Properties

Label 7200.2.f.t
Level 72007200
Weight 22
Character orbit 7200.f
Analytic conductor 57.49257.492
Analytic rank 00
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(6049,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.6049");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 7200=253252 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 7200.f (of order 22, degree 11, not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 57.492289455357.4922894553
Analytic rank: 00
Dimension: 22
Coefficient field: Q(1)\Q(\sqrt{-1})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2+1 x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 2400)
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of i=1i = \sqrt{-1}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+3iq7+5iq13+5q194iq23+4q29+5q3110iq37+10q41+iq432iq472q4910iq53+10q595q61+3iq6710q71+10iq73+5iq97+O(q100) q + 3 i q^{7} + 5 i q^{13} + 5 q^{19} - 4 i q^{23} + 4 q^{29} + 5 q^{31} - 10 i q^{37} + 10 q^{41} + i q^{43} - 2 i q^{47} - 2 q^{49} - 10 i q^{53} + 10 q^{59} - 5 q^{61} + 3 i q^{67} - 10 q^{71} + 10 i q^{73} + \cdots - 5 i q^{97} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+10q19+8q29+10q31+20q414q49+20q5910q6120q71+32q8930q91+O(q100) 2 q + 10 q^{19} + 8 q^{29} + 10 q^{31} + 20 q^{41} - 4 q^{49} + 20 q^{59} - 10 q^{61} - 20 q^{71} + 32 q^{89} - 30 q^{91}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/7200Z)×\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times.

nn 577577 901901 64016401 67516751
χ(n)\chi(n) 1-1 11 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
6049.1
1.00000i
1.00000i
0 0 0 0 0 3.00000i 0 0 0
6049.2 0 0 0 0 0 3.00000i 0 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 7200.2.f.t 2
3.b odd 2 1 2400.2.f.m 2
4.b odd 2 1 7200.2.f.j 2
5.b even 2 1 inner 7200.2.f.t 2
5.c odd 4 1 7200.2.a.h 1
5.c odd 4 1 7200.2.a.bt 1
12.b even 2 1 2400.2.f.f 2
15.d odd 2 1 2400.2.f.m 2
15.e even 4 1 2400.2.a.l 1
15.e even 4 1 2400.2.a.w yes 1
20.d odd 2 1 7200.2.f.j 2
20.e even 4 1 7200.2.a.g 1
20.e even 4 1 7200.2.a.bu 1
24.f even 2 1 4800.2.f.x 2
24.h odd 2 1 4800.2.f.m 2
60.h even 2 1 2400.2.f.f 2
60.l odd 4 1 2400.2.a.m yes 1
60.l odd 4 1 2400.2.a.v yes 1
120.i odd 2 1 4800.2.f.m 2
120.m even 2 1 4800.2.f.x 2
120.q odd 4 1 4800.2.a.i 1
120.q odd 4 1 4800.2.a.cl 1
120.w even 4 1 4800.2.a.h 1
120.w even 4 1 4800.2.a.cm 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
2400.2.a.l 1 15.e even 4 1
2400.2.a.m yes 1 60.l odd 4 1
2400.2.a.v yes 1 60.l odd 4 1
2400.2.a.w yes 1 15.e even 4 1
2400.2.f.f 2 12.b even 2 1
2400.2.f.f 2 60.h even 2 1
2400.2.f.m 2 3.b odd 2 1
2400.2.f.m 2 15.d odd 2 1
4800.2.a.h 1 120.w even 4 1
4800.2.a.i 1 120.q odd 4 1
4800.2.a.cl 1 120.q odd 4 1
4800.2.a.cm 1 120.w even 4 1
4800.2.f.m 2 24.h odd 2 1
4800.2.f.m 2 120.i odd 2 1
4800.2.f.x 2 24.f even 2 1
4800.2.f.x 2 120.m even 2 1
7200.2.a.g 1 20.e even 4 1
7200.2.a.h 1 5.c odd 4 1
7200.2.a.bt 1 5.c odd 4 1
7200.2.a.bu 1 20.e even 4 1
7200.2.f.j 2 4.b odd 2 1
7200.2.f.j 2 20.d odd 2 1
7200.2.f.t 2 1.a even 1 1 trivial
7200.2.f.t 2 5.b even 2 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(7200,[χ])S_{2}^{\mathrm{new}}(7200, [\chi]):

T72+9 T_{7}^{2} + 9 Copy content Toggle raw display
T11 T_{11} Copy content Toggle raw display
T132+25 T_{13}^{2} + 25 Copy content Toggle raw display
T17 T_{17} Copy content Toggle raw display
T195 T_{19} - 5 Copy content Toggle raw display
T294 T_{29} - 4 Copy content Toggle raw display
T315 T_{31} - 5 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T2 T^{2} Copy content Toggle raw display
77 T2+9 T^{2} + 9 Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2+25 T^{2} + 25 Copy content Toggle raw display
1717 T2 T^{2} Copy content Toggle raw display
1919 (T5)2 (T - 5)^{2} Copy content Toggle raw display
2323 T2+16 T^{2} + 16 Copy content Toggle raw display
2929 (T4)2 (T - 4)^{2} Copy content Toggle raw display
3131 (T5)2 (T - 5)^{2} Copy content Toggle raw display
3737 T2+100 T^{2} + 100 Copy content Toggle raw display
4141 (T10)2 (T - 10)^{2} Copy content Toggle raw display
4343 T2+1 T^{2} + 1 Copy content Toggle raw display
4747 T2+4 T^{2} + 4 Copy content Toggle raw display
5353 T2+100 T^{2} + 100 Copy content Toggle raw display
5959 (T10)2 (T - 10)^{2} Copy content Toggle raw display
6161 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
6767 T2+9 T^{2} + 9 Copy content Toggle raw display
7171 (T+10)2 (T + 10)^{2} Copy content Toggle raw display
7373 T2+100 T^{2} + 100 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2+196 T^{2} + 196 Copy content Toggle raw display
8989 (T16)2 (T - 16)^{2} Copy content Toggle raw display
9797 T2+25 T^{2} + 25 Copy content Toggle raw display
show more
show less