(0.671751\pi\)
\(198\) 0 0
\(199\) 3.60555 0.255591 0.127795 0.991801i \(-0.459210\pi\)
0.127795 + 0.991801i \(0.459210\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 26.0000 1.82484
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −7.21110 −0.498802
\(210\) 0 0
\(211\) −25.2389 −1.73751 −0.868757 0.495238i \(-0.835081\pi\)
−0.868757 + 0.495238i \(0.835081\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 13.0000 0.882498
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −21.6333 −1.45521
\(222\) 0 0
\(223\) −18.0278 −1.20723 −0.603614 0.797277i \(-0.706273\pi\)
−0.603614 + 0.797277i \(0.706273\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) −6.00000 −0.398234 −0.199117 0.979976i \(-0.563807\pi\)
−0.199117 + 0.979976i \(0.563807\pi\)
\(228\) 0 0
\(229\) −7.00000 −0.462573 −0.231287 0.972886i \(-0.574293\pi\)
−0.231287 + 0.972886i \(0.574293\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 7.21110 0.472415 0.236208 0.971703i \(-0.424095\pi\)
0.236208 + 0.971703i \(0.424095\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −22.0000 −1.42306 −0.711531 0.702655i \(-0.751998\pi\)
−0.711531 + 0.702655i \(0.751998\pi\)
\(240\) 0 0
\(241\) −27.0000 −1.73922 −0.869611 0.493737i \(-0.835631\pi\)
−0.869611 + 0.493737i \(0.835631\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −10.8167 −0.688247
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −28.0000 −1.76734 −0.883672 0.468106i \(-0.844936\pi\)
−0.883672 + 0.468106i \(0.844936\pi\)
\(252\) 0 0
\(253\) −12.0000 −0.754434
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −14.4222 −0.899632 −0.449816 0.893121i \(-0.648511\pi\)
−0.449816 + 0.893121i \(0.648511\pi\)
\(258\) 0 0
\(259\) −7.21110 −0.448076
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) 22.0000 1.35658 0.678289 0.734795i \(-0.262722\pi\)
0.678289 + 0.734795i \(0.262722\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 21.6333 1.31901 0.659503 0.751702i \(-0.270767\pi\)
0.659503 + 0.751702i \(0.270767\pi\)
\(270\) 0 0
\(271\) −14.4222 −0.876087 −0.438043 0.898954i \(-0.644328\pi\)
−0.438043 + 0.898954i \(0.644328\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 5.00000 0.300421 0.150210 0.988654i \(-0.452005\pi\)
0.150210 + 0.988654i \(0.452005\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 7.21110 0.430178 0.215089 0.976594i \(-0.430996\pi\)
0.215089 + 0.976594i \(0.430996\pi\)
\(282\) 0 0
\(283\) 18.0278 1.07164 0.535819 0.844333i \(-0.320003\pi\)
0.535819 + 0.844333i \(0.320003\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −26.0000 −1.53473
\(288\) 0 0
\(289\) 35.0000 2.05882
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −18.0000 −1.04097
\(300\) 0 0
\(301\) 13.0000 0.749308
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 3.60555 0.205780 0.102890 0.994693i \(-0.467191\pi\)
0.102890 + 0.994693i \(0.467191\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 8.00000 0.453638 0.226819 0.973937i \(-0.427167\pi\)
0.226819 + 0.973937i \(0.427167\pi\)
\(312\) 0 0
\(313\) 27.0000 1.52613 0.763065 0.646322i \(-0.223694\pi\)
0.763065 + 0.646322i \(0.223694\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −14.4222 −0.810032 −0.405016 0.914310i \(-0.632734\pi\)
−0.405016 + 0.914310i \(0.632734\pi\)
\(318\) 0 0
\(319\) 14.4222 0.807488
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 26.0000 1.44668
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 14.4222 0.795122
\(330\) 0 0
\(331\) 28.8444 1.58543 0.792716 0.609591i \(-0.208666\pi\)
0.792716 + 0.609591i \(0.208666\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 13.0000 0.708155 0.354078 0.935216i \(-0.384795\pi\)
0.354078 + 0.935216i \(0.384795\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 7.21110 0.390503
\(342\) 0 0
\(343\) 3.60555 0.194681
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) −12.0000 −0.644194 −0.322097 0.946707i \(-0.604388\pi\)
−0.322097 + 0.946707i \(0.604388\pi\)
\(348\) 0 0
\(349\) −2.00000 −0.107058 −0.0535288 0.998566i \(-0.517047\pi\)
−0.0535288 + 0.998566i \(0.517047\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −21.6333 −1.15142 −0.575712 0.817652i \(-0.695275\pi\)
−0.575712 + 0.817652i \(0.695275\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −22.0000 −1.16112 −0.580558 0.814219i \(-0.697165\pi\)
−0.580558 + 0.814219i \(0.697165\pi\)
\(360\) 0 0
\(361\) −6.00000 −0.315789
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 32.4500 1.69387 0.846937 0.531693i \(-0.178444\pi\)
0.846937 + 0.531693i \(0.178444\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −26.0000 −1.34985
\(372\) 0 0
\(373\) −29.0000 −1.50156 −0.750782 0.660551i \(-0.770323\pi\)
−0.750782 + 0.660551i \(0.770323\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 21.6333 1.11417
\(378\) 0 0
\(379\) −32.4500 −1.66684 −0.833421 0.552638i \(-0.813621\pi\)
−0.833421 + 0.552638i \(0.813621\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 20.0000 1.02195 0.510976 0.859595i \(-0.329284\pi\)
0.510976 + 0.859595i \(0.329284\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) −36.0555 −1.82809 −0.914044 0.405616i \(-0.867057\pi\)
−0.914044 + 0.405616i \(0.867057\pi\)
\(390\) 0 0
\(391\) 43.2666 2.18809
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −25.0000 −1.25471 −0.627357 0.778732i \(-0.715863\pi\)
−0.627357 + 0.778732i \(0.715863\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 21.6333 1.08032 0.540158 0.841564i \(-0.318365\pi\)
0.540158 + 0.841564i \(0.318365\pi\)
\(402\) 0 0
\(403\) 10.8167 0.538816
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −4.00000 −0.198273
\(408\) 0 0
\(409\) 5.00000 0.247234 0.123617 0.992330i \(-0.460551\pi\)
0.123617 + 0.992330i \(0.460551\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 43.2666 2.12901
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) −30.0000 −1.46560 −0.732798 0.680446i \(-0.761786\pi\)
−0.732798 + 0.680446i \(0.761786\pi\)
\(420\) 0 0
\(421\) 22.0000 1.07221 0.536107 0.844150i \(-0.319894\pi\)
0.536107 + 0.844150i \(0.319894\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 3.60555 0.174485
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −10.0000 −0.481683 −0.240842 0.970564i \(-0.577423\pi\)
−0.240842 + 0.970564i \(0.577423\pi\)
\(432\) 0 0
\(433\) 11.0000 0.528626 0.264313 0.964437i \(-0.414855\pi\)
0.264313 + 0.964437i \(0.414855\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 21.6333 1.03486
\(438\) 0 0
\(439\) 25.2389 1.20459 0.602293 0.798275i \(-0.294254\pi\)
0.602293 + 0.798275i \(0.294254\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) −12.0000 −0.570137 −0.285069 0.958507i \(-0.592016\pi\)
−0.285069 + 0.958507i \(0.592016\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 14.4222 0.680626 0.340313 0.940312i \(-0.389467\pi\)
0.340313 + 0.940312i \(0.389467\pi\)
\(450\) 0 0
\(451\) −14.4222 −0.679115
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 18.0000 0.842004 0.421002 0.907060i \(-0.361678\pi\)
0.421002 + 0.907060i \(0.361678\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 21.6333 1.00756 0.503782 0.863831i \(-0.331942\pi\)
0.503782 + 0.863831i \(0.331942\pi\)
\(462\) 0 0
\(463\) −14.4222 −0.670257 −0.335128 0.942172i \(-0.608780\pi\)
−0.335128 + 0.942172i \(0.608780\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −18.0000 −0.832941 −0.416470 0.909149i \(-0.636733\pi\)
−0.416470 + 0.909149i \(0.636733\pi\)
\(468\) 0 0
\(469\) −39.0000 −1.80085
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 7.21110 0.331567
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) −6.00000 −0.273576
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 3.60555 0.163383 0.0816916 0.996658i \(-0.473968\pi\)
0.0816916 + 0.996658i \(0.473968\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 32.0000 1.44414 0.722070 0.691820i \(-0.243191\pi\)
0.722070 + 0.691820i \(0.243191\pi\)
\(492\) 0 0
\(493\) −52.0000 −2.34196
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 21.6333 0.970386
\(498\) 0 0
\(499\) −39.6611 −1.77547 −0.887737 0.460352i \(-0.847723\pi\)
−0.887737 + 0.460352i \(0.847723\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) −10.0000 −0.445878 −0.222939 0.974832i \(-0.571565\pi\)
−0.222939 + 0.974832i \(0.571565\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −43.2666 −1.91776 −0.958880 0.283813i \(-0.908400\pi\)
−0.958880 + 0.283813i \(0.908400\pi\)
\(510\) 0 0
\(511\) −36.0555 −1.59500
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 8.00000 0.351840
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −21.6333 −0.947772 −0.473886 0.880586i \(-0.657149\pi\)
−0.473886 + 0.880586i \(0.657149\pi\)
\(522\) 0 0
\(523\) 18.0278 0.788299 0.394149 0.919046i \(-0.371039\pi\)
0.394149 + 0.919046i \(0.371039\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) −26.0000 −1.13258
\(528\) 0 0
\(529\) 13.0000 0.565217
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) −21.6333 −0.937043
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) −12.0000 −0.516877
\(540\) 0 0
\(541\) −7.00000 −0.300954 −0.150477 0.988614i \(-0.548081\pi\)
−0.150477 + 0.988614i \(0.548081\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) −14.4222 −0.616649 −0.308324 0.951281i \(-0.599768\pi\)
−0.308324 + 0.951281i \(0.599768\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) −26.0000 −1.10764
\(552\) 0 0
\(553\) 52.0000 2.21126
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 28.8444 1.22218 0.611088 0.791562i \(-0.290732\pi\)
0.611088 + 0.791562i \(0.290732\pi\)
\(558\) 0 0
\(559\) 10.8167 0.457496
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 18.0000 0.758610 0.379305 0.925272i \(-0.376163\pi\)
0.379305 + 0.925272i \(0.376163\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) −21.6333 −0.906915 −0.453458 0.891278i \(-0.649810\pi\)
−0.453458 + 0.891278i \(0.649810\pi\)
\(570\) 0 0
\(571\) −25.2389 −1.05621 −0.528107 0.849178i \(-0.677098\pi\)
−0.528107 + 0.849178i \(0.677098\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) −41.0000 −1.70685 −0.853426 0.521214i \(-0.825479\pi\)
−0.853426 + 0.521214i \(0.825479\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) −14.4222 −0.598334
\(582\) 0 0
\(583\) −14.4222 −0.597307
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.0000 −0.412744 −0.206372 0.978474i \(-0.566166\pi\)
−0.206372 + 0.978474i \(0.566166\pi\)
\(588\) 0 0
\(589\) −13.0000 −0.535656
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) 21.6333 0.888373 0.444187 0.895934i \(-0.353493\pi\)
0.444187 + 0.895934i \(0.353493\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) −5.00000 −0.203954 −0.101977 0.994787i \(-0.532517\pi\)
−0.101977 + 0.994787i \(0.532517\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −14.4222 −0.585379 −0.292690 0.956208i \(-0.594550\pi\)
−0.292690 + 0.956208i \(0.594550\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 12.0000 0.485468
\(612\) 0 0
\(613\) 2.00000 0.0807792 0.0403896 0.999184i \(-0.487140\pi\)
0.0403896 + 0.999184i \(0.487140\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 21.6333 0.870924 0.435462 0.900207i \(-0.356585\pi\)
0.435462 + 0.900207i \(0.356585\pi\)
\(618\) 0 0
\(619\) 46.8722 1.88395 0.941976 0.335681i \(-0.108966\pi\)
0.941976 + 0.335681i \(0.108966\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 14.4222 0.575051
\(630\) 0 0
\(631\) 10.8167 0.430604 0.215302 0.976547i \(-0.430926\pi\)
0.215302 + 0.976547i \(0.430926\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) −18.0000 −0.713186
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 43.2666 1.70893 0.854464 0.519510i \(-0.173886\pi\)
0.854464 + 0.519510i \(0.173886\pi\)
\(642\) 0 0
\(643\) −43.2666 −1.70627 −0.853134 0.521691i \(-0.825301\pi\)
−0.853134 + 0.521691i \(0.825301\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 24.0000 0.943537 0.471769 0.881722i \(-0.343616\pi\)
0.471769 + 0.881722i \(0.343616\pi\)
\(648\) 0 0
\(649\) 24.0000 0.942082
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −14.0000 −0.545363 −0.272681 0.962104i \(-0.587910\pi\)
−0.272681 + 0.962104i \(0.587910\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −43.2666 −1.67529
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 2.00000 0.0772091
\(672\) 0 0
\(673\) 46.0000 1.77317 0.886585 0.462566i \(-0.153071\pi\)
0.886585 + 0.462566i \(0.153071\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) 7.21110 0.277145 0.138573 0.990352i \(-0.455749\pi\)
0.138573 + 0.990352i \(0.455749\pi\)
\(678\) 0 0
\(679\) −3.60555 −0.138368
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) −8.00000 −0.306111 −0.153056 0.988218i \(-0.548911\pi\)
−0.153056 + 0.988218i \(0.548911\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −21.6333 −0.824163
\(690\) 0 0
\(691\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) 52.0000 1.96964
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 21.6333 0.817079 0.408539 0.912741i \(-0.366038\pi\)
0.408539 + 0.912741i \(0.366038\pi\)
\(702\) 0 0
\(703\) 7.21110 0.271972
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −26.0000 −0.977831
\(708\) 0 0
\(709\) −31.0000 −1.16423 −0.582115 0.813107i \(-0.697775\pi\)
−0.582115 + 0.813107i \(0.697775\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) −21.6333 −0.810174
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −2.00000 −0.0745874 −0.0372937 0.999304i \(-0.511874\pi\)
−0.0372937 + 0.999304i \(0.511874\pi\)
\(720\) 0 0
\(721\) −52.0000 −1.93658
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) −3.60555 −0.133722 −0.0668612 0.997762i \(-0.521298\pi\)
−0.0668612 + 0.997762i \(0.521298\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −26.0000 −0.961645
\(732\) 0 0
\(733\) −30.0000 −1.10808 −0.554038 0.832492i \(-0.686914\pi\)
−0.554038 + 0.832492i \(0.686914\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) −21.6333 −0.796873
\(738\) 0 0
\(739\) 28.8444 1.06106 0.530529 0.847667i \(-0.321993\pi\)
0.530529 + 0.847667i \(0.321993\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 24.0000 0.880475 0.440237 0.897881i \(-0.354894\pi\)
0.440237 + 0.897881i \(0.354894\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 64.8999 2.37139
\(750\) 0 0
\(751\) 28.8444 1.05255 0.526274 0.850315i \(-0.323589\pi\)
0.526274 + 0.850315i \(0.323589\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) 13.0000 0.472493 0.236247 0.971693i \(-0.424083\pi\)
0.236247 + 0.971693i \(0.424083\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −28.8444 −1.04561 −0.522805 0.852453i \(-0.675114\pi\)
−0.522805 + 0.852453i \(0.675114\pi\)
\(762\) 0 0
\(763\) 39.6611 1.43583
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 36.0000 1.29988
\(768\) 0 0
\(769\) 15.0000 0.540914 0.270457 0.962732i \(-0.412825\pi\)
0.270457 + 0.962732i \(0.412825\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) −7.21110 −0.259365 −0.129683 0.991556i \(-0.541396\pi\)
−0.129683 + 0.991556i \(0.541396\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 26.0000 0.931547
\(780\) 0 0
\(781\) 12.0000 0.429394
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 18.0278 0.642620 0.321310 0.946974i \(-0.395877\pi\)
0.321310 + 0.946974i \(0.395877\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) 3.00000 0.106533
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −43.2666 −1.53258 −0.766291 0.642494i \(-0.777900\pi\)
−0.766291 + 0.642494i \(0.777900\pi\)
\(798\) 0 0
\(799\) −28.8444 −1.02044
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) −20.0000 −0.705785
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −21.6333 −0.760587 −0.380293 0.924866i \(-0.624177\pi\)
−0.380293 + 0.924866i \(0.624177\pi\)
\(810\) 0 0
\(811\) 18.0278 0.633040 0.316520 0.948586i \(-0.397486\pi\)
0.316520 + 0.948586i \(0.397486\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −13.0000 −0.454812
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −28.8444 −1.00668 −0.503338 0.864089i \(-0.667895\pi\)
−0.503338 + 0.864089i \(0.667895\pi\)
\(822\) 0 0
\(823\) 10.8167 0.377045 0.188522 0.982069i \(-0.439630\pi\)
0.188522 + 0.982069i \(0.439630\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 46.0000 1.59958 0.799788 0.600282i \(-0.204945\pi\)
0.799788 + 0.600282i \(0.204945\pi\)
\(828\) 0 0
\(829\) 14.0000 0.486240 0.243120 0.969996i \(-0.421829\pi\)
0.243120 + 0.969996i \(0.421829\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 43.2666 1.49910
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 30.0000 1.03572 0.517858 0.855467i \(-0.326730\pi\)
0.517858 + 0.855467i \(0.326730\pi\)
\(840\) 0 0
\(841\) 23.0000 0.793103
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 25.2389 0.867217
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 12.0000 0.411355
\(852\) 0 0
\(853\) −17.0000 −0.582069 −0.291034 0.956713i \(-0.593999\pi\)
−0.291034 + 0.956713i \(0.593999\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) −43.2666 −1.47796 −0.738980 0.673728i \(-0.764692\pi\)
−0.738980 + 0.673728i \(0.764692\pi\)
\(858\) 0 0
\(859\) −28.8444 −0.984159 −0.492079 0.870550i \(-0.663763\pi\)
−0.492079 + 0.870550i \(0.663763\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) 28.0000 0.953131 0.476566 0.879139i \(-0.341881\pi\)
0.476566 + 0.879139i \(0.341881\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 28.8444 0.978480
\(870\) 0 0
\(871\) −32.4500 −1.09952
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −53.0000 −1.78968 −0.894841 0.446384i \(-0.852711\pi\)
−0.894841 + 0.446384i \(0.852711\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −14.4222 −0.485896 −0.242948 0.970039i \(-0.578115\pi\)
−0.242948 + 0.970039i \(0.578115\pi\)
\(882\) 0 0
\(883\) −3.60555 −0.121336 −0.0606682 0.998158i \(-0.519323\pi\)
−0.0606682 + 0.998158i \(0.519323\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −52.0000 −1.74599 −0.872995 0.487730i \(-0.837825\pi\)
−0.872995 + 0.487730i \(0.837825\pi\)
\(888\) 0 0
\(889\) 0 0
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) −14.4222 −0.482621
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 26.0000 0.867149
\(900\) 0 0
\(901\) 52.0000 1.73237
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 57.6888 1.91553 0.957763 0.287559i \(-0.0928437\pi\)
0.957763 + 0.287559i \(0.0928437\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 4.00000 0.132526 0.0662630 0.997802i \(-0.478892\pi\)
0.0662630 + 0.997802i \(0.478892\pi\)
\(912\) 0 0
\(913\) −8.00000 −0.264761
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −7.21110 −0.238132
\(918\) 0 0
\(919\) −39.6611 −1.30830 −0.654149 0.756366i \(-0.726973\pi\)
−0.654149 + 0.756366i \(0.726973\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 18.0000 0.592477
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 21.6333 0.709766 0.354883 0.934911i \(-0.384521\pi\)
0.354883 + 0.934911i \(0.384521\pi\)
\(930\) 0 0
\(931\) 21.6333 0.709003
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 43.0000 1.40475 0.702374 0.711808i \(-0.252123\pi\)
0.702374 + 0.711808i \(0.252123\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 28.8444 0.940301 0.470150 0.882586i \(-0.344200\pi\)
0.470150 + 0.882586i \(0.344200\pi\)
\(942\) 0 0
\(943\) 43.2666 1.40895
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 38.0000 1.23483 0.617417 0.786636i \(-0.288179\pi\)
0.617417 + 0.786636i \(0.288179\pi\)
\(948\) 0 0
\(949\) −30.0000 −0.973841
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −28.8444 −0.934362 −0.467181 0.884162i \(-0.654730\pi\)
−0.467181 + 0.884162i \(0.654730\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 52.0000 1.67917
\(960\) 0 0
\(961\) −18.0000 −0.580645
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −14.4222 −0.463787 −0.231893 0.972741i \(-0.574492\pi\)
−0.231893 + 0.972741i \(0.574492\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(972\) 0 0
\(973\) −52.0000 −1.66704
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −43.2666 −1.38422 −0.692111 0.721791i \(-0.743319\pi\)
−0.692111 + 0.721791i \(0.743319\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) −56.0000 −1.78612 −0.893061 0.449935i \(-0.851447\pi\)
−0.893061 + 0.449935i \(0.851447\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −21.6333 −0.687899
\(990\) 0 0
\(991\) −3.60555 −0.114534 −0.0572671 0.998359i \(-0.518239\pi\)
−0.0572671 + 0.998359i \(0.518239\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 6.00000 0.190022 0.0950110 0.995476i \(-0.469711\pi\)
0.0950110 + 0.995476i \(0.469711\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.a.cd.1.1 2
3.2 odd 2 7200.2.a.co.1.1 yes 2
4.3 odd 2 7200.2.a.co.1.2 yes 2
5.2 odd 4 7200.2.f.bd.6049.2 4
5.3 odd 4 7200.2.f.bd.6049.3 4
5.4 even 2 7200.2.a.ce.1.2 yes 2
12.11 even 2 inner 7200.2.a.cd.1.2 yes 2
15.2 even 4 7200.2.f.bk.6049.2 4
15.8 even 4 7200.2.f.bk.6049.3 4
15.14 odd 2 7200.2.a.cp.1.2 yes 2
20.3 even 4 7200.2.f.bk.6049.1 4
20.7 even 4 7200.2.f.bk.6049.4 4
20.19 odd 2 7200.2.a.cp.1.1 yes 2
60.23 odd 4 7200.2.f.bd.6049.1 4
60.47 odd 4 7200.2.f.bd.6049.4 4
60.59 even 2 7200.2.a.ce.1.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7200.2.a.cd.1.1 2 1.1 even 1 trivial
7200.2.a.cd.1.2 yes 2 12.11 even 2 inner
7200.2.a.ce.1.1 yes 2 60.59 even 2
7200.2.a.ce.1.2 yes 2 5.4 even 2
7200.2.a.co.1.1 yes 2 3.2 odd 2
7200.2.a.co.1.2 yes 2 4.3 odd 2
7200.2.a.cp.1.1 yes 2 20.19 odd 2
7200.2.a.cp.1.2 yes 2 15.14 odd 2
7200.2.f.bd.6049.1 4 60.23 odd 4
7200.2.f.bd.6049.2 4 5.2 odd 4
7200.2.f.bd.6049.3 4 5.3 odd 4
7200.2.f.bd.6049.4 4 60.47 odd 4
7200.2.f.bk.6049.1 4 20.3 even 4
7200.2.f.bk.6049.2 4 15.2 even 4
7200.2.f.bk.6049.3 4 15.8 even 4
7200.2.f.bk.6049.4 4 20.7 even 4