Properties

Label 7200.2.k.j.3601.2
Level $7200$
Weight $2$
Character 7200.3601
Analytic conductor $57.492$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7200,2,Mod(3601,7200)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7200, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7200.3601");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7200 = 2^{5} \cdot 3^{2} \cdot 5^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7200.k (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(57.4922894553\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{43}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: no (minimal twist has level 40)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 3601.2
Root \(0.866025 + 0.500000i\) of defining polynomial
Character \(\chi\) \(=\) 7200.3601
Dual form 7200.2.k.j.3601.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{7} +2.00000i q^{11} +3.46410i q^{13} -3.46410 q^{17} +7.46410i q^{19} -4.19615 q^{23} -6.92820i q^{29} -1.46410 q^{31} -2.00000i q^{37} +5.46410 q^{41} +8.73205i q^{43} -6.73205 q^{47} +0.464102 q^{49} -4.53590i q^{53} +0.535898i q^{59} -4.92820i q^{61} -7.26795i q^{67} -1.46410 q^{71} -0.535898 q^{73} -5.46410i q^{77} +14.9282 q^{79} +4.73205i q^{83} +4.92820 q^{89} -9.46410i q^{91} -6.39230 q^{97} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{7} + 4 q^{23} + 8 q^{31} + 8 q^{41} - 20 q^{47} - 12 q^{49} + 8 q^{71} - 16 q^{73} + 32 q^{79} - 8 q^{89} + 16 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/7200\mathbb{Z}\right)^\times\).

\(n\) \(577\) \(901\) \(6401\) \(6751\)
\(\chi(n)\) \(1\) \(-1\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 0 0
\(4\) 0 0
\(5\) 0 0
\(6\) 0 0
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) 0 0
\(11\) 2.00000i 0.603023i 0.953463 + 0.301511i \(0.0974911\pi\)
−0.953463 + 0.301511i \(0.902509\pi\)
\(12\) 0 0
\(13\) 3.46410i 0.960769i 0.877058 + 0.480384i \(0.159503\pi\)
−0.877058 + 0.480384i \(0.840497\pi\)
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.46410 −0.840168 −0.420084 0.907485i \(-0.637999\pi\)
−0.420084 + 0.907485i \(0.637999\pi\)
\(18\) 0 0
\(19\) 7.46410i 1.71238i 0.516659 + 0.856191i \(0.327175\pi\)
−0.516659 + 0.856191i \(0.672825\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) 0 0
\(23\) −4.19615 −0.874958 −0.437479 0.899229i \(-0.644129\pi\)
−0.437479 + 0.899229i \(0.644129\pi\)
\(24\) 0 0
\(25\) 0 0
\(26\) 0 0
\(27\) 0 0
\(28\) 0 0
\(29\) − 6.92820i − 1.28654i −0.765641 0.643268i \(-0.777578\pi\)
0.765641 0.643268i \(-0.222422\pi\)
\(30\) 0 0
\(31\) −1.46410 −0.262960 −0.131480 0.991319i \(-0.541973\pi\)
−0.131480 + 0.991319i \(0.541973\pi\)
\(32\) 0 0
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) − 2.00000i − 0.328798i −0.986394 0.164399i \(-0.947432\pi\)
0.986394 0.164399i \(-0.0525685\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 5.46410 0.853349 0.426675 0.904405i \(-0.359685\pi\)
0.426675 + 0.904405i \(0.359685\pi\)
\(42\) 0 0
\(43\) 8.73205i 1.33163i 0.746119 + 0.665813i \(0.231915\pi\)
−0.746119 + 0.665813i \(0.768085\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.73205 −0.981971 −0.490985 0.871168i \(-0.663363\pi\)
−0.490985 + 0.871168i \(0.663363\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) − 4.53590i − 0.623054i −0.950237 0.311527i \(-0.899160\pi\)
0.950237 0.311527i \(-0.100840\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) 0.535898i 0.0697680i 0.999391 + 0.0348840i \(0.0111062\pi\)
−0.999391 + 0.0348840i \(0.988894\pi\)
\(60\) 0 0
\(61\) − 4.92820i − 0.630992i −0.948927 0.315496i \(-0.897829\pi\)
0.948927 0.315496i \(-0.102171\pi\)
\(62\) 0 0
\(63\) 0 0
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) − 7.26795i − 0.887921i −0.896046 0.443961i \(-0.853573\pi\)
0.896046 0.443961i \(-0.146427\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −1.46410 −0.173757 −0.0868784 0.996219i \(-0.527689\pi\)
−0.0868784 + 0.996219i \(0.527689\pi\)
\(72\) 0 0
\(73\) −0.535898 −0.0627222 −0.0313611 0.999508i \(-0.509984\pi\)
−0.0313611 + 0.999508i \(0.509984\pi\)
\(74\) 0 0
\(75\) 0 0
\(76\) 0 0
\(77\) − 5.46410i − 0.622692i
\(78\) 0 0
\(79\) 14.9282 1.67955 0.839777 0.542931i \(-0.182686\pi\)
0.839777 + 0.542931i \(0.182686\pi\)
\(80\) 0 0
\(81\) 0 0
\(82\) 0 0
\(83\) 4.73205i 0.519410i 0.965688 + 0.259705i \(0.0836253\pi\)
−0.965688 + 0.259705i \(0.916375\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 4.92820 0.522388 0.261194 0.965286i \(-0.415884\pi\)
0.261194 + 0.965286i \(0.415884\pi\)
\(90\) 0 0
\(91\) − 9.46410i − 0.992107i
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −6.39230 −0.649040 −0.324520 0.945879i \(-0.605203\pi\)
−0.324520 + 0.945879i \(0.605203\pi\)
\(98\) 0 0
\(99\) 0 0
\(100\) 0 0
\(101\) − 10.9282i − 1.08740i −0.839281 0.543698i \(-0.817024\pi\)
0.839281 0.543698i \(-0.182976\pi\)
\(102\) 0 0
\(103\) −1.66025 −0.163590 −0.0817948 0.996649i \(-0.526065\pi\)
−0.0817948 + 0.996649i \(0.526065\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) − 0.732051i − 0.0707700i −0.999374 0.0353850i \(-0.988734\pi\)
0.999374 0.0353850i \(-0.0112658\pi\)
\(108\) 0 0
\(109\) − 3.07180i − 0.294225i −0.989120 0.147112i \(-0.953002\pi\)
0.989120 0.147112i \(-0.0469979\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 0 0
\(113\) 0.928203 0.0873180 0.0436590 0.999046i \(-0.486098\pi\)
0.0436590 + 0.999046i \(0.486098\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 9.46410 0.867573
\(120\) 0 0
\(121\) 7.00000 0.636364
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 13.2679 1.17734 0.588670 0.808373i \(-0.299652\pi\)
0.588670 + 0.808373i \(0.299652\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 0 0
\(131\) − 7.85641i − 0.686417i −0.939259 0.343209i \(-0.888486\pi\)
0.939259 0.343209i \(-0.111514\pi\)
\(132\) 0 0
\(133\) − 20.3923i − 1.76824i
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) −8.92820 −0.762788 −0.381394 0.924413i \(-0.624556\pi\)
−0.381394 + 0.924413i \(0.624556\pi\)
\(138\) 0 0
\(139\) − 7.46410i − 0.633097i −0.948576 0.316548i \(-0.897476\pi\)
0.948576 0.316548i \(-0.102524\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0 0
\(143\) −6.92820 −0.579365
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) 0 0
\(149\) 19.8564i 1.62670i 0.581775 + 0.813350i \(0.302359\pi\)
−0.581775 + 0.813350i \(0.697641\pi\)
\(150\) 0 0
\(151\) −8.39230 −0.682956 −0.341478 0.939890i \(-0.610927\pi\)
−0.341478 + 0.939890i \(0.610927\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) − 16.9282i − 1.35102i −0.737352 0.675509i \(-0.763924\pi\)
0.737352 0.675509i \(-0.236076\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0 0
\(161\) 11.4641 0.903498
\(162\) 0 0
\(163\) − 10.1962i − 0.798624i −0.916815 0.399312i \(-0.869249\pi\)
0.916815 0.399312i \(-0.130751\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 20.1962 1.56283 0.781413 0.624015i \(-0.214499\pi\)
0.781413 + 0.624015i \(0.214499\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) − 2.00000i − 0.152057i −0.997106 0.0760286i \(-0.975776\pi\)
0.997106 0.0760286i \(-0.0242240\pi\)
\(174\) 0 0
\(175\) 0 0
\(176\) 0 0
\(177\) 0 0
\(178\) 0 0
\(179\) 15.4641i 1.15584i 0.816093 + 0.577921i \(0.196136\pi\)
−0.816093 + 0.577921i \(0.803864\pi\)
\(180\) 0 0
\(181\) − 16.0000i − 1.18927i −0.803996 0.594635i \(-0.797296\pi\)
0.803996 0.594635i \(-0.202704\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) − 6.92820i − 0.506640i
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −19.3205 −1.39798 −0.698991 0.715130i \(-0.746367\pi\)
−0.698991 + 0.715130i \(0.746367\pi\)
\(192\) 0 0
\(193\) −7.46410 −0.537278 −0.268639 0.963241i \(-0.586574\pi\)
−0.268639 + 0.963241i \(0.586574\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 12.5359i 0.893146i 0.894747 + 0.446573i \(0.147356\pi\)
−0.894747 + 0.446573i \(0.852644\pi\)
\(198\) 0 0
\(199\) −25.8564 −1.83291 −0.916456 0.400135i \(-0.868963\pi\)
−0.916456 + 0.400135i \(0.868963\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 0 0
\(203\) 18.9282i 1.32850i
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 0 0
\(208\) 0 0
\(209\) −14.9282 −1.03261
\(210\) 0 0
\(211\) − 14.7846i − 1.01781i −0.860821 0.508907i \(-0.830050\pi\)
0.860821 0.508907i \(-0.169950\pi\)
\(212\) 0 0
\(213\) 0 0
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 4.00000 0.271538
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) − 12.0000i − 0.807207i
\(222\) 0 0
\(223\) −16.1962 −1.08457 −0.542287 0.840193i \(-0.682442\pi\)
−0.542287 + 0.840193i \(0.682442\pi\)
\(224\) 0 0
\(225\) 0 0
\(226\) 0 0
\(227\) − 28.0526i − 1.86191i −0.365129 0.930957i \(-0.618975\pi\)
0.365129 0.930957i \(-0.381025\pi\)
\(228\) 0 0
\(229\) 4.00000i 0.264327i 0.991228 + 0.132164i \(0.0421925\pi\)
−0.991228 + 0.132164i \(0.957808\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 0 0
\(233\) 29.3205 1.92085 0.960425 0.278538i \(-0.0898499\pi\)
0.960425 + 0.278538i \(0.0898499\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −20.0000 −1.29369 −0.646846 0.762620i \(-0.723912\pi\)
−0.646846 + 0.762620i \(0.723912\pi\)
\(240\) 0 0
\(241\) −4.39230 −0.282933 −0.141467 0.989943i \(-0.545182\pi\)
−0.141467 + 0.989943i \(0.545182\pi\)
\(242\) 0 0
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) −25.8564 −1.64520
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) − 11.0718i − 0.698846i −0.936965 0.349423i \(-0.886378\pi\)
0.936965 0.349423i \(-0.113622\pi\)
\(252\) 0 0
\(253\) − 8.39230i − 0.527620i
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) −2.00000 −0.124757 −0.0623783 0.998053i \(-0.519869\pi\)
−0.0623783 + 0.998053i \(0.519869\pi\)
\(258\) 0 0
\(259\) 5.46410i 0.339523i
\(260\) 0 0
\(261\) 0 0
\(262\) 0 0
\(263\) −5.66025 −0.349026 −0.174513 0.984655i \(-0.555835\pi\)
−0.174513 + 0.984655i \(0.555835\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) 0 0
\(269\) 4.92820i 0.300478i 0.988650 + 0.150239i \(0.0480043\pi\)
−0.988650 + 0.150239i \(0.951996\pi\)
\(270\) 0 0
\(271\) −15.3205 −0.930655 −0.465327 0.885139i \(-0.654063\pi\)
−0.465327 + 0.885139i \(0.654063\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 0 0
\(276\) 0 0
\(277\) 2.00000i 0.120168i 0.998193 + 0.0600842i \(0.0191369\pi\)
−0.998193 + 0.0600842i \(0.980863\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −17.4641 −1.04182 −0.520910 0.853611i \(-0.674407\pi\)
−0.520910 + 0.853611i \(0.674407\pi\)
\(282\) 0 0
\(283\) − 7.66025i − 0.455355i −0.973737 0.227677i \(-0.926887\pi\)
0.973737 0.227677i \(-0.0731132\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) −14.9282 −0.881184
\(288\) 0 0
\(289\) −5.00000 −0.294118
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) − 11.8564i − 0.692659i −0.938113 0.346329i \(-0.887428\pi\)
0.938113 0.346329i \(-0.112572\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) − 14.5359i − 0.840633i
\(300\) 0 0
\(301\) − 23.8564i − 1.37506i
\(302\) 0 0
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) − 26.9808i − 1.53987i −0.638120 0.769937i \(-0.720288\pi\)
0.638120 0.769937i \(-0.279712\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −3.32051 −0.188289 −0.0941444 0.995559i \(-0.530012\pi\)
−0.0941444 + 0.995559i \(0.530012\pi\)
\(312\) 0 0
\(313\) 31.8564 1.80063 0.900315 0.435238i \(-0.143336\pi\)
0.900315 + 0.435238i \(0.143336\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) − 15.4641i − 0.868550i −0.900780 0.434275i \(-0.857005\pi\)
0.900780 0.434275i \(-0.142995\pi\)
\(318\) 0 0
\(319\) 13.8564 0.775810
\(320\) 0 0
\(321\) 0 0
\(322\) 0 0
\(323\) − 25.8564i − 1.43869i
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 18.3923 1.01400
\(330\) 0 0
\(331\) − 14.0000i − 0.769510i −0.923019 0.384755i \(-0.874286\pi\)
0.923019 0.384755i \(-0.125714\pi\)
\(332\) 0 0
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −7.85641 −0.427966 −0.213983 0.976837i \(-0.568644\pi\)
−0.213983 + 0.976837i \(0.568644\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) − 2.92820i − 0.158571i
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 15.6603i 0.840686i 0.907365 + 0.420343i \(0.138090\pi\)
−0.907365 + 0.420343i \(0.861910\pi\)
\(348\) 0 0
\(349\) 28.0000i 1.49881i 0.662114 + 0.749403i \(0.269659\pi\)
−0.662114 + 0.749403i \(0.730341\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −0.928203 −0.0494033 −0.0247016 0.999695i \(-0.507864\pi\)
−0.0247016 + 0.999695i \(0.507864\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 5.07180 0.267679 0.133840 0.991003i \(-0.457269\pi\)
0.133840 + 0.991003i \(0.457269\pi\)
\(360\) 0 0
\(361\) −36.7128 −1.93225
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 27.1244 1.41588 0.707940 0.706273i \(-0.249625\pi\)
0.707940 + 0.706273i \(0.249625\pi\)
\(368\) 0 0
\(369\) 0 0
\(370\) 0 0
\(371\) 12.3923i 0.643376i
\(372\) 0 0
\(373\) 29.7128i 1.53847i 0.638965 + 0.769236i \(0.279363\pi\)
−0.638965 + 0.769236i \(0.720637\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 24.0000 1.23606
\(378\) 0 0
\(379\) 12.2487i 0.629174i 0.949229 + 0.314587i \(0.101866\pi\)
−0.949229 + 0.314587i \(0.898134\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 0 0
\(383\) 3.12436 0.159647 0.0798236 0.996809i \(-0.474564\pi\)
0.0798236 + 0.996809i \(0.474564\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) 0 0
\(388\) 0 0
\(389\) − 34.7846i − 1.76365i −0.471577 0.881825i \(-0.656315\pi\)
0.471577 0.881825i \(-0.343685\pi\)
\(390\) 0 0
\(391\) 14.5359 0.735112
\(392\) 0 0
\(393\) 0 0
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) − 16.2487i − 0.815499i −0.913094 0.407750i \(-0.866314\pi\)
0.913094 0.407750i \(-0.133686\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) −19.8564 −0.991582 −0.495791 0.868442i \(-0.665122\pi\)
−0.495791 + 0.868442i \(0.665122\pi\)
\(402\) 0 0
\(403\) − 5.07180i − 0.252644i
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) 4.00000 0.198273
\(408\) 0 0
\(409\) 23.3205 1.15312 0.576562 0.817053i \(-0.304394\pi\)
0.576562 + 0.817053i \(0.304394\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) − 1.46410i − 0.0720437i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 2.39230i 0.116872i 0.998291 + 0.0584359i \(0.0186113\pi\)
−0.998291 + 0.0584359i \(0.981389\pi\)
\(420\) 0 0
\(421\) − 27.8564i − 1.35764i −0.734306 0.678819i \(-0.762492\pi\)
0.734306 0.678819i \(-0.237508\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 13.4641i 0.651574i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −14.5359 −0.700170 −0.350085 0.936718i \(-0.613847\pi\)
−0.350085 + 0.936718i \(0.613847\pi\)
\(432\) 0 0
\(433\) 12.5359 0.602437 0.301218 0.953555i \(-0.402607\pi\)
0.301218 + 0.953555i \(0.402607\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) − 31.3205i − 1.49826i
\(438\) 0 0
\(439\) 0.784610 0.0374474 0.0187237 0.999825i \(-0.494040\pi\)
0.0187237 + 0.999825i \(0.494040\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 0 0
\(443\) − 30.9808i − 1.47194i −0.677014 0.735970i \(-0.736726\pi\)
0.677014 0.735970i \(-0.263274\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −11.3205 −0.534248 −0.267124 0.963662i \(-0.586073\pi\)
−0.267124 + 0.963662i \(0.586073\pi\)
\(450\) 0 0
\(451\) 10.9282i 0.514589i
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −14.7846 −0.691595 −0.345797 0.938309i \(-0.612392\pi\)
−0.345797 + 0.938309i \(0.612392\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 2.92820i 0.136380i 0.997672 + 0.0681900i \(0.0217224\pi\)
−0.997672 + 0.0681900i \(0.978278\pi\)
\(462\) 0 0
\(463\) −14.7321 −0.684656 −0.342328 0.939580i \(-0.611215\pi\)
−0.342328 + 0.939580i \(0.611215\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) − 8.33975i − 0.385917i −0.981207 0.192959i \(-0.938192\pi\)
0.981207 0.192959i \(-0.0618083\pi\)
\(468\) 0 0
\(469\) 19.8564i 0.916884i
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −17.4641 −0.803000
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) 0 0
\(478\) 0 0
\(479\) −21.8564 −0.998645 −0.499322 0.866416i \(-0.666418\pi\)
−0.499322 + 0.866416i \(0.666418\pi\)
\(480\) 0 0
\(481\) 6.92820 0.315899
\(482\) 0 0
\(483\) 0 0
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) −24.5885 −1.11421 −0.557105 0.830442i \(-0.688088\pi\)
−0.557105 + 0.830442i \(0.688088\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) 3.07180i 0.138628i 0.997595 + 0.0693141i \(0.0220811\pi\)
−0.997595 + 0.0693141i \(0.977919\pi\)
\(492\) 0 0
\(493\) 24.0000i 1.08091i
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 4.00000 0.179425
\(498\) 0 0
\(499\) 24.5359i 1.09838i 0.835698 + 0.549189i \(0.185063\pi\)
−0.835698 + 0.549189i \(0.814937\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 17.6603 0.787432 0.393716 0.919232i \(-0.371189\pi\)
0.393716 + 0.919232i \(0.371189\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 25.8564i 1.14607i 0.819533 + 0.573033i \(0.194233\pi\)
−0.819533 + 0.573033i \(0.805767\pi\)
\(510\) 0 0
\(511\) 1.46410 0.0647680
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) − 13.4641i − 0.592151i
\(518\) 0 0
\(519\) 0 0
\(520\) 0 0
\(521\) 16.1436 0.707264 0.353632 0.935385i \(-0.384947\pi\)
0.353632 + 0.935385i \(0.384947\pi\)
\(522\) 0 0
\(523\) 22.1962i 0.970570i 0.874356 + 0.485285i \(0.161284\pi\)
−0.874356 + 0.485285i \(0.838716\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) 0 0
\(527\) 5.07180 0.220931
\(528\) 0 0
\(529\) −5.39230 −0.234448
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 18.9282i 0.819871i
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 0 0
\(539\) 0.928203i 0.0399805i
\(540\) 0 0
\(541\) 13.0718i 0.562000i 0.959708 + 0.281000i \(0.0906662\pi\)
−0.959708 + 0.281000i \(0.909334\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) − 36.7321i − 1.57055i −0.619148 0.785275i \(-0.712522\pi\)
0.619148 0.785275i \(-0.287478\pi\)
\(548\) 0 0
\(549\) 0 0
\(550\) 0 0
\(551\) 51.7128 2.20304
\(552\) 0 0
\(553\) −40.7846 −1.73434
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 26.7846i 1.13490i 0.823408 + 0.567450i \(0.192070\pi\)
−0.823408 + 0.567450i \(0.807930\pi\)
\(558\) 0 0
\(559\) −30.2487 −1.27938
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 16.0526i 0.676535i 0.941050 + 0.338267i \(0.109841\pi\)
−0.941050 + 0.338267i \(0.890159\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 0 0
\(568\) 0 0
\(569\) 6.53590 0.273999 0.137000 0.990571i \(-0.456254\pi\)
0.137000 + 0.990571i \(0.456254\pi\)
\(570\) 0 0
\(571\) − 34.7846i − 1.45569i −0.685741 0.727845i \(-0.740522\pi\)
0.685741 0.727845i \(-0.259478\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 0 0
\(576\) 0 0
\(577\) 43.5692 1.81381 0.906905 0.421335i \(-0.138438\pi\)
0.906905 + 0.421335i \(0.138438\pi\)
\(578\) 0 0
\(579\) 0 0
\(580\) 0 0
\(581\) − 12.9282i − 0.536352i
\(582\) 0 0
\(583\) 9.07180 0.375715
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) − 14.1962i − 0.585938i −0.956122 0.292969i \(-0.905357\pi\)
0.956122 0.292969i \(-0.0946433\pi\)
\(588\) 0 0
\(589\) − 10.9282i − 0.450289i
\(590\) 0 0
\(591\) 0 0
\(592\) 0 0
\(593\) −36.6410 −1.50467 −0.752333 0.658783i \(-0.771072\pi\)
−0.752333 + 0.658783i \(0.771072\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 0 0
\(599\) 34.6410 1.41539 0.707697 0.706516i \(-0.249734\pi\)
0.707697 + 0.706516i \(0.249734\pi\)
\(600\) 0 0
\(601\) 25.4641 1.03870 0.519351 0.854561i \(-0.326174\pi\)
0.519351 + 0.854561i \(0.326174\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −20.9808 −0.851583 −0.425791 0.904821i \(-0.640004\pi\)
−0.425791 + 0.904821i \(0.640004\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) − 23.3205i − 0.943447i
\(612\) 0 0
\(613\) 5.60770i 0.226493i 0.993567 + 0.113246i \(0.0361249\pi\)
−0.993567 + 0.113246i \(0.963875\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) −27.4641 −1.10566 −0.552832 0.833293i \(-0.686453\pi\)
−0.552832 + 0.833293i \(0.686453\pi\)
\(618\) 0 0
\(619\) − 33.3205i − 1.33926i −0.742693 0.669632i \(-0.766452\pi\)
0.742693 0.669632i \(-0.233548\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) −13.4641 −0.539428
\(624\) 0 0
\(625\) 0 0
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 6.92820i 0.276246i
\(630\) 0 0
\(631\) −11.3205 −0.450662 −0.225331 0.974282i \(-0.572346\pi\)
−0.225331 + 0.974282i \(0.572346\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 1.60770i 0.0636992i
\(638\) 0 0
\(639\) 0 0
\(640\) 0 0
\(641\) 20.3923 0.805448 0.402724 0.915322i \(-0.368064\pi\)
0.402724 + 0.915322i \(0.368064\pi\)
\(642\) 0 0
\(643\) − 14.8756i − 0.586638i −0.956015 0.293319i \(-0.905240\pi\)
0.956015 0.293319i \(-0.0947598\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) −13.2679 −0.521617 −0.260808 0.965391i \(-0.583989\pi\)
−0.260808 + 0.965391i \(0.583989\pi\)
\(648\) 0 0
\(649\) −1.07180 −0.0420717
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) 36.2487i 1.41852i 0.704946 + 0.709261i \(0.250971\pi\)
−0.704946 + 0.709261i \(0.749029\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) − 17.3205i − 0.674711i −0.941377 0.337356i \(-0.890468\pi\)
0.941377 0.337356i \(-0.109532\pi\)
\(660\) 0 0
\(661\) 35.8564i 1.39465i 0.716754 + 0.697326i \(0.245627\pi\)
−0.716754 + 0.697326i \(0.754373\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 29.0718i 1.12566i
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 9.85641 0.380502
\(672\) 0 0
\(673\) −19.4641 −0.750286 −0.375143 0.926967i \(-0.622406\pi\)
−0.375143 + 0.926967i \(0.622406\pi\)
\(674\) 0 0
\(675\) 0 0
\(676\) 0 0
\(677\) − 38.3923i − 1.47554i −0.675054 0.737768i \(-0.735880\pi\)
0.675054 0.737768i \(-0.264120\pi\)
\(678\) 0 0
\(679\) 17.4641 0.670211
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 34.9808i 1.33850i 0.743037 + 0.669251i \(0.233385\pi\)
−0.743037 + 0.669251i \(0.766615\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 0 0
\(688\) 0 0
\(689\) 15.7128 0.598610
\(690\) 0 0
\(691\) 18.0000i 0.684752i 0.939563 + 0.342376i \(0.111232\pi\)
−0.939563 + 0.342376i \(0.888768\pi\)
\(692\) 0 0
\(693\) 0 0
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −18.9282 −0.716957
\(698\) 0 0
\(699\) 0 0
\(700\) 0 0
\(701\) 32.9282i 1.24368i 0.783144 + 0.621841i \(0.213615\pi\)
−0.783144 + 0.621841i \(0.786385\pi\)
\(702\) 0 0
\(703\) 14.9282 0.563028
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 29.8564i 1.12287i
\(708\) 0 0
\(709\) − 28.7846i − 1.08103i −0.841335 0.540514i \(-0.818230\pi\)
0.841335 0.540514i \(-0.181770\pi\)
\(710\) 0 0
\(711\) 0 0
\(712\) 0 0
\(713\) 6.14359 0.230079
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0 0
\(718\) 0 0
\(719\) 25.8564 0.964281 0.482141 0.876094i \(-0.339859\pi\)
0.482141 + 0.876094i \(0.339859\pi\)
\(720\) 0 0
\(721\) 4.53590 0.168926
\(722\) 0 0
\(723\) 0 0
\(724\) 0 0
\(725\) 0 0
\(726\) 0 0
\(727\) 14.0526 0.521181 0.260590 0.965449i \(-0.416083\pi\)
0.260590 + 0.965449i \(0.416083\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 0 0
\(731\) − 30.2487i − 1.11879i
\(732\) 0 0
\(733\) − 48.9282i − 1.80720i −0.428373 0.903602i \(-0.640913\pi\)
0.428373 0.903602i \(-0.359087\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 14.5359 0.535437
\(738\) 0 0
\(739\) − 5.32051i − 0.195718i −0.995200 0.0978590i \(-0.968801\pi\)
0.995200 0.0978590i \(-0.0311994\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.9808 1.50344 0.751719 0.659483i \(-0.229225\pi\)
0.751719 + 0.659483i \(0.229225\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0 0
\(748\) 0 0
\(749\) 2.00000i 0.0730784i
\(750\) 0 0
\(751\) 22.2487 0.811867 0.405934 0.913903i \(-0.366946\pi\)
0.405934 + 0.913903i \(0.366946\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) − 32.9282i − 1.19680i −0.801199 0.598398i \(-0.795804\pi\)
0.801199 0.598398i \(-0.204196\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 0 0
\(761\) −49.7128 −1.80209 −0.901044 0.433728i \(-0.857198\pi\)
−0.901044 + 0.433728i \(0.857198\pi\)
\(762\) 0 0
\(763\) 8.39230i 0.303822i
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.85641 −0.0670310
\(768\) 0 0
\(769\) −0.928203 −0.0334719 −0.0167359 0.999860i \(-0.505327\pi\)
−0.0167359 + 0.999860i \(0.505327\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 0 0
\(773\) 1.60770i 0.0578248i 0.999582 + 0.0289124i \(0.00920438\pi\)
−0.999582 + 0.0289124i \(0.990796\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 40.7846i 1.46126i
\(780\) 0 0
\(781\) − 2.92820i − 0.104779i
\(782\) 0 0
\(783\) 0 0
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 14.5885i 0.520022i 0.965606 + 0.260011i \(0.0837262\pi\)
−0.965606 + 0.260011i \(0.916274\pi\)
\(788\) 0 0
\(789\) 0 0
\(790\) 0 0
\(791\) −2.53590 −0.0901662
\(792\) 0 0
\(793\) 17.0718 0.606237
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 26.1051i 0.924691i 0.886700 + 0.462345i \(0.152992\pi\)
−0.886700 + 0.462345i \(0.847008\pi\)
\(798\) 0 0
\(799\) 23.3205 0.825020
\(800\) 0 0
\(801\) 0 0
\(802\) 0 0
\(803\) − 1.07180i − 0.0378229i
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) 3.85641 0.135584 0.0677920 0.997699i \(-0.478405\pi\)
0.0677920 + 0.997699i \(0.478405\pi\)
\(810\) 0 0
\(811\) − 15.0718i − 0.529242i −0.964352 0.264621i \(-0.914753\pi\)
0.964352 0.264621i \(-0.0852469\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −65.1769 −2.28025
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) − 6.78461i − 0.236785i −0.992967 0.118392i \(-0.962226\pi\)
0.992967 0.118392i \(-0.0377740\pi\)
\(822\) 0 0
\(823\) 15.1244 0.527202 0.263601 0.964632i \(-0.415090\pi\)
0.263601 + 0.964632i \(0.415090\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) − 1.12436i − 0.0390977i −0.999809 0.0195488i \(-0.993777\pi\)
0.999809 0.0195488i \(-0.00622298\pi\)
\(828\) 0 0
\(829\) − 15.0718i − 0.523465i −0.965140 0.261733i \(-0.915706\pi\)
0.965140 0.261733i \(-0.0842938\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) −1.60770 −0.0557033
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) −16.7846 −0.579469 −0.289735 0.957107i \(-0.593567\pi\)
−0.289735 + 0.957107i \(0.593567\pi\)
\(840\) 0 0
\(841\) −19.0000 −0.655172
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −19.1244 −0.657121
\(848\) 0 0
\(849\) 0 0
\(850\) 0 0
\(851\) 8.39230i 0.287685i
\(852\) 0 0
\(853\) − 42.3923i − 1.45148i −0.687967 0.725742i \(-0.741496\pi\)
0.687967 0.725742i \(-0.258504\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 7.85641 0.268370 0.134185 0.990956i \(-0.457158\pi\)
0.134185 + 0.990956i \(0.457158\pi\)
\(858\) 0 0
\(859\) − 20.2487i − 0.690877i −0.938441 0.345439i \(-0.887730\pi\)
0.938441 0.345439i \(-0.112270\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0 0
\(863\) −30.3397 −1.03278 −0.516388 0.856354i \(-0.672724\pi\)
−0.516388 + 0.856354i \(0.672724\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 29.8564i 1.01281i
\(870\) 0 0
\(871\) 25.1769 0.853087
\(872\) 0 0
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 53.7128i 1.81375i 0.421397 + 0.906876i \(0.361540\pi\)
−0.421397 + 0.906876i \(0.638460\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) −2.53590 −0.0854366 −0.0427183 0.999087i \(-0.513602\pi\)
−0.0427183 + 0.999087i \(0.513602\pi\)
\(882\) 0 0
\(883\) − 37.9090i − 1.27574i −0.770145 0.637869i \(-0.779816\pi\)
0.770145 0.637869i \(-0.220184\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −51.9090 −1.74293 −0.871466 0.490455i \(-0.836830\pi\)
−0.871466 + 0.490455i \(0.836830\pi\)
\(888\) 0 0
\(889\) −36.2487 −1.21574
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) − 50.2487i − 1.68151i
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 10.1436i 0.338308i
\(900\) 0 0
\(901\) 15.7128i 0.523470i
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) − 29.1244i − 0.967058i −0.875328 0.483529i \(-0.839355\pi\)
0.875328 0.483529i \(-0.160645\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) 13.1769 0.436571 0.218285 0.975885i \(-0.429954\pi\)
0.218285 + 0.975885i \(0.429954\pi\)
\(912\) 0 0
\(913\) −9.46410 −0.313216
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) 21.4641i 0.708807i
\(918\) 0 0
\(919\) 25.0718 0.827042 0.413521 0.910495i \(-0.364299\pi\)
0.413521 + 0.910495i \(0.364299\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) − 5.07180i − 0.166940i
\(924\) 0 0
\(925\) 0 0
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) 10.5359 0.345672 0.172836 0.984951i \(-0.444707\pi\)
0.172836 + 0.984951i \(0.444707\pi\)
\(930\) 0 0
\(931\) 3.46410i 0.113531i
\(932\) 0 0
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 44.2487 1.44554 0.722771 0.691087i \(-0.242868\pi\)
0.722771 + 0.691087i \(0.242868\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) − 32.0000i − 1.04317i −0.853199 0.521585i \(-0.825341\pi\)
0.853199 0.521585i \(-0.174659\pi\)
\(942\) 0 0
\(943\) −22.9282 −0.746645
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 21.1244i 0.686449i 0.939253 + 0.343225i \(0.111519\pi\)
−0.939253 + 0.343225i \(0.888481\pi\)
\(948\) 0 0
\(949\) − 1.85641i − 0.0602615i
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −58.7846 −1.90422 −0.952110 0.305755i \(-0.901091\pi\)
−0.952110 + 0.305755i \(0.901091\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 0 0
\(958\) 0 0
\(959\) 24.3923 0.787669
\(960\) 0 0
\(961\) −28.8564 −0.930852
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) 33.6603 1.08244 0.541220 0.840881i \(-0.317962\pi\)
0.541220 + 0.840881i \(0.317962\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) − 23.0718i − 0.740409i −0.928950 0.370205i \(-0.879288\pi\)
0.928950 0.370205i \(-0.120712\pi\)
\(972\) 0 0
\(973\) 20.3923i 0.653747i
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −31.4641 −1.00663 −0.503313 0.864104i \(-0.667886\pi\)
−0.503313 + 0.864104i \(0.667886\pi\)
\(978\) 0 0
\(979\) 9.85641i 0.315012i
\(980\) 0 0
\(981\) 0 0
\(982\) 0 0
\(983\) 45.2679 1.44382 0.721912 0.691985i \(-0.243264\pi\)
0.721912 + 0.691985i \(0.243264\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) − 36.6410i − 1.16512i
\(990\) 0 0
\(991\) −34.5359 −1.09707 −0.548534 0.836128i \(-0.684814\pi\)
−0.548534 + 0.836128i \(0.684814\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) 51.1769i 1.62079i 0.585884 + 0.810395i \(0.300747\pi\)
−0.585884 + 0.810395i \(0.699253\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7200.2.k.j.3601.2 4
3.2 odd 2 800.2.d.e.401.3 4
4.3 odd 2 1800.2.k.j.901.3 4
5.2 odd 4 7200.2.d.o.2449.1 4
5.3 odd 4 7200.2.d.n.2449.4 4
5.4 even 2 1440.2.k.e.721.2 4
8.3 odd 2 1800.2.k.j.901.4 4
8.5 even 2 inner 7200.2.k.j.3601.1 4
12.11 even 2 200.2.d.f.101.2 4
15.2 even 4 800.2.f.c.49.3 4
15.8 even 4 800.2.f.e.49.2 4
15.14 odd 2 160.2.d.a.81.2 4
20.3 even 4 1800.2.d.l.1549.1 4
20.7 even 4 1800.2.d.p.1549.4 4
20.19 odd 2 360.2.k.e.181.2 4
24.5 odd 2 800.2.d.e.401.2 4
24.11 even 2 200.2.d.f.101.1 4
40.3 even 4 1800.2.d.p.1549.3 4
40.13 odd 4 7200.2.d.o.2449.4 4
40.19 odd 2 360.2.k.e.181.1 4
40.27 even 4 1800.2.d.l.1549.2 4
40.29 even 2 1440.2.k.e.721.4 4
40.37 odd 4 7200.2.d.n.2449.1 4
48.5 odd 4 6400.2.a.be.1.2 2
48.11 even 4 6400.2.a.ce.1.1 2
48.29 odd 4 6400.2.a.cj.1.1 2
48.35 even 4 6400.2.a.z.1.2 2
60.23 odd 4 200.2.f.e.149.4 4
60.47 odd 4 200.2.f.c.149.1 4
60.59 even 2 40.2.d.a.21.3 4
120.29 odd 2 160.2.d.a.81.3 4
120.53 even 4 800.2.f.c.49.4 4
120.59 even 2 40.2.d.a.21.4 yes 4
120.77 even 4 800.2.f.e.49.1 4
120.83 odd 4 200.2.f.c.149.2 4
120.107 odd 4 200.2.f.e.149.3 4
240.29 odd 4 1280.2.a.d.1.2 2
240.59 even 4 1280.2.a.a.1.2 2
240.149 odd 4 1280.2.a.n.1.1 2
240.179 even 4 1280.2.a.o.1.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
40.2.d.a.21.3 4 60.59 even 2
40.2.d.a.21.4 yes 4 120.59 even 2
160.2.d.a.81.2 4 15.14 odd 2
160.2.d.a.81.3 4 120.29 odd 2
200.2.d.f.101.1 4 24.11 even 2
200.2.d.f.101.2 4 12.11 even 2
200.2.f.c.149.1 4 60.47 odd 4
200.2.f.c.149.2 4 120.83 odd 4
200.2.f.e.149.3 4 120.107 odd 4
200.2.f.e.149.4 4 60.23 odd 4
360.2.k.e.181.1 4 40.19 odd 2
360.2.k.e.181.2 4 20.19 odd 2
800.2.d.e.401.2 4 24.5 odd 2
800.2.d.e.401.3 4 3.2 odd 2
800.2.f.c.49.3 4 15.2 even 4
800.2.f.c.49.4 4 120.53 even 4
800.2.f.e.49.1 4 120.77 even 4
800.2.f.e.49.2 4 15.8 even 4
1280.2.a.a.1.2 2 240.59 even 4
1280.2.a.d.1.2 2 240.29 odd 4
1280.2.a.n.1.1 2 240.149 odd 4
1280.2.a.o.1.1 2 240.179 even 4
1440.2.k.e.721.2 4 5.4 even 2
1440.2.k.e.721.4 4 40.29 even 2
1800.2.d.l.1549.1 4 20.3 even 4
1800.2.d.l.1549.2 4 40.27 even 4
1800.2.d.p.1549.3 4 40.3 even 4
1800.2.d.p.1549.4 4 20.7 even 4
1800.2.k.j.901.3 4 4.3 odd 2
1800.2.k.j.901.4 4 8.3 odd 2
6400.2.a.z.1.2 2 48.35 even 4
6400.2.a.be.1.2 2 48.5 odd 4
6400.2.a.ce.1.1 2 48.11 even 4
6400.2.a.cj.1.1 2 48.29 odd 4
7200.2.d.n.2449.1 4 40.37 odd 4
7200.2.d.n.2449.4 4 5.3 odd 4
7200.2.d.o.2449.1 4 5.2 odd 4
7200.2.d.o.2449.4 4 40.13 odd 4
7200.2.k.j.3601.1 4 8.5 even 2 inner
7200.2.k.j.3601.2 4 1.1 even 1 trivial