Properties

Label 722.6.a.q.1.7
Level $722$
Weight $6$
Character 722.1
Self dual yes
Analytic conductor $115.797$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [722,6,Mod(1,722)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(722, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("722.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 722 = 2 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 722.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(115.797117905\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 2871 x^{13} - 4674 x^{12} + 3170019 x^{11} + 9081402 x^{10} - 1680307373 x^{9} + \cdots - 34\!\cdots\!72 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6}\cdot 3\cdot 19^{6} \)
Twist minimal: no (minimal twist has level 38)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.7
Root \(-3.66933\) of defining polynomial
Character \(\chi\) \(=\) 722.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.00000 q^{2} -2.13724 q^{3} +16.0000 q^{4} -10.7945 q^{5} +8.54896 q^{6} -195.108 q^{7} -64.0000 q^{8} -238.432 q^{9} +43.1779 q^{10} -17.0907 q^{11} -34.1959 q^{12} +263.186 q^{13} +780.432 q^{14} +23.0704 q^{15} +256.000 q^{16} -577.725 q^{17} +953.729 q^{18} -172.712 q^{20} +416.993 q^{21} +68.3627 q^{22} -565.508 q^{23} +136.783 q^{24} -3008.48 q^{25} -1052.74 q^{26} +1028.94 q^{27} -3121.73 q^{28} -6712.34 q^{29} -92.2816 q^{30} -9280.96 q^{31} -1024.00 q^{32} +36.5269 q^{33} +2310.90 q^{34} +2106.09 q^{35} -3814.92 q^{36} -1713.65 q^{37} -562.492 q^{39} +690.846 q^{40} -1219.00 q^{41} -1667.97 q^{42} -15472.5 q^{43} -273.451 q^{44} +2573.75 q^{45} +2262.03 q^{46} +1492.69 q^{47} -547.134 q^{48} +21260.1 q^{49} +12033.9 q^{50} +1234.74 q^{51} +4210.97 q^{52} -25666.2 q^{53} -4115.75 q^{54} +184.485 q^{55} +12486.9 q^{56} +26849.4 q^{58} -2971.17 q^{59} +369.126 q^{60} +11469.3 q^{61} +37123.8 q^{62} +46520.0 q^{63} +4096.00 q^{64} -2840.95 q^{65} -146.108 q^{66} +4196.56 q^{67} -9243.60 q^{68} +1208.63 q^{69} -8424.35 q^{70} -67410.0 q^{71} +15259.7 q^{72} -45625.5 q^{73} +6854.61 q^{74} +6429.85 q^{75} +3334.53 q^{77} +2249.97 q^{78} -33434.2 q^{79} -2763.39 q^{80} +55739.9 q^{81} +4876.00 q^{82} +66875.6 q^{83} +6671.88 q^{84} +6236.23 q^{85} +61890.1 q^{86} +14345.9 q^{87} +1093.80 q^{88} +86080.7 q^{89} -10295.0 q^{90} -51349.6 q^{91} -9048.13 q^{92} +19835.6 q^{93} -5970.77 q^{94} +2188.53 q^{96} -130701. q^{97} -85040.4 q^{98} +4074.97 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 60 q^{2} + 240 q^{4} + 108 q^{5} + 84 q^{7} - 960 q^{8} + 2127 q^{9} - 432 q^{10} + 126 q^{11} + 114 q^{13} - 336 q^{14} + 3840 q^{16} + 4119 q^{17} - 8508 q^{18} + 1728 q^{20} - 3408 q^{21} - 504 q^{22}+ \cdots - 149895 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 −0.707107
\(3\) −2.13724 −0.137104 −0.0685520 0.997648i \(-0.521838\pi\)
−0.0685520 + 0.997648i \(0.521838\pi\)
\(4\) 16.0000 0.500000
\(5\) −10.7945 −0.193097 −0.0965487 0.995328i \(-0.530780\pi\)
−0.0965487 + 0.995328i \(0.530780\pi\)
\(6\) 8.54896 0.0969472
\(7\) −195.108 −1.50498 −0.752488 0.658606i \(-0.771147\pi\)
−0.752488 + 0.658606i \(0.771147\pi\)
\(8\) −64.0000 −0.353553
\(9\) −238.432 −0.981202
\(10\) 43.1779 0.136541
\(11\) −17.0907 −0.0425870 −0.0212935 0.999773i \(-0.506778\pi\)
−0.0212935 + 0.999773i \(0.506778\pi\)
\(12\) −34.1959 −0.0685520
\(13\) 263.186 0.431921 0.215960 0.976402i \(-0.430712\pi\)
0.215960 + 0.976402i \(0.430712\pi\)
\(14\) 780.432 1.06418
\(15\) 23.0704 0.0264744
\(16\) 256.000 0.250000
\(17\) −577.725 −0.484840 −0.242420 0.970171i \(-0.577941\pi\)
−0.242420 + 0.970171i \(0.577941\pi\)
\(18\) 953.729 0.693815
\(19\) 0 0
\(20\) −172.712 −0.0965487
\(21\) 416.993 0.206338
\(22\) 68.3627 0.0301136
\(23\) −565.508 −0.222905 −0.111452 0.993770i \(-0.535550\pi\)
−0.111452 + 0.993770i \(0.535550\pi\)
\(24\) 136.783 0.0484736
\(25\) −3008.48 −0.962713
\(26\) −1052.74 −0.305414
\(27\) 1028.94 0.271631
\(28\) −3121.73 −0.752488
\(29\) −6712.34 −1.48210 −0.741052 0.671447i \(-0.765673\pi\)
−0.741052 + 0.671447i \(0.765673\pi\)
\(30\) −92.2816 −0.0187203
\(31\) −9280.96 −1.73456 −0.867279 0.497823i \(-0.834133\pi\)
−0.867279 + 0.497823i \(0.834133\pi\)
\(32\) −1024.00 −0.176777
\(33\) 36.5269 0.00583886
\(34\) 2310.90 0.342834
\(35\) 2106.09 0.290607
\(36\) −3814.92 −0.490601
\(37\) −1713.65 −0.205787 −0.102894 0.994692i \(-0.532810\pi\)
−0.102894 + 0.994692i \(0.532810\pi\)
\(38\) 0 0
\(39\) −562.492 −0.0592181
\(40\) 690.846 0.0682703
\(41\) −1219.00 −0.113252 −0.0566258 0.998395i \(-0.518034\pi\)
−0.0566258 + 0.998395i \(0.518034\pi\)
\(42\) −1667.97 −0.145903
\(43\) −15472.5 −1.27612 −0.638058 0.769988i \(-0.720262\pi\)
−0.638058 + 0.769988i \(0.720262\pi\)
\(44\) −273.451 −0.0212935
\(45\) 2573.75 0.189468
\(46\) 2262.03 0.157617
\(47\) 1492.69 0.0985657 0.0492829 0.998785i \(-0.484306\pi\)
0.0492829 + 0.998785i \(0.484306\pi\)
\(48\) −547.134 −0.0342760
\(49\) 21260.1 1.26495
\(50\) 12033.9 0.680741
\(51\) 1234.74 0.0664736
\(52\) 4210.97 0.215960
\(53\) −25666.2 −1.25508 −0.627541 0.778583i \(-0.715939\pi\)
−0.627541 + 0.778583i \(0.715939\pi\)
\(54\) −4115.75 −0.192072
\(55\) 184.485 0.00822345
\(56\) 12486.9 0.532090
\(57\) 0 0
\(58\) 26849.4 1.04801
\(59\) −2971.17 −0.111121 −0.0555607 0.998455i \(-0.517695\pi\)
−0.0555607 + 0.998455i \(0.517695\pi\)
\(60\) 369.126 0.0132372
\(61\) 11469.3 0.394651 0.197326 0.980338i \(-0.436774\pi\)
0.197326 + 0.980338i \(0.436774\pi\)
\(62\) 37123.8 1.22652
\(63\) 46520.0 1.47669
\(64\) 4096.00 0.125000
\(65\) −2840.95 −0.0834028
\(66\) −146.108 −0.00412870
\(67\) 4196.56 0.114211 0.0571053 0.998368i \(-0.481813\pi\)
0.0571053 + 0.998368i \(0.481813\pi\)
\(68\) −9243.60 −0.242420
\(69\) 1208.63 0.0305611
\(70\) −8424.35 −0.205490
\(71\) −67410.0 −1.58701 −0.793503 0.608567i \(-0.791745\pi\)
−0.793503 + 0.608567i \(0.791745\pi\)
\(72\) 15259.7 0.346907
\(73\) −45625.5 −1.00208 −0.501038 0.865425i \(-0.667048\pi\)
−0.501038 + 0.865425i \(0.667048\pi\)
\(74\) 6854.61 0.145514
\(75\) 6429.85 0.131992
\(76\) 0 0
\(77\) 3334.53 0.0640925
\(78\) 2249.97 0.0418735
\(79\) −33434.2 −0.602730 −0.301365 0.953509i \(-0.597442\pi\)
−0.301365 + 0.953509i \(0.597442\pi\)
\(80\) −2763.39 −0.0482744
\(81\) 55739.9 0.943961
\(82\) 4876.00 0.0800809
\(83\) 66875.6 1.06555 0.532773 0.846258i \(-0.321150\pi\)
0.532773 + 0.846258i \(0.321150\pi\)
\(84\) 6671.88 0.103169
\(85\) 6236.23 0.0936214
\(86\) 61890.1 0.902351
\(87\) 14345.9 0.203203
\(88\) 1093.80 0.0150568
\(89\) 86080.7 1.15194 0.575972 0.817470i \(-0.304624\pi\)
0.575972 + 0.817470i \(0.304624\pi\)
\(90\) −10295.0 −0.133974
\(91\) −51349.6 −0.650031
\(92\) −9048.13 −0.111452
\(93\) 19835.6 0.237815
\(94\) −5970.77 −0.0696965
\(95\) 0 0
\(96\) 2188.53 0.0242368
\(97\) −130701. −1.41042 −0.705211 0.708998i \(-0.749148\pi\)
−0.705211 + 0.708998i \(0.749148\pi\)
\(98\) −85040.4 −0.894458
\(99\) 4074.97 0.0417865
\(100\) −48135.7 −0.481357
\(101\) −18239.4 −0.177913 −0.0889564 0.996036i \(-0.528353\pi\)
−0.0889564 + 0.996036i \(0.528353\pi\)
\(102\) −4938.95 −0.0470039
\(103\) −26800.0 −0.248910 −0.124455 0.992225i \(-0.539718\pi\)
−0.124455 + 0.992225i \(0.539718\pi\)
\(104\) −16843.9 −0.152707
\(105\) −4501.22 −0.0398434
\(106\) 102665. 0.887478
\(107\) −168247. −1.42065 −0.710327 0.703872i \(-0.751453\pi\)
−0.710327 + 0.703872i \(0.751453\pi\)
\(108\) 16463.0 0.135815
\(109\) 16094.3 0.129750 0.0648748 0.997893i \(-0.479335\pi\)
0.0648748 + 0.997893i \(0.479335\pi\)
\(110\) −737.939 −0.00581486
\(111\) 3662.49 0.0282143
\(112\) −49947.6 −0.376244
\(113\) 103218. 0.760427 0.380213 0.924899i \(-0.375851\pi\)
0.380213 + 0.924899i \(0.375851\pi\)
\(114\) 0 0
\(115\) 6104.36 0.0430423
\(116\) −107397. −0.741052
\(117\) −62752.0 −0.423802
\(118\) 11884.7 0.0785747
\(119\) 112719. 0.729673
\(120\) −1476.51 −0.00936013
\(121\) −160759. −0.998186
\(122\) −45877.3 −0.279061
\(123\) 2605.30 0.0155272
\(124\) −148495. −0.867279
\(125\) 66207.7 0.378995
\(126\) −186080. −1.04418
\(127\) 213253. 1.17324 0.586620 0.809863i \(-0.300458\pi\)
0.586620 + 0.809863i \(0.300458\pi\)
\(128\) −16384.0 −0.0883883
\(129\) 33068.5 0.174961
\(130\) 11363.8 0.0589747
\(131\) −322898. −1.64394 −0.821971 0.569529i \(-0.807126\pi\)
−0.821971 + 0.569529i \(0.807126\pi\)
\(132\) 584.430 0.00291943
\(133\) 0 0
\(134\) −16786.2 −0.0807591
\(135\) −11106.8 −0.0524512
\(136\) 36974.4 0.171417
\(137\) −297608. −1.35470 −0.677349 0.735662i \(-0.736871\pi\)
−0.677349 + 0.735662i \(0.736871\pi\)
\(138\) −4834.51 −0.0216100
\(139\) −42527.0 −0.186693 −0.0933464 0.995634i \(-0.529756\pi\)
−0.0933464 + 0.995634i \(0.529756\pi\)
\(140\) 33697.4 0.145304
\(141\) −3190.25 −0.0135138
\(142\) 269640. 1.12218
\(143\) −4498.02 −0.0183942
\(144\) −61038.6 −0.245301
\(145\) 72456.2 0.286191
\(146\) 182502. 0.708574
\(147\) −45437.9 −0.173430
\(148\) −27418.4 −0.102894
\(149\) 397969. 1.46853 0.734266 0.678862i \(-0.237526\pi\)
0.734266 + 0.678862i \(0.237526\pi\)
\(150\) −25719.4 −0.0933324
\(151\) 312906. 1.11679 0.558394 0.829576i \(-0.311418\pi\)
0.558394 + 0.829576i \(0.311418\pi\)
\(152\) 0 0
\(153\) 137748. 0.475726
\(154\) −13338.1 −0.0453202
\(155\) 100183. 0.334939
\(156\) −8999.87 −0.0296091
\(157\) 451929. 1.46326 0.731629 0.681703i \(-0.238760\pi\)
0.731629 + 0.681703i \(0.238760\pi\)
\(158\) 133737. 0.426195
\(159\) 54854.9 0.172077
\(160\) 11053.5 0.0341351
\(161\) 110335. 0.335466
\(162\) −222960. −0.667481
\(163\) 440059. 1.29730 0.648652 0.761085i \(-0.275333\pi\)
0.648652 + 0.761085i \(0.275333\pi\)
\(164\) −19504.0 −0.0566258
\(165\) −394.289 −0.00112747
\(166\) −267502. −0.753455
\(167\) −121109. −0.336034 −0.168017 0.985784i \(-0.553736\pi\)
−0.168017 + 0.985784i \(0.553736\pi\)
\(168\) −26687.5 −0.0729517
\(169\) −302026. −0.813444
\(170\) −24944.9 −0.0662003
\(171\) 0 0
\(172\) −247561. −0.638058
\(173\) −562940. −1.43003 −0.715017 0.699107i \(-0.753581\pi\)
−0.715017 + 0.699107i \(0.753581\pi\)
\(174\) −57383.5 −0.143686
\(175\) 586978. 1.44886
\(176\) −4375.21 −0.0106468
\(177\) 6350.11 0.0152352
\(178\) −344323. −0.814547
\(179\) 560560. 1.30764 0.653822 0.756648i \(-0.273164\pi\)
0.653822 + 0.756648i \(0.273164\pi\)
\(180\) 41180.0 0.0947338
\(181\) 467614. 1.06094 0.530471 0.847703i \(-0.322015\pi\)
0.530471 + 0.847703i \(0.322015\pi\)
\(182\) 205399. 0.459641
\(183\) −24512.7 −0.0541083
\(184\) 36192.5 0.0788087
\(185\) 18498.0 0.0397370
\(186\) −79342.6 −0.168160
\(187\) 9873.70 0.0206479
\(188\) 23883.1 0.0492829
\(189\) −200754. −0.408798
\(190\) 0 0
\(191\) 50390.1 0.0999452 0.0499726 0.998751i \(-0.484087\pi\)
0.0499726 + 0.998751i \(0.484087\pi\)
\(192\) −8754.14 −0.0171380
\(193\) −817525. −1.57982 −0.789910 0.613223i \(-0.789873\pi\)
−0.789910 + 0.613223i \(0.789873\pi\)
\(194\) 522803. 0.997319
\(195\) 6071.80 0.0114349
\(196\) 340162. 0.632477
\(197\) 455871. 0.836905 0.418453 0.908239i \(-0.362573\pi\)
0.418453 + 0.908239i \(0.362573\pi\)
\(198\) −16299.9 −0.0295475
\(199\) 547135. 0.979403 0.489702 0.871890i \(-0.337106\pi\)
0.489702 + 0.871890i \(0.337106\pi\)
\(200\) 192543. 0.340371
\(201\) −8969.06 −0.0156587
\(202\) 72957.6 0.125803
\(203\) 1.30963e6 2.23053
\(204\) 19755.8 0.0332368
\(205\) 13158.5 0.0218686
\(206\) 107200. 0.176006
\(207\) 134835. 0.218715
\(208\) 67375.6 0.107980
\(209\) 0 0
\(210\) 18004.9 0.0281736
\(211\) −31898.8 −0.0493251 −0.0246625 0.999696i \(-0.507851\pi\)
−0.0246625 + 0.999696i \(0.507851\pi\)
\(212\) −410660. −0.627541
\(213\) 144071. 0.217585
\(214\) 672989. 1.00455
\(215\) 167018. 0.246415
\(216\) −65851.9 −0.0960360
\(217\) 1.81079e6 2.61047
\(218\) −64377.2 −0.0917468
\(219\) 97512.7 0.137389
\(220\) 2951.76 0.00411172
\(221\) −152049. −0.209413
\(222\) −14649.9 −0.0199505
\(223\) −1.22713e6 −1.65245 −0.826224 0.563341i \(-0.809516\pi\)
−0.826224 + 0.563341i \(0.809516\pi\)
\(224\) 199790. 0.266045
\(225\) 717318. 0.944617
\(226\) −412870. −0.537703
\(227\) −243999. −0.314285 −0.157143 0.987576i \(-0.550228\pi\)
−0.157143 + 0.987576i \(0.550228\pi\)
\(228\) 0 0
\(229\) −1.29079e6 −1.62654 −0.813272 0.581884i \(-0.802316\pi\)
−0.813272 + 0.581884i \(0.802316\pi\)
\(230\) −24417.4 −0.0304355
\(231\) −7126.69 −0.00878734
\(232\) 429590. 0.524003
\(233\) 1.23246e6 1.48725 0.743624 0.668598i \(-0.233105\pi\)
0.743624 + 0.668598i \(0.233105\pi\)
\(234\) 251008. 0.299673
\(235\) −16112.8 −0.0190328
\(236\) −47538.7 −0.0555607
\(237\) 71456.9 0.0826368
\(238\) −450875. −0.515957
\(239\) −299709. −0.339395 −0.169698 0.985496i \(-0.554279\pi\)
−0.169698 + 0.985496i \(0.554279\pi\)
\(240\) 5906.02 0.00661861
\(241\) 334121. 0.370563 0.185281 0.982686i \(-0.440680\pi\)
0.185281 + 0.982686i \(0.440680\pi\)
\(242\) 643036. 0.705824
\(243\) −369161. −0.401052
\(244\) 183509. 0.197326
\(245\) −229492. −0.244260
\(246\) −10421.2 −0.0109794
\(247\) 0 0
\(248\) 593981. 0.613259
\(249\) −142929. −0.146091
\(250\) −264831. −0.267990
\(251\) 1.78722e6 1.79058 0.895290 0.445484i \(-0.146968\pi\)
0.895290 + 0.445484i \(0.146968\pi\)
\(252\) 744320. 0.738343
\(253\) 9664.91 0.00949285
\(254\) −853013. −0.829605
\(255\) −13328.3 −0.0128359
\(256\) 65536.0 0.0625000
\(257\) −1.30644e6 −1.23384 −0.616919 0.787026i \(-0.711619\pi\)
−0.616919 + 0.787026i \(0.711619\pi\)
\(258\) −132274. −0.123716
\(259\) 334347. 0.309705
\(260\) −45455.2 −0.0417014
\(261\) 1.60044e6 1.45424
\(262\) 1.29159e6 1.16244
\(263\) 2.21793e6 1.97724 0.988619 0.150441i \(-0.0480694\pi\)
0.988619 + 0.150441i \(0.0480694\pi\)
\(264\) −2337.72 −0.00206435
\(265\) 277053. 0.242353
\(266\) 0 0
\(267\) −183975. −0.157936
\(268\) 67145.0 0.0571053
\(269\) −433462. −0.365233 −0.182616 0.983184i \(-0.558457\pi\)
−0.182616 + 0.983184i \(0.558457\pi\)
\(270\) 44427.3 0.0370886
\(271\) −1.44684e6 −1.19673 −0.598366 0.801223i \(-0.704183\pi\)
−0.598366 + 0.801223i \(0.704183\pi\)
\(272\) −147898. −0.121210
\(273\) 109747. 0.0891219
\(274\) 1.19043e6 0.957916
\(275\) 51416.9 0.0409991
\(276\) 19338.0 0.0152806
\(277\) 1.64595e6 1.28889 0.644446 0.764650i \(-0.277088\pi\)
0.644446 + 0.764650i \(0.277088\pi\)
\(278\) 170108. 0.132012
\(279\) 2.21288e6 1.70195
\(280\) −134790. −0.102745
\(281\) −925545. −0.699249 −0.349625 0.936890i \(-0.613691\pi\)
−0.349625 + 0.936890i \(0.613691\pi\)
\(282\) 12761.0 0.00955567
\(283\) −2.12008e6 −1.57357 −0.786786 0.617226i \(-0.788257\pi\)
−0.786786 + 0.617226i \(0.788257\pi\)
\(284\) −1.07856e6 −0.793503
\(285\) 0 0
\(286\) 17992.1 0.0130067
\(287\) 237836. 0.170441
\(288\) 244155. 0.173454
\(289\) −1.08609e6 −0.764930
\(290\) −289825. −0.202367
\(291\) 279339. 0.193375
\(292\) −730008. −0.501038
\(293\) 943155. 0.641821 0.320910 0.947110i \(-0.396011\pi\)
0.320910 + 0.947110i \(0.396011\pi\)
\(294\) 181752. 0.122634
\(295\) 32072.2 0.0214572
\(296\) 109674. 0.0727568
\(297\) −17585.2 −0.0115680
\(298\) −1.59188e6 −1.03841
\(299\) −148834. −0.0962771
\(300\) 102878. 0.0659960
\(301\) 3.01881e6 1.92053
\(302\) −1.25162e6 −0.789689
\(303\) 38982.0 0.0243926
\(304\) 0 0
\(305\) −123805. −0.0762062
\(306\) −550993. −0.336389
\(307\) 2.09504e6 1.26867 0.634333 0.773060i \(-0.281275\pi\)
0.634333 + 0.773060i \(0.281275\pi\)
\(308\) 53352.4 0.0320463
\(309\) 57278.0 0.0341265
\(310\) −400732. −0.236837
\(311\) 638862. 0.374547 0.187273 0.982308i \(-0.440035\pi\)
0.187273 + 0.982308i \(0.440035\pi\)
\(312\) 35999.5 0.0209368
\(313\) 1.13152e6 0.652833 0.326417 0.945226i \(-0.394159\pi\)
0.326417 + 0.945226i \(0.394159\pi\)
\(314\) −1.80772e6 −1.03468
\(315\) −502159. −0.285144
\(316\) −534947. −0.301365
\(317\) 1.17244e6 0.655301 0.327651 0.944799i \(-0.393743\pi\)
0.327651 + 0.944799i \(0.393743\pi\)
\(318\) −219420. −0.121677
\(319\) 114718. 0.0631185
\(320\) −44214.2 −0.0241372
\(321\) 359585. 0.194777
\(322\) −441340. −0.237210
\(323\) 0 0
\(324\) 891839. 0.471980
\(325\) −791789. −0.415816
\(326\) −1.76023e6 −0.917332
\(327\) −34397.4 −0.0177892
\(328\) 78016.0 0.0400405
\(329\) −291236. −0.148339
\(330\) 1577.15 0.000797241 0
\(331\) 738377. 0.370432 0.185216 0.982698i \(-0.440702\pi\)
0.185216 + 0.982698i \(0.440702\pi\)
\(332\) 1.07001e6 0.532773
\(333\) 408590. 0.201919
\(334\) 484434. 0.237612
\(335\) −45299.7 −0.0220538
\(336\) 106750. 0.0515846
\(337\) −1.96851e6 −0.944197 −0.472099 0.881546i \(-0.656503\pi\)
−0.472099 + 0.881546i \(0.656503\pi\)
\(338\) 1.20810e6 0.575192
\(339\) −220601. −0.104258
\(340\) 99779.8 0.0468107
\(341\) 158618. 0.0738697
\(342\) 0 0
\(343\) −868834. −0.398751
\(344\) 990242. 0.451175
\(345\) −13046.5 −0.00590128
\(346\) 2.25176e6 1.01119
\(347\) 2.63680e6 1.17559 0.587793 0.809012i \(-0.299997\pi\)
0.587793 + 0.809012i \(0.299997\pi\)
\(348\) 229534. 0.101601
\(349\) −496602. −0.218245 −0.109123 0.994028i \(-0.534804\pi\)
−0.109123 + 0.994028i \(0.534804\pi\)
\(350\) −2.34791e6 −1.02450
\(351\) 270802. 0.117323
\(352\) 17500.9 0.00752840
\(353\) −2.17439e6 −0.928753 −0.464377 0.885638i \(-0.653722\pi\)
−0.464377 + 0.885638i \(0.653722\pi\)
\(354\) −25400.4 −0.0107729
\(355\) 727655. 0.306447
\(356\) 1.37729e6 0.575972
\(357\) −240907. −0.100041
\(358\) −2.24224e6 −0.924644
\(359\) −257893. −0.105610 −0.0528048 0.998605i \(-0.516816\pi\)
−0.0528048 + 0.998605i \(0.516816\pi\)
\(360\) −164720. −0.0669869
\(361\) 0 0
\(362\) −1.87046e6 −0.750199
\(363\) 343581. 0.136855
\(364\) −821594. −0.325015
\(365\) 492503. 0.193498
\(366\) 98050.9 0.0382603
\(367\) −2.62085e6 −1.01573 −0.507863 0.861438i \(-0.669564\pi\)
−0.507863 + 0.861438i \(0.669564\pi\)
\(368\) −144770. −0.0557262
\(369\) 290649. 0.111123
\(370\) −73991.9 −0.0280983
\(371\) 5.00768e6 1.88887
\(372\) 317370. 0.118907
\(373\) 3.45002e6 1.28396 0.641978 0.766723i \(-0.278114\pi\)
0.641978 + 0.766723i \(0.278114\pi\)
\(374\) −39494.8 −0.0146003
\(375\) −141502. −0.0519617
\(376\) −95532.4 −0.0348482
\(377\) −1.76659e6 −0.640152
\(378\) 803015. 0.289064
\(379\) 3.09133e6 1.10547 0.552736 0.833356i \(-0.313584\pi\)
0.552736 + 0.833356i \(0.313584\pi\)
\(380\) 0 0
\(381\) −455774. −0.160856
\(382\) −201560. −0.0706719
\(383\) −625110. −0.217751 −0.108875 0.994055i \(-0.534725\pi\)
−0.108875 + 0.994055i \(0.534725\pi\)
\(384\) 35016.6 0.0121184
\(385\) −35994.5 −0.0123761
\(386\) 3.27010e6 1.11710
\(387\) 3.68915e6 1.25213
\(388\) −2.09121e6 −0.705211
\(389\) −3.13033e6 −1.04886 −0.524428 0.851455i \(-0.675721\pi\)
−0.524428 + 0.851455i \(0.675721\pi\)
\(390\) −24287.2 −0.00808567
\(391\) 326708. 0.108073
\(392\) −1.36065e6 −0.447229
\(393\) 690110. 0.225391
\(394\) −1.82348e6 −0.591781
\(395\) 360905. 0.116386
\(396\) 65199.5 0.0208933
\(397\) 4.04982e6 1.28961 0.644807 0.764346i \(-0.276938\pi\)
0.644807 + 0.764346i \(0.276938\pi\)
\(398\) −2.18854e6 −0.692543
\(399\) 0 0
\(400\) −770171. −0.240678
\(401\) −4.13849e6 −1.28523 −0.642615 0.766189i \(-0.722151\pi\)
−0.642615 + 0.766189i \(0.722151\pi\)
\(402\) 35876.3 0.0110724
\(403\) −2.44262e6 −0.749191
\(404\) −291830. −0.0889564
\(405\) −601683. −0.182276
\(406\) −5.23852e6 −1.57722
\(407\) 29287.5 0.00876387
\(408\) −79023.2 −0.0235020
\(409\) 3.28825e6 0.971979 0.485990 0.873965i \(-0.338459\pi\)
0.485990 + 0.873965i \(0.338459\pi\)
\(410\) −52633.8 −0.0154634
\(411\) 636059. 0.185735
\(412\) −428800. −0.124455
\(413\) 579699. 0.167235
\(414\) −539341. −0.154655
\(415\) −721887. −0.205754
\(416\) −269502. −0.0763535
\(417\) 90890.4 0.0255964
\(418\) 0 0
\(419\) 3.77322e6 1.04997 0.524985 0.851111i \(-0.324071\pi\)
0.524985 + 0.851111i \(0.324071\pi\)
\(420\) −72019.5 −0.0199217
\(421\) 392214. 0.107849 0.0539247 0.998545i \(-0.482827\pi\)
0.0539247 + 0.998545i \(0.482827\pi\)
\(422\) 127595. 0.0348781
\(423\) −355906. −0.0967129
\(424\) 1.64264e6 0.443739
\(425\) 1.73807e6 0.466762
\(426\) −576286. −0.153856
\(427\) −2.23776e6 −0.593941
\(428\) −2.69195e6 −0.710327
\(429\) 9613.36 0.00252192
\(430\) −668072. −0.174242
\(431\) −5.99845e6 −1.55541 −0.777707 0.628627i \(-0.783617\pi\)
−0.777707 + 0.628627i \(0.783617\pi\)
\(432\) 263408. 0.0679077
\(433\) −2.29152e6 −0.587359 −0.293680 0.955904i \(-0.594880\pi\)
−0.293680 + 0.955904i \(0.594880\pi\)
\(434\) −7.24315e6 −1.84588
\(435\) −154856. −0.0392379
\(436\) 257509. 0.0648748
\(437\) 0 0
\(438\) −390051. −0.0971484
\(439\) −168827. −0.0418101 −0.0209050 0.999781i \(-0.506655\pi\)
−0.0209050 + 0.999781i \(0.506655\pi\)
\(440\) −11807.0 −0.00290743
\(441\) −5.06909e6 −1.24118
\(442\) 608196. 0.148077
\(443\) −3.11020e6 −0.752972 −0.376486 0.926422i \(-0.622868\pi\)
−0.376486 + 0.926422i \(0.622868\pi\)
\(444\) 58599.8 0.0141071
\(445\) −929196. −0.222437
\(446\) 4.90851e6 1.16846
\(447\) −850555. −0.201342
\(448\) −799162. −0.188122
\(449\) −5.05277e6 −1.18281 −0.591403 0.806376i \(-0.701426\pi\)
−0.591403 + 0.806376i \(0.701426\pi\)
\(450\) −2.86927e6 −0.667945
\(451\) 20833.5 0.00482305
\(452\) 1.65148e6 0.380213
\(453\) −668755. −0.153116
\(454\) 975997. 0.222233
\(455\) 554292. 0.125519
\(456\) 0 0
\(457\) 2.57909e6 0.577665 0.288832 0.957380i \(-0.406733\pi\)
0.288832 + 0.957380i \(0.406733\pi\)
\(458\) 5.16315e6 1.15014
\(459\) −594442. −0.131698
\(460\) 97669.8 0.0215212
\(461\) −7.85829e6 −1.72217 −0.861085 0.508461i \(-0.830214\pi\)
−0.861085 + 0.508461i \(0.830214\pi\)
\(462\) 28506.7 0.00621359
\(463\) 4.86915e6 1.05560 0.527802 0.849367i \(-0.323016\pi\)
0.527802 + 0.849367i \(0.323016\pi\)
\(464\) −1.71836e6 −0.370526
\(465\) −214115. −0.0459214
\(466\) −4.92984e6 −1.05164
\(467\) 1.77798e6 0.377254 0.188627 0.982049i \(-0.439596\pi\)
0.188627 + 0.982049i \(0.439596\pi\)
\(468\) −1.00403e6 −0.211901
\(469\) −818782. −0.171884
\(470\) 64451.4 0.0134582
\(471\) −965881. −0.200619
\(472\) 190155. 0.0392873
\(473\) 264436. 0.0543460
\(474\) −285828. −0.0584330
\(475\) 0 0
\(476\) 1.80350e6 0.364837
\(477\) 6.11966e6 1.23149
\(478\) 1.19884e6 0.239989
\(479\) −9.95603e6 −1.98266 −0.991328 0.131408i \(-0.958050\pi\)
−0.991328 + 0.131408i \(0.958050\pi\)
\(480\) −23624.1 −0.00468007
\(481\) −451009. −0.0888838
\(482\) −1.33649e6 −0.262027
\(483\) −235813. −0.0459938
\(484\) −2.57214e6 −0.499093
\(485\) 1.41085e6 0.272349
\(486\) 1.47665e6 0.283586
\(487\) 758898. 0.144998 0.0724988 0.997368i \(-0.476903\pi\)
0.0724988 + 0.997368i \(0.476903\pi\)
\(488\) −734037. −0.139530
\(489\) −940512. −0.177866
\(490\) 917966. 0.172718
\(491\) 1.85836e6 0.347877 0.173938 0.984757i \(-0.444351\pi\)
0.173938 + 0.984757i \(0.444351\pi\)
\(492\) 41684.7 0.00776362
\(493\) 3.87788e6 0.718584
\(494\) 0 0
\(495\) −43987.1 −0.00806887
\(496\) −2.37593e6 −0.433639
\(497\) 1.31522e7 2.38841
\(498\) 571717. 0.103302
\(499\) −7.70818e6 −1.38580 −0.692900 0.721034i \(-0.743667\pi\)
−0.692900 + 0.721034i \(0.743667\pi\)
\(500\) 1.05932e6 0.189497
\(501\) 258838. 0.0460717
\(502\) −7.14888e6 −1.26613
\(503\) −6.63172e6 −1.16871 −0.584354 0.811499i \(-0.698652\pi\)
−0.584354 + 0.811499i \(0.698652\pi\)
\(504\) −2.97728e6 −0.522088
\(505\) 196885. 0.0343545
\(506\) −38659.6 −0.00671246
\(507\) 645503. 0.111527
\(508\) 3.41205e6 0.586620
\(509\) −1.10429e7 −1.88924 −0.944620 0.328166i \(-0.893569\pi\)
−0.944620 + 0.328166i \(0.893569\pi\)
\(510\) 53313.3 0.00907634
\(511\) 8.90190e6 1.50810
\(512\) −262144. −0.0441942
\(513\) 0 0
\(514\) 5.22578e6 0.872456
\(515\) 289292. 0.0480638
\(516\) 529097. 0.0874804
\(517\) −25511.1 −0.00419762
\(518\) −1.33739e6 −0.218994
\(519\) 1.20314e6 0.196064
\(520\) 181821. 0.0294873
\(521\) −5.31342e6 −0.857590 −0.428795 0.903402i \(-0.641062\pi\)
−0.428795 + 0.903402i \(0.641062\pi\)
\(522\) −6.40175e6 −1.02831
\(523\) −186790. −0.0298607 −0.0149303 0.999889i \(-0.504753\pi\)
−0.0149303 + 0.999889i \(0.504753\pi\)
\(524\) −5.16636e6 −0.821971
\(525\) −1.25451e6 −0.198645
\(526\) −8.87173e6 −1.39812
\(527\) 5.36184e6 0.840983
\(528\) 9350.88 0.00145971
\(529\) −6.11654e6 −0.950314
\(530\) −1.10821e6 −0.171370
\(531\) 708423. 0.109033
\(532\) 0 0
\(533\) −320823. −0.0489157
\(534\) 735901. 0.111678
\(535\) 1.81614e6 0.274325
\(536\) −268580. −0.0403796
\(537\) −1.19805e6 −0.179283
\(538\) 1.73385e6 0.258259
\(539\) −363349. −0.0538707
\(540\) −177709. −0.0262256
\(541\) −486912. −0.0715249 −0.0357624 0.999360i \(-0.511386\pi\)
−0.0357624 + 0.999360i \(0.511386\pi\)
\(542\) 5.78735e6 0.846217
\(543\) −999405. −0.145459
\(544\) 591590. 0.0857085
\(545\) −173730. −0.0250543
\(546\) −438986. −0.0630187
\(547\) 5.31296e6 0.759221 0.379610 0.925146i \(-0.376058\pi\)
0.379610 + 0.925146i \(0.376058\pi\)
\(548\) −4.76172e6 −0.677349
\(549\) −2.73466e6 −0.387233
\(550\) −205668. −0.0289908
\(551\) 0 0
\(552\) −77352.1 −0.0108050
\(553\) 6.52328e6 0.907095
\(554\) −6.58379e6 −0.911384
\(555\) −39534.6 −0.00544810
\(556\) −680432. −0.0933464
\(557\) −3.60173e6 −0.491897 −0.245948 0.969283i \(-0.579099\pi\)
−0.245948 + 0.969283i \(0.579099\pi\)
\(558\) −8.85152e6 −1.20346
\(559\) −4.07215e6 −0.551181
\(560\) 539158. 0.0726518
\(561\) −21102.5 −0.00283091
\(562\) 3.70218e6 0.494444
\(563\) 1.99766e6 0.265614 0.132807 0.991142i \(-0.457601\pi\)
0.132807 + 0.991142i \(0.457601\pi\)
\(564\) −51043.9 −0.00675688
\(565\) −1.11418e6 −0.146836
\(566\) 8.48033e6 1.11268
\(567\) −1.08753e7 −1.42064
\(568\) 4.31424e6 0.561091
\(569\) 5.80414e6 0.751549 0.375775 0.926711i \(-0.377377\pi\)
0.375775 + 0.926711i \(0.377377\pi\)
\(570\) 0 0
\(571\) 2.27354e6 0.291818 0.145909 0.989298i \(-0.453389\pi\)
0.145909 + 0.989298i \(0.453389\pi\)
\(572\) −71968.4 −0.00919712
\(573\) −107696. −0.0137029
\(574\) −951346. −0.120520
\(575\) 1.70132e6 0.214593
\(576\) −976618. −0.122650
\(577\) 1.48551e7 1.85753 0.928766 0.370667i \(-0.120871\pi\)
0.928766 + 0.370667i \(0.120871\pi\)
\(578\) 4.34436e6 0.540887
\(579\) 1.74725e6 0.216600
\(580\) 1.15930e6 0.143095
\(581\) −1.30480e7 −1.60362
\(582\) −1.11736e6 −0.136736
\(583\) 438653. 0.0534503
\(584\) 2.92003e6 0.354287
\(585\) 677375. 0.0818350
\(586\) −3.77262e6 −0.453836
\(587\) 9.06829e6 1.08625 0.543125 0.839652i \(-0.317241\pi\)
0.543125 + 0.839652i \(0.317241\pi\)
\(588\) −727007. −0.0867152
\(589\) 0 0
\(590\) −128289. −0.0151726
\(591\) −974306. −0.114743
\(592\) −438695. −0.0514468
\(593\) 1.15630e6 0.135031 0.0675157 0.997718i \(-0.478493\pi\)
0.0675157 + 0.997718i \(0.478493\pi\)
\(594\) 70340.9 0.00817978
\(595\) −1.21674e6 −0.140898
\(596\) 6.36750e6 0.734266
\(597\) −1.16936e6 −0.134280
\(598\) 595335. 0.0680782
\(599\) 7.49253e6 0.853221 0.426610 0.904436i \(-0.359708\pi\)
0.426610 + 0.904436i \(0.359708\pi\)
\(600\) −411510. −0.0466662
\(601\) −2.46573e6 −0.278458 −0.139229 0.990260i \(-0.544462\pi\)
−0.139229 + 0.990260i \(0.544462\pi\)
\(602\) −1.20753e7 −1.35802
\(603\) −1.00060e6 −0.112064
\(604\) 5.00649e6 0.558394
\(605\) 1.73531e6 0.192747
\(606\) −155928. −0.0172481
\(607\) −1.30412e7 −1.43663 −0.718316 0.695717i \(-0.755087\pi\)
−0.718316 + 0.695717i \(0.755087\pi\)
\(608\) 0 0
\(609\) −2.79900e6 −0.305815
\(610\) 495222. 0.0538859
\(611\) 392856. 0.0425726
\(612\) 2.20397e6 0.237863
\(613\) −3.93935e6 −0.423422 −0.211711 0.977332i \(-0.567904\pi\)
−0.211711 + 0.977332i \(0.567904\pi\)
\(614\) −8.38017e6 −0.897082
\(615\) −28122.8 −0.00299827
\(616\) −213410. −0.0226601
\(617\) −7.55827e6 −0.799299 −0.399649 0.916668i \(-0.630868\pi\)
−0.399649 + 0.916668i \(0.630868\pi\)
\(618\) −229112. −0.0241311
\(619\) −7.12628e6 −0.747543 −0.373772 0.927521i \(-0.621936\pi\)
−0.373772 + 0.927521i \(0.621936\pi\)
\(620\) 1.60293e6 0.167469
\(621\) −581872. −0.0605478
\(622\) −2.55545e6 −0.264845
\(623\) −1.67950e7 −1.73365
\(624\) −143998. −0.0148045
\(625\) 8.68682e6 0.889530
\(626\) −4.52609e6 −0.461623
\(627\) 0 0
\(628\) 7.23086e6 0.731629
\(629\) 990019. 0.0997739
\(630\) 2.00864e6 0.201628
\(631\) −8.65646e6 −0.865499 −0.432750 0.901514i \(-0.642457\pi\)
−0.432750 + 0.901514i \(0.642457\pi\)
\(632\) 2.13979e6 0.213097
\(633\) 68175.4 0.00676267
\(634\) −4.68975e6 −0.463368
\(635\) −2.30196e6 −0.226549
\(636\) 877679. 0.0860385
\(637\) 5.59536e6 0.546360
\(638\) −458874. −0.0446315
\(639\) 1.60727e7 1.55717
\(640\) 176857. 0.0170676
\(641\) −1.37461e7 −1.32141 −0.660703 0.750648i \(-0.729742\pi\)
−0.660703 + 0.750648i \(0.729742\pi\)
\(642\) −1.43834e6 −0.137728
\(643\) 5.32095e6 0.507530 0.253765 0.967266i \(-0.418331\pi\)
0.253765 + 0.967266i \(0.418331\pi\)
\(644\) 1.76536e6 0.167733
\(645\) −356958. −0.0337845
\(646\) 0 0
\(647\) −1.91181e7 −1.79549 −0.897747 0.440512i \(-0.854797\pi\)
−0.897747 + 0.440512i \(0.854797\pi\)
\(648\) −3.56736e6 −0.333741
\(649\) 50779.3 0.00473233
\(650\) 3.16716e6 0.294026
\(651\) −3.87009e6 −0.357906
\(652\) 7.04094e6 0.648652
\(653\) −1.02824e7 −0.943648 −0.471824 0.881693i \(-0.656404\pi\)
−0.471824 + 0.881693i \(0.656404\pi\)
\(654\) 137590. 0.0125789
\(655\) 3.48551e6 0.317441
\(656\) −312064. −0.0283129
\(657\) 1.08786e7 0.983239
\(658\) 1.16495e6 0.104892
\(659\) −1.01629e7 −0.911598 −0.455799 0.890083i \(-0.650646\pi\)
−0.455799 + 0.890083i \(0.650646\pi\)
\(660\) −6308.62 −0.000563734 0
\(661\) 1.78429e7 1.58841 0.794203 0.607653i \(-0.207889\pi\)
0.794203 + 0.607653i \(0.207889\pi\)
\(662\) −2.95351e6 −0.261935
\(663\) 324965. 0.0287113
\(664\) −4.28004e6 −0.376728
\(665\) 0 0
\(666\) −1.63436e6 −0.142778
\(667\) 3.79588e6 0.330368
\(668\) −1.93774e6 −0.168017
\(669\) 2.62267e6 0.226557
\(670\) 181199. 0.0155944
\(671\) −196019. −0.0168070
\(672\) −427000. −0.0364758
\(673\) −9.67106e6 −0.823069 −0.411535 0.911394i \(-0.635007\pi\)
−0.411535 + 0.911394i \(0.635007\pi\)
\(674\) 7.87404e6 0.667648
\(675\) −3.09553e6 −0.261503
\(676\) −4.83242e6 −0.406722
\(677\) 1.11065e7 0.931331 0.465665 0.884961i \(-0.345815\pi\)
0.465665 + 0.884961i \(0.345815\pi\)
\(678\) 882403. 0.0737213
\(679\) 2.55008e7 2.12265
\(680\) −399119. −0.0331002
\(681\) 521485. 0.0430898
\(682\) −634471. −0.0522337
\(683\) −323437. −0.0265301 −0.0132650 0.999912i \(-0.504223\pi\)
−0.0132650 + 0.999912i \(0.504223\pi\)
\(684\) 0 0
\(685\) 3.21252e6 0.261589
\(686\) 3.47534e6 0.281959
\(687\) 2.75872e6 0.223006
\(688\) −3.96097e6 −0.319029
\(689\) −6.75499e6 −0.542096
\(690\) 52186.0 0.00417283
\(691\) 7.15505e6 0.570056 0.285028 0.958519i \(-0.407997\pi\)
0.285028 + 0.958519i \(0.407997\pi\)
\(692\) −9.00704e6 −0.715017
\(693\) −795058. −0.0628877
\(694\) −1.05472e7 −0.831264
\(695\) 459057. 0.0360499
\(696\) −918137. −0.0718430
\(697\) 704246. 0.0549089
\(698\) 1.98641e6 0.154323
\(699\) −2.63407e6 −0.203908
\(700\) 9.39165e6 0.724431
\(701\) −1.67109e7 −1.28441 −0.642206 0.766532i \(-0.721981\pi\)
−0.642206 + 0.766532i \(0.721981\pi\)
\(702\) −1.08321e6 −0.0829599
\(703\) 0 0
\(704\) −70003.4 −0.00532338
\(705\) 34437.0 0.00260947
\(706\) 8.69755e6 0.656728
\(707\) 3.55865e6 0.267755
\(708\) 101602. 0.00761760
\(709\) −4.46568e6 −0.333635 −0.166818 0.985988i \(-0.553349\pi\)
−0.166818 + 0.985988i \(0.553349\pi\)
\(710\) −2.91062e6 −0.216691
\(711\) 7.97179e6 0.591401
\(712\) −5.50917e6 −0.407273
\(713\) 5.24846e6 0.386641
\(714\) 963628. 0.0707398
\(715\) 48553.8 0.00355188
\(716\) 8.96896e6 0.653822
\(717\) 640551. 0.0465325
\(718\) 1.03157e6 0.0746772
\(719\) 8.11538e6 0.585446 0.292723 0.956197i \(-0.405439\pi\)
0.292723 + 0.956197i \(0.405439\pi\)
\(720\) 658880. 0.0473669
\(721\) 5.22889e6 0.374603
\(722\) 0 0
\(723\) −714098. −0.0508056
\(724\) 7.48183e6 0.530471
\(725\) 2.01939e7 1.42684
\(726\) −1.37432e6 −0.0967714
\(727\) 8.96301e6 0.628952 0.314476 0.949265i \(-0.398171\pi\)
0.314476 + 0.949265i \(0.398171\pi\)
\(728\) 3.28638e6 0.229821
\(729\) −1.27558e7 −0.888975
\(730\) −1.97001e6 −0.136824
\(731\) 8.93887e6 0.618713
\(732\) −392204. −0.0270542
\(733\) −9.84603e6 −0.676864 −0.338432 0.940991i \(-0.609896\pi\)
−0.338432 + 0.940991i \(0.609896\pi\)
\(734\) 1.04834e7 0.718227
\(735\) 490479. 0.0334890
\(736\) 579080. 0.0394043
\(737\) −71722.1 −0.00486389
\(738\) −1.16260e6 −0.0785756
\(739\) −1.22360e7 −0.824189 −0.412094 0.911141i \(-0.635203\pi\)
−0.412094 + 0.911141i \(0.635203\pi\)
\(740\) 295968. 0.0198685
\(741\) 0 0
\(742\) −2.00307e7 −1.33563
\(743\) −2.14702e6 −0.142680 −0.0713402 0.997452i \(-0.522728\pi\)
−0.0713402 + 0.997452i \(0.522728\pi\)
\(744\) −1.26948e6 −0.0840802
\(745\) −4.29586e6 −0.283570
\(746\) −1.38001e7 −0.907894
\(747\) −1.59453e7 −1.04552
\(748\) 157979. 0.0103240
\(749\) 3.28263e7 2.13805
\(750\) 566007. 0.0367425
\(751\) −1.97210e7 −1.27594 −0.637968 0.770063i \(-0.720225\pi\)
−0.637968 + 0.770063i \(0.720225\pi\)
\(752\) 382130. 0.0246414
\(753\) −3.81972e6 −0.245496
\(754\) 7.06637e6 0.452656
\(755\) −3.37765e6 −0.215649
\(756\) −3.21206e6 −0.204399
\(757\) 2.62195e7 1.66297 0.831484 0.555549i \(-0.187492\pi\)
0.831484 + 0.555549i \(0.187492\pi\)
\(758\) −1.23653e7 −0.781687
\(759\) −20656.2 −0.00130151
\(760\) 0 0
\(761\) 2.89872e7 1.81445 0.907225 0.420645i \(-0.138196\pi\)
0.907225 + 0.420645i \(0.138196\pi\)
\(762\) 1.82310e6 0.113742
\(763\) −3.14013e6 −0.195270
\(764\) 806242. 0.0499726
\(765\) −1.48692e6 −0.0918616
\(766\) 2.50044e6 0.153973
\(767\) −781970. −0.0479956
\(768\) −140066. −0.00856900
\(769\) −1.35288e7 −0.824982 −0.412491 0.910962i \(-0.635341\pi\)
−0.412491 + 0.910962i \(0.635341\pi\)
\(770\) 143978. 0.00875122
\(771\) 2.79219e6 0.169164
\(772\) −1.30804e7 −0.789910
\(773\) −1.28806e7 −0.775331 −0.387665 0.921800i \(-0.626718\pi\)
−0.387665 + 0.921800i \(0.626718\pi\)
\(774\) −1.47566e7 −0.885389
\(775\) 2.79216e7 1.66988
\(776\) 8.36485e6 0.498659
\(777\) −714580. −0.0424618
\(778\) 1.25213e7 0.741653
\(779\) 0 0
\(780\) 97148.8 0.00571743
\(781\) 1.15208e6 0.0675859
\(782\) −1.30683e6 −0.0764192
\(783\) −6.90657e6 −0.402585
\(784\) 5.44258e6 0.316239
\(785\) −4.87834e6 −0.282551
\(786\) −2.76044e6 −0.159376
\(787\) −332357. −0.0191279 −0.00956395 0.999954i \(-0.503044\pi\)
−0.00956395 + 0.999954i \(0.503044\pi\)
\(788\) 7.29393e6 0.418453
\(789\) −4.74026e6 −0.271087
\(790\) −1.44362e6 −0.0822971
\(791\) −2.01386e7 −1.14442
\(792\) −260798. −0.0147738
\(793\) 3.01857e6 0.170458
\(794\) −1.61993e7 −0.911894
\(795\) −592130. −0.0332276
\(796\) 8.75415e6 0.489702
\(797\) −3.13377e7 −1.74752 −0.873760 0.486358i \(-0.838325\pi\)
−0.873760 + 0.486358i \(0.838325\pi\)
\(798\) 0 0
\(799\) −862366. −0.0477886
\(800\) 3.08068e6 0.170185
\(801\) −2.05244e7 −1.13029
\(802\) 1.65540e7 0.908795
\(803\) 779771. 0.0426754
\(804\) −143505. −0.00782937
\(805\) −1.19101e6 −0.0647777
\(806\) 9.77047e6 0.529758
\(807\) 926412. 0.0500749
\(808\) 1.16732e6 0.0629016
\(809\) −6.58593e6 −0.353790 −0.176895 0.984230i \(-0.556605\pi\)
−0.176895 + 0.984230i \(0.556605\pi\)
\(810\) 2.40673e6 0.128889
\(811\) 2.66167e7 1.42103 0.710514 0.703683i \(-0.248463\pi\)
0.710514 + 0.703683i \(0.248463\pi\)
\(812\) 2.09541e7 1.11527
\(813\) 3.09224e6 0.164077
\(814\) −117150. −0.00619699
\(815\) −4.75020e6 −0.250506
\(816\) 316093. 0.0166184
\(817\) 0 0
\(818\) −1.31530e7 −0.687293
\(819\) 1.22434e7 0.637812
\(820\) 210535. 0.0109343
\(821\) 3.28657e7 1.70171 0.850854 0.525403i \(-0.176085\pi\)
0.850854 + 0.525403i \(0.176085\pi\)
\(822\) −2.54424e6 −0.131334
\(823\) 8.94904e6 0.460550 0.230275 0.973126i \(-0.426037\pi\)
0.230275 + 0.973126i \(0.426037\pi\)
\(824\) 1.71520e6 0.0880028
\(825\) −109890. −0.00562115
\(826\) −2.31880e6 −0.118253
\(827\) 1.31486e7 0.668523 0.334262 0.942480i \(-0.391513\pi\)
0.334262 + 0.942480i \(0.391513\pi\)
\(828\) 2.15736e6 0.109357
\(829\) 1.07264e6 0.0542088 0.0271044 0.999633i \(-0.491371\pi\)
0.0271044 + 0.999633i \(0.491371\pi\)
\(830\) 2.88755e6 0.145490
\(831\) −3.51779e6 −0.176712
\(832\) 1.07801e6 0.0539901
\(833\) −1.22825e7 −0.613301
\(834\) −363562. −0.0180994
\(835\) 1.30730e6 0.0648873
\(836\) 0 0
\(837\) −9.54952e6 −0.471159
\(838\) −1.50929e7 −0.742441
\(839\) −3.48927e7 −1.71131 −0.855656 0.517544i \(-0.826846\pi\)
−0.855656 + 0.517544i \(0.826846\pi\)
\(840\) 288078. 0.0140868
\(841\) 2.45443e7 1.19663
\(842\) −1.56886e6 −0.0762610
\(843\) 1.97811e6 0.0958699
\(844\) −510380. −0.0246625
\(845\) 3.26021e6 0.157074
\(846\) 1.42362e6 0.0683864
\(847\) 3.13653e7 1.50225
\(848\) −6.57055e6 −0.313771
\(849\) 4.53113e6 0.215743
\(850\) −6.95229e6 −0.330051
\(851\) 969084. 0.0458709
\(852\) 2.30514e6 0.108792
\(853\) 1.81891e7 0.855931 0.427966 0.903795i \(-0.359230\pi\)
0.427966 + 0.903795i \(0.359230\pi\)
\(854\) 8.95103e6 0.419980
\(855\) 0 0
\(856\) 1.07678e7 0.502277
\(857\) −3.36435e7 −1.56477 −0.782383 0.622797i \(-0.785996\pi\)
−0.782383 + 0.622797i \(0.785996\pi\)
\(858\) −38453.4 −0.00178327
\(859\) 3.14828e7 1.45576 0.727882 0.685702i \(-0.240505\pi\)
0.727882 + 0.685702i \(0.240505\pi\)
\(860\) 2.67229e6 0.123207
\(861\) −508314. −0.0233681
\(862\) 2.39938e7 1.09984
\(863\) 4.88137e6 0.223108 0.111554 0.993758i \(-0.464417\pi\)
0.111554 + 0.993758i \(0.464417\pi\)
\(864\) −1.05363e6 −0.0480180
\(865\) 6.07664e6 0.276136
\(866\) 9.16607e6 0.415326
\(867\) 2.32124e6 0.104875
\(868\) 2.89726e7 1.30523
\(869\) 571413. 0.0256685
\(870\) 619425. 0.0277454
\(871\) 1.10448e6 0.0493300
\(872\) −1.03004e6 −0.0458734
\(873\) 3.11633e7 1.38391
\(874\) 0 0
\(875\) −1.29176e7 −0.570379
\(876\) 1.56020e6 0.0686943
\(877\) 5.94390e6 0.260959 0.130480 0.991451i \(-0.458348\pi\)
0.130480 + 0.991451i \(0.458348\pi\)
\(878\) 675308. 0.0295642
\(879\) −2.01575e6 −0.0879963
\(880\) 47228.1 0.00205586
\(881\) −1.95504e7 −0.848627 −0.424313 0.905515i \(-0.639484\pi\)
−0.424313 + 0.905515i \(0.639484\pi\)
\(882\) 2.02764e7 0.877644
\(883\) 2.19741e7 0.948439 0.474219 0.880407i \(-0.342730\pi\)
0.474219 + 0.880407i \(0.342730\pi\)
\(884\) −2.43278e6 −0.104706
\(885\) −68546.1 −0.00294188
\(886\) 1.24408e7 0.532432
\(887\) −2.36382e6 −0.100880 −0.0504401 0.998727i \(-0.516062\pi\)
−0.0504401 + 0.998727i \(0.516062\pi\)
\(888\) −234399. −0.00997525
\(889\) −4.16074e7 −1.76570
\(890\) 3.71679e6 0.157287
\(891\) −952633. −0.0402005
\(892\) −1.96341e7 −0.826224
\(893\) 0 0
\(894\) 3.40222e6 0.142370
\(895\) −6.05095e6 −0.252503
\(896\) 3.19665e6 0.133022
\(897\) 318093. 0.0132000
\(898\) 2.02111e7 0.836370
\(899\) 6.22969e7 2.57080
\(900\) 1.14771e7 0.472308
\(901\) 1.48280e7 0.608515
\(902\) −83334.1 −0.00341041
\(903\) −6.45193e6 −0.263312
\(904\) −6.60592e6 −0.268851
\(905\) −5.04765e6 −0.204865
\(906\) 2.67502e6 0.108270
\(907\) −2.62203e7 −1.05833 −0.529163 0.848520i \(-0.677494\pi\)
−0.529163 + 0.848520i \(0.677494\pi\)
\(908\) −3.90399e6 −0.157143
\(909\) 4.34886e6 0.174568
\(910\) −2.21717e6 −0.0887555
\(911\) 1.31649e7 0.525558 0.262779 0.964856i \(-0.415361\pi\)
0.262779 + 0.964856i \(0.415361\pi\)
\(912\) 0 0
\(913\) −1.14295e6 −0.0453785
\(914\) −1.03164e7 −0.408471
\(915\) 264602. 0.0104482
\(916\) −2.06526e7 −0.813272
\(917\) 6.29999e7 2.47409
\(918\) 2.37777e6 0.0931243
\(919\) 778178. 0.0303942 0.0151971 0.999885i \(-0.495162\pi\)
0.0151971 + 0.999885i \(0.495162\pi\)
\(920\) −390679. −0.0152178
\(921\) −4.47761e6 −0.173939
\(922\) 3.14332e7 1.21776
\(923\) −1.77414e7 −0.685461
\(924\) −114027. −0.00439367
\(925\) 5.15549e6 0.198114
\(926\) −1.94766e7 −0.746425
\(927\) 6.38998e6 0.244231
\(928\) 6.87343e6 0.262002
\(929\) −3.15227e7 −1.19835 −0.599176 0.800618i \(-0.704505\pi\)
−0.599176 + 0.800618i \(0.704505\pi\)
\(930\) 856462. 0.0324714
\(931\) 0 0
\(932\) 1.97194e7 0.743624
\(933\) −1.36540e6 −0.0513519
\(934\) −7.11190e6 −0.266759
\(935\) −106581. −0.00398706
\(936\) 4.01613e6 0.149837
\(937\) 2.86621e7 1.06650 0.533248 0.845959i \(-0.320971\pi\)
0.533248 + 0.845959i \(0.320971\pi\)
\(938\) 3.27513e6 0.121541
\(939\) −2.41834e6 −0.0895061
\(940\) −257805. −0.00951640
\(941\) −4.04755e7 −1.49011 −0.745054 0.667004i \(-0.767577\pi\)
−0.745054 + 0.667004i \(0.767577\pi\)
\(942\) 3.86352e6 0.141859
\(943\) 689354. 0.0252443
\(944\) −760620. −0.0277803
\(945\) 2.16703e6 0.0789379
\(946\) −1.05774e6 −0.0384285
\(947\) −1.22165e7 −0.442663 −0.221331 0.975199i \(-0.571040\pi\)
−0.221331 + 0.975199i \(0.571040\pi\)
\(948\) 1.14331e6 0.0413184
\(949\) −1.20080e7 −0.432817
\(950\) 0 0
\(951\) −2.50578e6 −0.0898445
\(952\) −7.21399e6 −0.257978
\(953\) −3.60105e7 −1.28439 −0.642195 0.766541i \(-0.721976\pi\)
−0.642195 + 0.766541i \(0.721976\pi\)
\(954\) −2.44786e7 −0.870795
\(955\) −543935. −0.0192992
\(956\) −4.79535e6 −0.169698
\(957\) −245181. −0.00865380
\(958\) 3.98241e7 1.40195
\(959\) 5.80656e7 2.03879
\(960\) 94496.3 0.00330931
\(961\) 5.75070e7 2.00869
\(962\) 1.80404e6 0.0628503
\(963\) 4.01155e7 1.39395
\(964\) 5.34594e6 0.185281
\(965\) 8.82475e6 0.305059
\(966\) 943250. 0.0325225
\(967\) 5.59094e6 0.192273 0.0961366 0.995368i \(-0.469351\pi\)
0.0961366 + 0.995368i \(0.469351\pi\)
\(968\) 1.02886e7 0.352912
\(969\) 0 0
\(970\) −5.64339e6 −0.192580
\(971\) 1.20028e7 0.408539 0.204270 0.978915i \(-0.434518\pi\)
0.204270 + 0.978915i \(0.434518\pi\)
\(972\) −5.90658e6 −0.200526
\(973\) 8.29735e6 0.280968
\(974\) −3.03559e6 −0.102529
\(975\) 1.69224e6 0.0570101
\(976\) 2.93615e6 0.0986628
\(977\) −3.21099e7 −1.07622 −0.538111 0.842874i \(-0.680862\pi\)
−0.538111 + 0.842874i \(0.680862\pi\)
\(978\) 3.76205e6 0.125770
\(979\) −1.47118e6 −0.0490578
\(980\) −3.67186e6 −0.122130
\(981\) −3.83740e6 −0.127311
\(982\) −7.43342e6 −0.245986
\(983\) −5.11520e6 −0.168842 −0.0844208 0.996430i \(-0.526904\pi\)
−0.0844208 + 0.996430i \(0.526904\pi\)
\(984\) −166739. −0.00548971
\(985\) −4.92089e6 −0.161604
\(986\) −1.55115e7 −0.508116
\(987\) 622442. 0.0203379
\(988\) 0 0
\(989\) 8.74984e6 0.284452
\(990\) 175949. 0.00570555
\(991\) −4.69664e6 −0.151916 −0.0759580 0.997111i \(-0.524201\pi\)
−0.0759580 + 0.997111i \(0.524201\pi\)
\(992\) 9.50370e6 0.306629
\(993\) −1.57809e6 −0.0507877
\(994\) −5.26089e7 −1.68886
\(995\) −5.90603e6 −0.189120
\(996\) −2.28687e6 −0.0730454
\(997\) −6.09683e6 −0.194252 −0.0971262 0.995272i \(-0.530965\pi\)
−0.0971262 + 0.995272i \(0.530965\pi\)
\(998\) 3.08327e7 0.979908
\(999\) −1.76324e6 −0.0558982
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.6.a.q.1.7 15
19.14 odd 18 38.6.e.b.25.3 30
19.15 odd 18 38.6.e.b.35.3 yes 30
19.18 odd 2 722.6.a.r.1.9 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.6.e.b.25.3 30 19.14 odd 18
38.6.e.b.35.3 yes 30 19.15 odd 18
722.6.a.q.1.7 15 1.1 even 1 trivial
722.6.a.r.1.9 15 19.18 odd 2