Properties

Label 7200.2.f.bi.6049.4
Level $7200$
Weight $2$
Character 7200.6049
Analytic conductor $57.492$
Analytic rank $0$
Dimension $4$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(6049,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.6049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.f (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 6049.4
Root \(-0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 7200.6049
Dual form 7200.2.f.bi.6049.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23607i q^{7} +4.47214 q^{11} +1.00000i q^{13} +2.00000i q^{17} +6.70820 q^{19} +4.47214i q^{23} +6.00000 q^{29} -2.23607 q^{31} -2.00000i q^{37} -2.00000 q^{41} +6.70820i q^{43} -8.94427i q^{47} +2.00000 q^{49} +6.00000i q^{53} +8.94427 q^{59} -5.00000 q^{61} +2.23607i q^{67} -4.47214 q^{71} -6.00000i q^{73} +10.0000i q^{77} -8.94427 q^{79} -8.94427i q^{83} +16.0000 q^{89} -2.23607 q^{91} +7.00000i q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 24 q^{29} - 8 q^{41} + 8 q^{49} - 20 q^{61} + 64 q^{89}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(-1\) \(1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) 2.23607i 0.845154i 0.906327 + 0.422577i \(0.138874\pi\)
−0.906327 + 0.422577i \(0.861126\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 4.47214 1.34840 0.674200 0.738549i \(-0.264489\pi\)
0.674200 + 0.738549i \(0.264489\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i 0.990338 + 0.138675i \(0.0442844\pi\)
−0.990338 + 0.138675i \(0.955716\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) 2.00000i 0.485071i 0.970143 + 0.242536i \(0.0779791\pi\)
−0.970143 + 0.242536i \(0.922021\pi\)
\(18\) 0 0
\(19\) 6.70820 1.53897 0.769484 0.638666i \(-0.220514\pi\)
0.769484 + 0.638666i \(0.220514\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) 4.47214i 0.932505i 0.884652 + 0.466252i \(0.154396\pi\)
−0.884652 + 0.466252i \(0.845604\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) 6.00000 1.11417 0.557086 0.830455i \(-0.311919\pi\)
0.557086 + 0.830455i \(0.311919\pi\)
\(30\) 0 0
\(31\) −2.23607 −0.401610 −0.200805 0.979631i \(-0.564356\pi\)
−0.200805 + 0.979631i \(0.564356\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −2.00000 −0.312348 −0.156174 0.987730i \(-0.549916\pi\)
−0.156174 + 0.987730i \(0.549916\pi\)
\(42\) 0 0
\(43\) 6.70820i 1.02299i 0.859286 + 0.511496i \(0.170908\pi\)
−0.859286 + 0.511496i \(0.829092\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) − 8.94427i − 1.30466i −0.757937 0.652328i \(-0.773792\pi\)
0.757937 0.652328i \(-0.226208\pi\)
\(48\) 0 0
\(49\) 2.00000 0.285714
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) 6.00000i 0.824163i 0.911147 + 0.412082i \(0.135198\pi\)
−0.911147 + 0.412082i \(0.864802\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 8.94427 1.16445 0.582223 0.813029i \(-0.302183\pi\)
0.582223 + 0.813029i \(0.302183\pi\)
\(60\) 0 0
\(61\) −5.00000 −0.640184 −0.320092 0.947386i \(-0.603714\pi\)
−0.320092 + 0.947386i \(0.603714\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 2.23607i 0.273179i 0.990628 + 0.136590i \(0.0436142\pi\)
−0.990628 + 0.136590i \(0.956386\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −4.47214 −0.530745 −0.265372 0.964146i \(-0.585495\pi\)
−0.265372 + 0.964146i \(0.585495\pi\)
\(72\) 0 0
\(73\) − 6.00000i − 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) 10.0000i 1.13961i
\(78\) 0 0
\(79\) −8.94427 −1.00631 −0.503155 0.864196i \(-0.667827\pi\)
−0.503155 + 0.864196i \(0.667827\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) − 8.94427i − 0.981761i −0.871227 0.490881i \(-0.836675\pi\)
0.871227 0.490881i \(-0.163325\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 16.0000 1.69600 0.847998 0.529999i \(-0.177808\pi\)
0.847998 + 0.529999i \(0.177808\pi\)
\(90\) 0 0
\(91\) −2.23607 −0.234404
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 7.00000i 0.710742i 0.934725 + 0.355371i \(0.115646\pi\)
−0.934725 + 0.355371i \(0.884354\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) −10.0000 −0.995037 −0.497519 0.867453i \(-0.665755\pi\)
−0.497519 + 0.867453i \(0.665755\pi\)
\(102\) 0 0
\(103\) − 8.94427i − 0.881305i −0.897678 0.440653i \(-0.854747\pi\)
0.897678 0.440653i \(-0.145253\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 4.47214i − 0.432338i −0.976356 0.216169i \(-0.930644\pi\)
0.976356 0.216169i \(-0.0693562\pi\)
\(108\) 0 0
\(109\) −9.00000 −0.862044 −0.431022 0.902342i \(-0.641847\pi\)
−0.431022 + 0.902342i \(0.641847\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 16.0000i 1.50515i 0.658505 + 0.752577i \(0.271189\pi\)
−0.658505 + 0.752577i \(0.728811\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −4.47214 −0.409960
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) − 17.8885i − 1.58735i −0.608341 0.793676i \(-0.708165\pi\)
0.608341 0.793676i \(-0.291835\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) −4.47214 −0.390732 −0.195366 0.980730i \(-0.562590\pi\)
−0.195366 + 0.980730i \(0.562590\pi\)
\(132\) 0 0
\(133\) 15.0000i 1.30066i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 12.0000i 1.02523i 0.858619 + 0.512615i \(0.171323\pi\)
−0.858619 + 0.512615i \(0.828677\pi\)
\(138\) 0 0
\(139\) −8.94427 −0.758643 −0.379322 0.925265i \(-0.623843\pi\)
−0.379322 + 0.925265i \(0.623843\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) 4.47214i 0.373979i
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 20.0000 1.63846 0.819232 0.573462i \(-0.194400\pi\)
0.819232 + 0.573462i \(0.194400\pi\)
\(150\) 0 0
\(151\) 20.1246 1.63772 0.818859 0.573995i \(-0.194607\pi\)
0.818859 + 0.573995i \(0.194607\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 3.00000i − 0.239426i −0.992809 0.119713i \(-0.961803\pi\)
0.992809 0.119713i \(-0.0381975\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) −10.0000 −0.788110
\(162\) 0 0
\(163\) − 15.6525i − 1.22600i −0.790084 0.612998i \(-0.789963\pi\)
0.790084 0.612998i \(-0.210037\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 22.3607i 1.73032i 0.501495 + 0.865161i \(0.332784\pi\)
−0.501495 + 0.865161i \(0.667216\pi\)
\(168\) 0 0
\(169\) 12.0000 0.923077
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 14.0000i 1.06440i 0.846619 + 0.532200i \(0.178635\pi\)
−0.846619 + 0.532200i \(0.821365\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) −17.8885 −1.33705 −0.668526 0.743689i \(-0.733075\pi\)
−0.668526 + 0.743689i \(0.733075\pi\)
\(180\) 0 0
\(181\) −7.00000 −0.520306 −0.260153 0.965567i \(-0.583773\pi\)
−0.260153 + 0.965567i \(0.583773\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) 8.94427i 0.654070i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) 13.4164 0.970777 0.485389 0.874299i \(-0.338678\pi\)
0.485389 + 0.874299i \(0.338678\pi\)
\(192\) 0 0
\(193\) − 21.0000i − 1.51161i −0.654795 0.755807i \(-0.727245\pi\)
0.654795 0.755807i \(-0.272755\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.0000i 0.854965i 0.904024 + 0.427482i \(0.140599\pi\)
−0.904024 + 0.427482i \(0.859401\pi\)
\(198\) 0 0
\(199\) −2.23607 −0.158511 −0.0792553 0.996854i \(-0.525254\pi\)
−0.0792553 + 0.996854i \(0.525254\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 13.4164i 0.941647i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) 30.0000 2.07514
\(210\) 0 0
\(211\) −6.70820 −0.461812 −0.230906 0.972976i \(-0.574169\pi\)
−0.230906 + 0.972976i \(0.574169\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) − 5.00000i − 0.339422i
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) −2.00000 −0.134535
\(222\) 0 0
\(223\) 6.70820i 0.449215i 0.974449 + 0.224607i \(0.0721099\pi\)
−0.974449 + 0.224607i \(0.927890\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) 22.3607i 1.48413i 0.670328 + 0.742065i \(0.266154\pi\)
−0.670328 + 0.742065i \(0.733846\pi\)
\(228\) 0 0
\(229\) −5.00000 −0.330409 −0.165205 0.986259i \(-0.552828\pi\)
−0.165205 + 0.986259i \(0.552828\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 14.0000i 0.917170i 0.888650 + 0.458585i \(0.151644\pi\)
−0.888650 + 0.458585i \(0.848356\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) 4.47214 0.289278 0.144639 0.989484i \(-0.453798\pi\)
0.144639 + 0.989484i \(0.453798\pi\)
\(240\) 0 0
\(241\) 5.00000 0.322078 0.161039 0.986948i \(-0.448515\pi\)
0.161039 + 0.986948i \(0.448515\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 6.70820i 0.426833i
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) −8.94427 −0.564557 −0.282279 0.959332i \(-0.591090\pi\)
−0.282279 + 0.959332i \(0.591090\pi\)
\(252\) 0 0
\(253\) 20.0000i 1.25739i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 28.0000i 1.74659i 0.487190 + 0.873296i \(0.338022\pi\)
−0.487190 + 0.873296i \(0.661978\pi\)
\(258\) 0 0
\(259\) 4.47214 0.277885
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) − 31.3050i − 1.93035i −0.261612 0.965173i \(-0.584254\pi\)
0.261612 0.965173i \(-0.415746\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 30.0000 1.82913 0.914566 0.404436i \(-0.132532\pi\)
0.914566 + 0.404436i \(0.132532\pi\)
\(270\) 0 0
\(271\) −26.8328 −1.62998 −0.814989 0.579477i \(-0.803257\pi\)
−0.814989 + 0.579477i \(0.803257\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) − 17.0000i − 1.02143i −0.859750 0.510716i \(-0.829381\pi\)
0.859750 0.510716i \(-0.170619\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 0 0
\(283\) 20.1246i 1.19628i 0.801390 + 0.598142i \(0.204094\pi\)
−0.801390 + 0.598142i \(0.795906\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) − 4.47214i − 0.263982i
\(288\) 0 0
\(289\) 13.0000 0.764706
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 16.0000i 0.934730i 0.884064 + 0.467365i \(0.154797\pi\)
−0.884064 + 0.467365i \(0.845203\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −4.47214 −0.258630
\(300\) 0 0
\(301\) −15.0000 −0.864586
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 11.1803i − 0.638096i −0.947739 0.319048i \(-0.896637\pi\)
0.947739 0.319048i \(-0.103363\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −17.8885 −1.01437 −0.507183 0.861838i \(-0.669313\pi\)
−0.507183 + 0.861838i \(0.669313\pi\)
\(312\) 0 0
\(313\) − 21.0000i − 1.18699i −0.804838 0.593495i \(-0.797748\pi\)
0.804838 0.593495i \(-0.202252\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) 12.0000i 0.673987i 0.941507 + 0.336994i \(0.109410\pi\)
−0.941507 + 0.336994i \(0.890590\pi\)
\(318\) 0 0
\(319\) 26.8328 1.50235
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) 13.4164i 0.746509i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 20.0000 1.10264
\(330\) 0 0
\(331\) 17.8885 0.983243 0.491622 0.870809i \(-0.336404\pi\)
0.491622 + 0.870809i \(0.336404\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) 27.0000i 1.47078i 0.677642 + 0.735392i \(0.263002\pi\)
−0.677642 + 0.735392i \(0.736998\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) −10.0000 −0.541530
\(342\) 0 0
\(343\) 20.1246i 1.08663i
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) − 26.8328i − 1.44046i −0.693735 0.720231i \(-0.744036\pi\)
0.693735 0.720231i \(-0.255964\pi\)
\(348\) 0 0
\(349\) −30.0000 −1.60586 −0.802932 0.596071i \(-0.796728\pi\)
−0.802932 + 0.596071i \(0.796728\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 6.00000i 0.319348i 0.987170 + 0.159674i \(0.0510443\pi\)
−0.987170 + 0.159674i \(0.948956\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 4.47214 0.236030 0.118015 0.993012i \(-0.462347\pi\)
0.118015 + 0.993012i \(0.462347\pi\)
\(360\) 0 0
\(361\) 26.0000 1.36842
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 33.5410i 1.75083i 0.483375 + 0.875413i \(0.339411\pi\)
−0.483375 + 0.875413i \(0.660589\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) −13.4164 −0.696545
\(372\) 0 0
\(373\) 31.0000i 1.60512i 0.596572 + 0.802560i \(0.296529\pi\)
−0.596572 + 0.802560i \(0.703471\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 6.00000i 0.309016i
\(378\) 0 0
\(379\) 11.1803 0.574295 0.287148 0.957886i \(-0.407293\pi\)
0.287148 + 0.957886i \(0.407293\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) − 8.94427i − 0.457031i −0.973540 0.228515i \(-0.926613\pi\)
0.973540 0.228515i \(-0.0733872\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) 30.0000 1.52106 0.760530 0.649303i \(-0.224939\pi\)
0.760530 + 0.649303i \(0.224939\pi\)
\(390\) 0 0
\(391\) −8.94427 −0.452331
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) 13.0000i 0.652451i 0.945292 + 0.326226i \(0.105777\pi\)
−0.945292 + 0.326226i \(0.894223\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 10.0000 0.499376 0.249688 0.968326i \(-0.419672\pi\)
0.249688 + 0.968326i \(0.419672\pi\)
\(402\) 0 0
\(403\) − 2.23607i − 0.111386i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) − 8.94427i − 0.443351i
\(408\) 0 0
\(409\) 19.0000 0.939490 0.469745 0.882802i \(-0.344346\pi\)
0.469745 + 0.882802i \(0.344346\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 20.0000i 0.984136i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 4.47214 0.218478 0.109239 0.994016i \(-0.465159\pi\)
0.109239 + 0.994016i \(0.465159\pi\)
\(420\) 0 0
\(421\) −10.0000 −0.487370 −0.243685 0.969854i \(-0.578356\pi\)
−0.243685 + 0.969854i \(0.578356\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) − 11.1803i − 0.541055i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 4.47214 0.215415 0.107708 0.994183i \(-0.465649\pi\)
0.107708 + 0.994183i \(0.465649\pi\)
\(432\) 0 0
\(433\) − 29.0000i − 1.39365i −0.717241 0.696826i \(-0.754595\pi\)
0.717241 0.696826i \(-0.245405\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 30.0000i 1.43509i
\(438\) 0 0
\(439\) 2.23607 0.106722 0.0533609 0.998575i \(-0.483007\pi\)
0.0533609 + 0.998575i \(0.483007\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 8.94427i − 0.424955i −0.977166 0.212478i \(-0.931847\pi\)
0.977166 0.212478i \(-0.0681533\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) 20.0000 0.943858 0.471929 0.881636i \(-0.343558\pi\)
0.471929 + 0.881636i \(0.343558\pi\)
\(450\) 0 0
\(451\) −8.94427 −0.421169
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) − 2.00000i − 0.0935561i −0.998905 0.0467780i \(-0.985105\pi\)
0.998905 0.0467780i \(-0.0148953\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −30.0000 −1.39724 −0.698620 0.715493i \(-0.746202\pi\)
−0.698620 + 0.715493i \(0.746202\pi\)
\(462\) 0 0
\(463\) − 26.8328i − 1.24703i −0.781813 0.623513i \(-0.785705\pi\)
0.781813 0.623513i \(-0.214295\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 4.47214i − 0.206946i −0.994632 0.103473i \(-0.967004\pi\)
0.994632 0.103473i \(-0.0329955\pi\)
\(468\) 0 0
\(469\) −5.00000 −0.230879
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) 30.0000i 1.37940i
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) 26.8328 1.22602 0.613011 0.790074i \(-0.289958\pi\)
0.613011 + 0.790074i \(0.289958\pi\)
\(480\) 0 0
\(481\) 2.00000 0.0911922
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 15.6525i 0.709281i 0.935003 + 0.354641i \(0.115397\pi\)
−0.935003 + 0.354641i \(0.884603\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 35.7771 1.61460 0.807299 0.590143i \(-0.200929\pi\)
0.807299 + 0.590143i \(0.200929\pi\)
\(492\) 0 0
\(493\) 12.0000i 0.540453i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) − 10.0000i − 0.448561i
\(498\) 0 0
\(499\) −20.1246 −0.900901 −0.450451 0.892801i \(-0.648737\pi\)
−0.450451 + 0.892801i \(0.648737\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 40.2492i 1.79462i 0.441397 + 0.897312i \(0.354483\pi\)
−0.441397 + 0.897312i \(0.645517\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 4.00000 0.177297 0.0886484 0.996063i \(-0.471745\pi\)
0.0886484 + 0.996063i \(0.471745\pi\)
\(510\) 0 0
\(511\) 13.4164 0.593507
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 40.0000i − 1.75920i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) −10.0000 −0.438108 −0.219054 0.975713i \(-0.570297\pi\)
−0.219054 + 0.975713i \(0.570297\pi\)
\(522\) 0 0
\(523\) − 33.5410i − 1.46665i −0.679880 0.733323i \(-0.737968\pi\)
0.679880 0.733323i \(-0.262032\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) − 4.47214i − 0.194809i
\(528\) 0 0
\(529\) 3.00000 0.130435
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) − 2.00000i − 0.0866296i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 8.94427 0.385257
\(540\) 0 0
\(541\) −43.0000 −1.84871 −0.924357 0.381528i \(-0.875398\pi\)
−0.924357 + 0.381528i \(0.875398\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 26.8328i − 1.14729i −0.819105 0.573644i \(-0.805529\pi\)
0.819105 0.573644i \(-0.194471\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 40.2492 1.71467
\(552\) 0 0
\(553\) − 20.0000i − 0.850487i
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 8.00000i 0.338971i 0.985533 + 0.169485i \(0.0542106\pi\)
−0.985533 + 0.169485i \(0.945789\pi\)
\(558\) 0 0
\(559\) −6.70820 −0.283727
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) − 4.47214i − 0.188478i −0.995550 0.0942390i \(-0.969958\pi\)
0.995550 0.0942390i \(-0.0300418\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 10.0000 0.419222 0.209611 0.977785i \(-0.432780\pi\)
0.209611 + 0.977785i \(0.432780\pi\)
\(570\) 0 0
\(571\) 29.0689 1.21649 0.608247 0.793747i \(-0.291873\pi\)
0.608247 + 0.793747i \(0.291873\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 17.0000i 0.707719i 0.935299 + 0.353860i \(0.115131\pi\)
−0.935299 + 0.353860i \(0.884869\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) 20.0000 0.829740
\(582\) 0 0
\(583\) 26.8328i 1.11130i
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 13.4164i 0.553754i 0.960905 + 0.276877i \(0.0892995\pi\)
−0.960905 + 0.276877i \(0.910700\pi\)
\(588\) 0 0
\(589\) −15.0000 −0.618064
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) − 6.00000i − 0.246390i −0.992382 0.123195i \(-0.960686\pi\)
0.992382 0.123195i \(-0.0393141\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) −44.7214 −1.82727 −0.913633 0.406541i \(-0.866735\pi\)
−0.913633 + 0.406541i \(0.866735\pi\)
\(600\) 0 0
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) − 44.7214i − 1.81518i −0.419853 0.907592i \(-0.637918\pi\)
0.419853 0.907592i \(-0.362082\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 8.94427 0.361847
\(612\) 0 0
\(613\) 34.0000i 1.37325i 0.727013 + 0.686624i \(0.240908\pi\)
−0.727013 + 0.686624i \(0.759092\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 22.0000i 0.885687i 0.896599 + 0.442843i \(0.146030\pi\)
−0.896599 + 0.442843i \(0.853970\pi\)
\(618\) 0 0
\(619\) −38.0132 −1.52788 −0.763939 0.645289i \(-0.776737\pi\)
−0.763939 + 0.645289i \(0.776737\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 35.7771i 1.43338i
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 4.00000 0.159490
\(630\) 0 0
\(631\) 6.70820 0.267049 0.133525 0.991045i \(-0.457370\pi\)
0.133525 + 0.991045i \(0.457370\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 2.00000i 0.0792429i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) −28.0000 −1.10593 −0.552967 0.833203i \(-0.686504\pi\)
−0.552967 + 0.833203i \(0.686504\pi\)
\(642\) 0 0
\(643\) 8.94427i 0.352728i 0.984325 + 0.176364i \(0.0564335\pi\)
−0.984325 + 0.176364i \(0.943566\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) − 17.8885i − 0.703271i −0.936137 0.351636i \(-0.885626\pi\)
0.936137 0.351636i \(-0.114374\pi\)
\(648\) 0 0
\(649\) 40.0000 1.57014
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 16.0000i 0.626128i 0.949732 + 0.313064i \(0.101356\pi\)
−0.949732 + 0.313064i \(0.898644\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 40.2492 1.56789 0.783944 0.620832i \(-0.213205\pi\)
0.783944 + 0.620832i \(0.213205\pi\)
\(660\) 0 0
\(661\) 10.0000 0.388955 0.194477 0.980907i \(-0.437699\pi\)
0.194477 + 0.980907i \(0.437699\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 26.8328i 1.03897i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) −22.3607 −0.863224
\(672\) 0 0
\(673\) − 34.0000i − 1.31060i −0.755367 0.655302i \(-0.772541\pi\)
0.755367 0.655302i \(-0.227459\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 22.0000i − 0.845529i −0.906240 0.422764i \(-0.861060\pi\)
0.906240 0.422764i \(-0.138940\pi\)
\(678\) 0 0
\(679\) −15.6525 −0.600687
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) − 17.8885i − 0.684486i −0.939611 0.342243i \(-0.888813\pi\)
0.939611 0.342243i \(-0.111187\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) −6.00000 −0.228582
\(690\) 0 0
\(691\) −35.7771 −1.36102 −0.680512 0.732737i \(-0.738243\pi\)
−0.680512 + 0.732737i \(0.738243\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) − 4.00000i − 0.151511i
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 2.00000 0.0755390 0.0377695 0.999286i \(-0.487975\pi\)
0.0377695 + 0.999286i \(0.487975\pi\)
\(702\) 0 0
\(703\) − 13.4164i − 0.506009i
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) − 22.3607i − 0.840960i
\(708\) 0 0
\(709\) −5.00000 −0.187779 −0.0938895 0.995583i \(-0.529930\pi\)
−0.0938895 + 0.995583i \(0.529930\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) − 10.0000i − 0.374503i
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) −22.3607 −0.833913 −0.416956 0.908927i \(-0.636903\pi\)
−0.416956 + 0.908927i \(0.636903\pi\)
\(720\) 0 0
\(721\) 20.0000 0.744839
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) − 33.5410i − 1.24397i −0.783030 0.621984i \(-0.786327\pi\)
0.783030 0.621984i \(-0.213673\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) −13.4164 −0.496224
\(732\) 0 0
\(733\) 34.0000i 1.25582i 0.778287 + 0.627909i \(0.216089\pi\)
−0.778287 + 0.627909i \(0.783911\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 10.0000i 0.368355i
\(738\) 0 0
\(739\) −17.8885 −0.658041 −0.329020 0.944323i \(-0.606718\pi\)
−0.329020 + 0.944323i \(0.606718\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) − 17.8885i − 0.656267i −0.944631 0.328134i \(-0.893580\pi\)
0.944631 0.328134i \(-0.106420\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 10.0000 0.365392
\(750\) 0 0
\(751\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 17.0000i − 0.617876i −0.951082 0.308938i \(-0.900027\pi\)
0.951082 0.308938i \(-0.0999735\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) 40.0000 1.45000 0.724999 0.688749i \(-0.241840\pi\)
0.724999 + 0.688749i \(0.241840\pi\)
\(762\) 0 0
\(763\) − 20.1246i − 0.728560i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 8.94427i 0.322959i
\(768\) 0 0
\(769\) −15.0000 −0.540914 −0.270457 0.962732i \(-0.587175\pi\)
−0.270457 + 0.962732i \(0.587175\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) − 6.00000i − 0.215805i −0.994161 0.107903i \(-0.965587\pi\)
0.994161 0.107903i \(-0.0344134\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) −13.4164 −0.480693
\(780\) 0 0
\(781\) −20.0000 −0.715656
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 33.5410i 1.19561i 0.801642 + 0.597804i \(0.203960\pi\)
−0.801642 + 0.597804i \(0.796040\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −35.7771 −1.27209
\(792\) 0 0
\(793\) − 5.00000i − 0.177555i
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) − 12.0000i − 0.425062i −0.977154 0.212531i \(-0.931829\pi\)
0.977154 0.212531i \(-0.0681706\pi\)
\(798\) 0 0
\(799\) 17.8885 0.632851
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 26.8328i − 0.946910i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −6.00000 −0.210949 −0.105474 0.994422i \(-0.533636\pi\)
−0.105474 + 0.994422i \(0.533636\pi\)
\(810\) 0 0
\(811\) 2.23607 0.0785190 0.0392595 0.999229i \(-0.487500\pi\)
0.0392595 + 0.999229i \(0.487500\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 45.0000i 1.57435i
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −8.00000 −0.279202 −0.139601 0.990208i \(-0.544582\pi\)
−0.139601 + 0.990208i \(0.544582\pi\)
\(822\) 0 0
\(823\) 6.70820i 0.233833i 0.993142 + 0.116917i \(0.0373010\pi\)
−0.993142 + 0.116917i \(0.962699\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) 31.3050i 1.08858i 0.838897 + 0.544290i \(0.183201\pi\)
−0.838897 + 0.544290i \(0.816799\pi\)
\(828\) 0 0
\(829\) −46.0000 −1.59765 −0.798823 0.601566i \(-0.794544\pi\)
−0.798823 + 0.601566i \(0.794544\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 4.00000i 0.138592i
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 49.1935 1.69835 0.849174 0.528113i \(-0.177100\pi\)
0.849174 + 0.528113i \(0.177100\pi\)
\(840\) 0 0
\(841\) 7.00000 0.241379
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 20.1246i 0.691490i
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.94427 0.306606
\(852\) 0 0
\(853\) 19.0000i 0.650548i 0.945620 + 0.325274i \(0.105456\pi\)
−0.945620 + 0.325274i \(0.894544\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) − 12.0000i − 0.409912i −0.978771 0.204956i \(-0.934295\pi\)
0.978771 0.204956i \(-0.0657052\pi\)
\(858\) 0 0
\(859\) 53.6656 1.83105 0.915524 0.402264i \(-0.131776\pi\)
0.915524 + 0.402264i \(0.131776\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) − 26.8328i − 0.913400i −0.889621 0.456700i \(-0.849031\pi\)
0.889621 0.456700i \(-0.150969\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −40.0000 −1.35691
\(870\) 0 0
\(871\) −2.23607 −0.0757663
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 17.0000i 0.574049i 0.957923 + 0.287025i \(0.0926662\pi\)
−0.957923 + 0.287025i \(0.907334\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −12.0000 −0.404290 −0.202145 0.979356i \(-0.564791\pi\)
−0.202145 + 0.979356i \(0.564791\pi\)
\(882\) 0 0
\(883\) 42.4853i 1.42974i 0.699255 + 0.714872i \(0.253515\pi\)
−0.699255 + 0.714872i \(0.746485\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) − 8.94427i − 0.300319i −0.988662 0.150160i \(-0.952021\pi\)
0.988662 0.150160i \(-0.0479788\pi\)
\(888\) 0 0
\(889\) 40.0000 1.34156
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 60.0000i − 2.00782i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) −13.4164 −0.447462
\(900\) 0 0
\(901\) −12.0000 −0.399778
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −44.7214 −1.48168 −0.740842 0.671679i \(-0.765573\pi\)
−0.740842 + 0.671679i \(0.765573\pi\)
\(912\) 0 0
\(913\) − 40.0000i − 1.32381i
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) − 10.0000i − 0.330229i
\(918\) 0 0
\(919\) 6.70820 0.221283 0.110642 0.993860i \(-0.464709\pi\)
0.110642 + 0.993860i \(0.464709\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 4.47214i − 0.147202i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −10.0000 −0.328089 −0.164045 0.986453i \(-0.552454\pi\)
−0.164045 + 0.986453i \(0.552454\pi\)
\(930\) 0 0
\(931\) 13.4164 0.439705
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) − 43.0000i − 1.40475i −0.711808 0.702374i \(-0.752123\pi\)
0.711808 0.702374i \(-0.247877\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.0000 1.30396 0.651981 0.758235i \(-0.273938\pi\)
0.651981 + 0.758235i \(0.273938\pi\)
\(942\) 0 0
\(943\) − 8.94427i − 0.291266i
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 13.4164i 0.435975i 0.975952 + 0.217987i \(0.0699492\pi\)
−0.975952 + 0.217987i \(0.930051\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) − 24.0000i − 0.777436i −0.921357 0.388718i \(-0.872918\pi\)
0.921357 0.388718i \(-0.127082\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) −26.8328 −0.866477
\(960\) 0 0
\(961\) −26.0000 −0.838710
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 26.8328i 0.862885i 0.902140 + 0.431443i \(0.141995\pi\)
−0.902140 + 0.431443i \(0.858005\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) −35.7771 −1.14814 −0.574071 0.818806i \(-0.694637\pi\)
−0.574071 + 0.818806i \(0.694637\pi\)
\(972\) 0 0
\(973\) − 20.0000i − 0.641171i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) − 12.0000i − 0.383914i −0.981403 0.191957i \(-0.938517\pi\)
0.981403 0.191957i \(-0.0614834\pi\)
\(978\) 0 0
\(979\) 71.5542 2.28688
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 17.8885i 0.570556i 0.958445 + 0.285278i \(0.0920859\pi\)
−0.958445 + 0.285278i \(0.907914\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) −30.0000 −0.953945
\(990\) 0 0
\(991\) 33.5410 1.06547 0.532733 0.846283i \(-0.321165\pi\)
0.532733 + 0.846283i \(0.321165\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) − 38.0000i − 1.20347i −0.798695 0.601736i \(-0.794476\pi\)
0.798695 0.601736i \(-0.205524\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.f.bi.6049.4 4
3.2 odd 2 7200.2.f.bf.6049.3 4
4.3 odd 2 inner 7200.2.f.bi.6049.1 4
5.2 odd 4 7200.2.a.ck.1.1 yes 2
5.3 odd 4 7200.2.a.cj.1.2 yes 2
5.4 even 2 inner 7200.2.f.bi.6049.2 4
12.11 even 2 7200.2.f.bf.6049.2 4
15.2 even 4 7200.2.a.cl.1.1 yes 2
15.8 even 4 7200.2.a.ci.1.2 yes 2
15.14 odd 2 7200.2.f.bf.6049.1 4
20.3 even 4 7200.2.a.cj.1.1 yes 2
20.7 even 4 7200.2.a.ck.1.2 yes 2
20.19 odd 2 inner 7200.2.f.bi.6049.3 4
60.23 odd 4 7200.2.a.ci.1.1 2
60.47 odd 4 7200.2.a.cl.1.2 yes 2
60.59 even 2 7200.2.f.bf.6049.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
7200.2.a.ci.1.1 2 60.23 odd 4
7200.2.a.ci.1.2 yes 2 15.8 even 4
7200.2.a.cj.1.1 yes 2 20.3 even 4
7200.2.a.cj.1.2 yes 2 5.3 odd 4
7200.2.a.ck.1.1 yes 2 5.2 odd 4
7200.2.a.ck.1.2 yes 2 20.7 even 4
7200.2.a.cl.1.1 yes 2 15.2 even 4
7200.2.a.cl.1.2 yes 2 60.47 odd 4
7200.2.f.bf.6049.1 4 15.14 odd 2
7200.2.f.bf.6049.2 4 12.11 even 2
7200.2.f.bf.6049.3 4 3.2 odd 2
7200.2.f.bf.6049.4 4 60.59 even 2
7200.2.f.bi.6049.1 4 4.3 odd 2 inner
7200.2.f.bi.6049.2 4 5.4 even 2 inner
7200.2.f.bi.6049.3 4 20.19 odd 2 inner
7200.2.f.bi.6049.4 4 1.1 even 1 trivial