Properties

Label 722.6.a.r.1.10
Level 722722
Weight 66
Character 722.1
Self dual yes
Analytic conductor 115.797115.797
Analytic rank 00
Dimension 1515
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [722,6,Mod(1,722)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(722, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("722.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: N N == 722=2192 722 = 2 \cdot 19^{2}
Weight: k k == 6 6
Character orbit: [χ][\chi] == 722.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 115.797117905115.797117905
Analytic rank: 00
Dimension: 1515
Coefficient field: Q[x]/(x15)\mathbb{Q}[x]/(x^{15} - \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x152871x134674x12+3170019x11+9081402x101680307373x9+34 ⁣ ⁣72 x^{15} - 2871 x^{13} - 4674 x^{12} + 3170019 x^{11} + 9081402 x^{10} - 1680307373 x^{9} + \cdots - 34\!\cdots\!72 Copy content Toggle raw display
Coefficient ring: Z[a1,,a7]\Z[a_1, \ldots, a_{7}]
Coefficient ring index: 263196 2^{6}\cdot 3\cdot 19^{6}
Twist minimal: no (minimal twist has level 38)
Fricke sign: 1-1
Sato-Tate group: SU(2)\mathrm{SU}(2)

Embedding invariants

Embedding label 1.10
Root 10.7498-10.7498 of defining polynomial
Character χ\chi == 722.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+4.00000q2+10.4025q3+16.0000q4+95.5276q5+41.6100q6+232.219q7+64.0000q8134.788q9+382.111q10+345.880q11+166.440q12+506.327q13+928.874q14+993.725q15+256.000q16797.089q17539.153q18+1528.44q20+2415.65q21+1383.52q221190.67q23+665.760q24+6000.53q25+2025.31q263929.94q27+3715.50q28425.364q29+3974.90q30+6647.85q31+1024.00q32+3598.01q333188.36q34+22183.3q352156.61q367850.99q37+5267.06q39+6113.77q4016080.1q41+9662.61q42+12922.4q43+5534.07q4412876.0q454762.67q4621190.2q47+2663.04q48+37118.5q49+24002.1q508291.71q51+8101.23q5229091.8q5315719.8q54+33041.1q55+14862.0q561701.45q58+9346.25q59+15899.6q608320.98q61+26591.4q6231300.3q63+4096.00q64+48368.2q65+14392.0q6614347.1q6712753.4q6812385.9q69+88733.1q7031200.2q718626.44q72+1992.28q7331404.0q74+62420.4q75+80319.7q77+21068.2q789623.27q79+24455.1q808127.64q8164320.3q8234179.5q83+38650.4q8476144.0q85+51689.4q864424.84q87+22136.3q88111322.q8951504.0q90+117578.q9119050.7q92+69154.2q9384760.6q94+10652.2q96+96994.8q97+148474.q9846620.5q99+O(q100)q+4.00000 q^{2} +10.4025 q^{3} +16.0000 q^{4} +95.5276 q^{5} +41.6100 q^{6} +232.219 q^{7} +64.0000 q^{8} -134.788 q^{9} +382.111 q^{10} +345.880 q^{11} +166.440 q^{12} +506.327 q^{13} +928.874 q^{14} +993.725 q^{15} +256.000 q^{16} -797.089 q^{17} -539.153 q^{18} +1528.44 q^{20} +2415.65 q^{21} +1383.52 q^{22} -1190.67 q^{23} +665.760 q^{24} +6000.53 q^{25} +2025.31 q^{26} -3929.94 q^{27} +3715.50 q^{28} -425.364 q^{29} +3974.90 q^{30} +6647.85 q^{31} +1024.00 q^{32} +3598.01 q^{33} -3188.36 q^{34} +22183.3 q^{35} -2156.61 q^{36} -7850.99 q^{37} +5267.06 q^{39} +6113.77 q^{40} -16080.1 q^{41} +9662.61 q^{42} +12922.4 q^{43} +5534.07 q^{44} -12876.0 q^{45} -4762.67 q^{46} -21190.2 q^{47} +2663.04 q^{48} +37118.5 q^{49} +24002.1 q^{50} -8291.71 q^{51} +8101.23 q^{52} -29091.8 q^{53} -15719.8 q^{54} +33041.1 q^{55} +14862.0 q^{56} -1701.45 q^{58} +9346.25 q^{59} +15899.6 q^{60} -8320.98 q^{61} +26591.4 q^{62} -31300.3 q^{63} +4096.00 q^{64} +48368.2 q^{65} +14392.0 q^{66} -14347.1 q^{67} -12753.4 q^{68} -12385.9 q^{69} +88733.1 q^{70} -31200.2 q^{71} -8626.44 q^{72} +1992.28 q^{73} -31404.0 q^{74} +62420.4 q^{75} +80319.7 q^{77} +21068.2 q^{78} -9623.27 q^{79} +24455.1 q^{80} -8127.64 q^{81} -64320.3 q^{82} -34179.5 q^{83} +38650.4 q^{84} -76144.0 q^{85} +51689.4 q^{86} -4424.84 q^{87} +22136.3 q^{88} -111322. q^{89} -51504.0 q^{90} +117578. q^{91} -19050.7 q^{92} +69154.2 q^{93} -84760.6 q^{94} +10652.2 q^{96} +96994.8 q^{97} +148474. q^{98} -46620.5 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 15q+60q2+240q4+108q5+84q7+960q8+2127q9+432q10+126q11114q13+336q14+3840q16+4119q17+8508q18+1728q20+3408q21+504q22+149895q99+O(q100) 15 q + 60 q^{2} + 240 q^{4} + 108 q^{5} + 84 q^{7} + 960 q^{8} + 2127 q^{9} + 432 q^{10} + 126 q^{11} - 114 q^{13} + 336 q^{14} + 3840 q^{16} + 4119 q^{17} + 8508 q^{18} + 1728 q^{20} + 3408 q^{21} + 504 q^{22}+ \cdots - 149895 q^{99}+O(q^{100}) Copy content Toggle raw display

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 4.00000 0.707107
33 10.4025 0.667320 0.333660 0.942693i 0.391716π-0.391716\pi
0.333660 + 0.942693i 0.391716π0.391716\pi
44 16.0000 0.500000
55 95.5276 1.70885 0.854425 0.519575i 0.173910π-0.173910\pi
0.854425 + 0.519575i 0.173910π0.173910\pi
66 41.6100 0.471867
77 232.219 1.79123 0.895616 0.444828i 0.146735π-0.146735\pi
0.895616 + 0.444828i 0.146735π0.146735\pi
88 64.0000 0.353553
99 −134.788 −0.554684
1010 382.111 1.20834
1111 345.880 0.861873 0.430936 0.902382i 0.358183π-0.358183\pi
0.430936 + 0.902382i 0.358183π0.358183\pi
1212 166.440 0.333660
1313 506.327 0.830946 0.415473 0.909606i 0.363616π-0.363616\pi
0.415473 + 0.909606i 0.363616π0.363616\pi
1414 928.874 1.26659
1515 993.725 1.14035
1616 256.000 0.250000
1717 −797.089 −0.668936 −0.334468 0.942407i 0.608557π-0.608557\pi
−0.334468 + 0.942407i 0.608557π0.608557\pi
1818 −539.153 −0.392221
1919 0 0
2020 1528.44 0.854425
2121 2415.65 1.19533
2222 1383.52 0.609436
2323 −1190.67 −0.469322 −0.234661 0.972077i 0.575398π-0.575398\pi
−0.234661 + 0.972077i 0.575398π0.575398\pi
2424 665.760 0.235933
2525 6000.53 1.92017
2626 2025.31 0.587567
2727 −3929.94 −1.03747
2828 3715.50 0.895616
2929 −425.364 −0.0939216 −0.0469608 0.998897i 0.514954π-0.514954\pi
−0.0469608 + 0.998897i 0.514954π0.514954\pi
3030 3974.90 0.806349
3131 6647.85 1.24244 0.621222 0.783635i 0.286637π-0.286637\pi
0.621222 + 0.783635i 0.286637π0.286637\pi
3232 1024.00 0.176777
3333 3598.01 0.575145
3434 −3188.36 −0.473009
3535 22183.3 3.06095
3636 −2156.61 −0.277342
3737 −7850.99 −0.942801 −0.471401 0.881919i 0.656251π-0.656251\pi
−0.471401 + 0.881919i 0.656251π0.656251\pi
3838 0 0
3939 5267.06 0.554507
4040 6113.77 0.604170
4141 −16080.1 −1.49392 −0.746962 0.664867i 0.768488π-0.768488\pi
−0.746962 + 0.664867i 0.768488π0.768488\pi
4242 9662.61 0.845223
4343 12922.4 1.06579 0.532894 0.846182i 0.321105π-0.321105\pi
0.532894 + 0.846182i 0.321105π0.321105\pi
4444 5534.07 0.430936
4545 −12876.0 −0.947871
4646 −4762.67 −0.331861
4747 −21190.2 −1.39923 −0.699616 0.714519i 0.746645π-0.746645\pi
−0.699616 + 0.714519i 0.746645π0.746645\pi
4848 2663.04 0.166830
4949 37118.5 2.20851
5050 24002.1 1.35776
5151 −8291.71 −0.446395
5252 8101.23 0.415473
5353 −29091.8 −1.42259 −0.711296 0.702893i 0.751891π-0.751891\pi
−0.711296 + 0.702893i 0.751891π0.751891\pi
5454 −15719.8 −0.733603
5555 33041.1 1.47281
5656 14862.0 0.633296
5757 0 0
5858 −1701.45 −0.0664126
5959 9346.25 0.349549 0.174774 0.984609i 0.444080π-0.444080\pi
0.174774 + 0.984609i 0.444080π0.444080\pi
6060 15899.6 0.570175
6161 −8320.98 −0.286319 −0.143159 0.989700i 0.545726π-0.545726\pi
−0.143159 + 0.989700i 0.545726π0.545726\pi
6262 26591.4 0.878541
6363 −31300.3 −0.993567
6464 4096.00 0.125000
6565 48368.2 1.41996
6666 14392.0 0.406689
6767 −14347.1 −0.390459 −0.195230 0.980758i 0.562545π-0.562545\pi
−0.195230 + 0.980758i 0.562545π0.562545\pi
6868 −12753.4 −0.334468
6969 −12385.9 −0.313188
7070 88733.1 2.16442
7171 −31200.2 −0.734532 −0.367266 0.930116i 0.619706π-0.619706\pi
−0.367266 + 0.930116i 0.619706π0.619706\pi
7272 −8626.44 −0.196110
7373 1992.28 0.0437566 0.0218783 0.999761i 0.493035π-0.493035\pi
0.0218783 + 0.999761i 0.493035π0.493035\pi
7474 −31404.0 −0.666661
7575 62420.4 1.28137
7676 0 0
7777 80319.7 1.54381
7878 21068.2 0.392096
7979 −9623.27 −0.173482 −0.0867411 0.996231i 0.527645π-0.527645\pi
−0.0867411 + 0.996231i 0.527645π0.527645\pi
8080 24455.1 0.427213
8181 −8127.64 −0.137642
8282 −64320.3 −1.05636
8383 −34179.5 −0.544590 −0.272295 0.962214i 0.587783π-0.587783\pi
−0.272295 + 0.962214i 0.587783π0.587783\pi
8484 38650.4 0.597663
8585 −76144.0 −1.14311
8686 51689.4 0.753625
8787 −4424.84 −0.0626758
8888 22136.3 0.304718
8989 −111322. −1.48973 −0.744863 0.667218i 0.767485π-0.767485\pi
−0.744863 + 0.667218i 0.767485π0.767485\pi
9090 −51504.0 −0.670246
9191 117578. 1.48842
9292 −19050.7 −0.234661
9393 69154.2 0.829108
9494 −84760.6 −0.989406
9595 0 0
9696 10652.2 0.117967
9797 96994.8 1.04669 0.523346 0.852120i 0.324684π-0.324684\pi
0.523346 + 0.852120i 0.324684π0.324684\pi
9898 148474. 1.56165
9999 −46620.5 −0.478067
100100 96008.4 0.960084
101101 −170094. −1.65915 −0.829575 0.558396i 0.811417π-0.811417\pi
−0.829575 + 0.558396i 0.811417π0.811417\pi
102102 −33166.9 −0.315649
103103 −72570.9 −0.674015 −0.337008 0.941502i 0.609415π-0.609415\pi
−0.337008 + 0.941502i 0.609415π0.609415\pi
104104 32404.9 0.293784
105105 230761. 2.04263
106106 −116367. −1.00592
107107 −68021.4 −0.574363 −0.287181 0.957876i 0.592718π-0.592718\pi
−0.287181 + 0.957876i 0.592718π0.592718\pi
108108 −62879.0 −0.518736
109109 −19382.6 −0.156259 −0.0781296 0.996943i 0.524895π-0.524895\pi
−0.0781296 + 0.996943i 0.524895π0.524895\pi
110110 132164. 1.04144
111111 −81669.9 −0.629150
112112 59448.0 0.447808
113113 −128260. −0.944917 −0.472458 0.881353i 0.656633π-0.656633\pi
−0.472458 + 0.881353i 0.656633π0.656633\pi
114114 0 0
115115 −113742. −0.802001
116116 −6805.82 −0.0469608
117117 −68246.9 −0.460912
118118 37385.0 0.247168
119119 −185099. −1.19822
120120 63598.4 0.403175
121121 −41418.3 −0.257175
122122 −33283.9 −0.202458
123123 −167273. −0.996926
124124 106366. 0.621222
125125 274692. 1.57243
126126 −125201. −0.702558
127127 94926.0 0.522247 0.261123 0.965305i 0.415907π-0.415907\pi
0.261123 + 0.965305i 0.415907π0.415907\pi
128128 16384.0 0.0883883
129129 134425. 0.711221
130130 193473. 1.00406
131131 265435. 1.35139 0.675695 0.737182i 0.263844π-0.263844\pi
0.675695 + 0.737182i 0.263844π0.263844\pi
132132 57568.2 0.287573
133133 0 0
134134 −57388.2 −0.276096
135135 −375418. −1.77288
136136 −51013.7 −0.236505
137137 −69622.2 −0.316918 −0.158459 0.987366i 0.550652π-0.550652\pi
−0.158459 + 0.987366i 0.550652π0.550652\pi
138138 −49543.6 −0.221457
139139 369479. 1.62201 0.811004 0.585041i 0.198922π-0.198922\pi
0.811004 + 0.585041i 0.198922π0.198922\pi
140140 354933. 1.53047
141141 −220430. −0.933735
142142 −124801. −0.519393
143143 175128. 0.716170
144144 −34505.8 −0.138671
145145 −40634.0 −0.160498
146146 7969.13 0.0309406
147147 386124. 1.47378
148148 −125616. −0.471401
149149 10845.5 0.0400206 0.0200103 0.999800i 0.493630π-0.493630\pi
0.0200103 + 0.999800i 0.493630π0.493630\pi
150150 249682. 0.906064
151151 33593.4 0.119898 0.0599489 0.998201i 0.480906π-0.480906\pi
0.0599489 + 0.998201i 0.480906π0.480906\pi
152152 0 0
153153 107438. 0.371048
154154 321279. 1.09164
155155 635053. 2.12315
156156 84273.0 0.277253
157157 571612. 1.85077 0.925385 0.379029i 0.123742π-0.123742\pi
0.925385 + 0.379029i 0.123742π0.123742\pi
158158 −38493.1 −0.122670
159159 −302627. −0.949324
160160 97820.3 0.302085
161161 −276495. −0.840665
162162 −32510.5 −0.0973277
163163 441057. 1.30025 0.650123 0.759829i 0.274717π-0.274717\pi
0.650123 + 0.759829i 0.274717π0.274717\pi
164164 −257281. −0.746962
165165 343709. 0.982837
166166 −136718. −0.385084
167167 −32306.8 −0.0896401 −0.0448200 0.998995i 0.514271π-0.514271\pi
−0.0448200 + 0.998995i 0.514271π0.514271\pi
168168 154602. 0.422611
169169 −114926. −0.309529
170170 −304576. −0.808302
171171 0 0
172172 206758. 0.532894
173173 −140107. −0.355915 −0.177957 0.984038i 0.556949π-0.556949\pi
−0.177957 + 0.984038i 0.556949π0.556949\pi
174174 −17699.4 −0.0443185
175175 1.39343e6 3.43947
176176 88545.2 0.215468
177177 97224.3 0.233261
178178 −445288. −1.05339
179179 205087. 0.478416 0.239208 0.970968i 0.423112π-0.423112\pi
0.239208 + 0.970968i 0.423112π0.423112\pi
180180 −206016. −0.473936
181181 −596816. −1.35408 −0.677039 0.735947i 0.736737π-0.736737\pi
−0.677039 + 0.735947i 0.736737π0.736737\pi
182182 470314. 1.05247
183183 −86558.9 −0.191066
184184 −76202.7 −0.165930
185185 −749986. −1.61111
186186 276617. 0.586268
187187 −275697. −0.576538
188188 −339042. −0.699616
189189 −912605. −1.85835
190190 0 0
191191 374224. 0.742246 0.371123 0.928584i 0.378973π-0.378973\pi
0.371123 + 0.928584i 0.378973π0.378973\pi
192192 42608.6 0.0834150
193193 185090. 0.357676 0.178838 0.983879i 0.442766π-0.442766\pi
0.178838 + 0.983879i 0.442766π0.442766\pi
194194 387979. 0.740123
195195 503150. 0.947569
196196 593895. 1.10426
197197 149519. 0.274493 0.137247 0.990537i 0.456175π-0.456175\pi
0.137247 + 0.990537i 0.456175π0.456175\pi
198198 −186482. −0.338044
199199 −305923. −0.547619 −0.273810 0.961784i 0.588284π-0.588284\pi
−0.273810 + 0.961784i 0.588284π0.588284\pi
200200 384034. 0.678882
201201 −149245. −0.260561
202202 −680376. −1.17320
203203 −98777.3 −0.168235
204204 −132667. −0.223197
205205 −1.53609e6 −2.55289
206206 −290284. −0.476601
207207 160488. 0.260325
208208 129620. 0.207736
209209 0 0
210210 923046. 1.44436
211211 809738. 1.25210 0.626049 0.779784i 0.284671π-0.284671\pi
0.626049 + 0.779784i 0.284671π0.284671\pi
212212 −465468. −0.711296
213213 −324559. −0.490168
214214 −272086. −0.406136
215215 1.23444e6 1.82127
216216 −251516. −0.366802
217217 1.54375e6 2.22551
218218 −77530.4 −0.110492
219219 20724.7 0.0291997
220220 528657. 0.736406
221221 −403588. −0.555849
222222 −326679. −0.444876
223223 634589. 0.854536 0.427268 0.904125i 0.359476π-0.359476\pi
0.427268 + 0.904125i 0.359476π0.359476\pi
224224 237792. 0.316648
225225 −808800. −1.06509
226226 −513038. −0.668157
227227 −93859.7 −0.120897 −0.0604484 0.998171i 0.519253π-0.519253\pi
−0.0604484 + 0.998171i 0.519253π0.519253\pi
228228 0 0
229229 176185. 0.222014 0.111007 0.993820i 0.464592π-0.464592\pi
0.111007 + 0.993820i 0.464592π0.464592\pi
230230 −454967. −0.567100
231231 835525. 1.03022
232232 −27223.3 −0.0332063
233233 −226160. −0.272915 −0.136457 0.990646i 0.543572π-0.543572\pi
−0.136457 + 0.990646i 0.543572π0.543572\pi
234234 −272987. −0.325914
235235 −2.02425e6 −2.39108
236236 149540. 0.174774
237237 −100106. −0.115768
238238 −740395. −0.847269
239239 −343996. −0.389546 −0.194773 0.980848i 0.562397π-0.562397\pi
−0.194773 + 0.980848i 0.562397π0.562397\pi
240240 254394. 0.285088
241241 1.58686e6 1.75993 0.879966 0.475036i 0.157565π-0.157565\pi
0.879966 + 0.475036i 0.157565π0.157565\pi
242242 −165673. −0.181850
243243 870427. 0.945620
244244 −133136. −0.143159
245245 3.54584e6 3.77402
246246 −669092. −0.704933
247247 0 0
248248 425462. 0.439270
249249 −355552. −0.363416
250250 1.09877e6 1.11188
251251 745968. 0.747370 0.373685 0.927556i 0.378094π-0.378094\pi
0.373685 + 0.927556i 0.378094π0.378094\pi
252252 −500805. −0.496784
253253 −411828. −0.404496
254254 379704. 0.369284
255255 −792088. −0.762821
256256 65536.0 0.0625000
257257 1.92630e6 1.81925 0.909623 0.415436i 0.136371π-0.136371\pi
0.909623 + 0.415436i 0.136371π0.136371\pi
258258 537699. 0.502910
259259 −1.82315e6 −1.68878
260260 773891. 0.709981
261261 57334.0 0.0520968
262262 1.06174e6 0.955577
263263 −964619. −0.859937 −0.429968 0.902844i 0.641475π-0.641475\pi
−0.429968 + 0.902844i 0.641475π0.641475\pi
264264 230273. 0.203345
265265 −2.77907e6 −2.43100
266266 0 0
267267 −1.15803e6 −0.994124
268268 −229553. −0.195230
269269 −1.61062e6 −1.35710 −0.678551 0.734553i 0.737392π-0.737392\pi
−0.678551 + 0.734553i 0.737392π0.737392\pi
270270 −1.50167e6 −1.25362
271271 1.13650e6 0.940038 0.470019 0.882656i 0.344247π-0.344247\pi
0.470019 + 0.882656i 0.344247π0.344247\pi
272272 −204055. −0.167234
273273 1.22311e6 0.993250
274274 −278489. −0.224095
275275 2.07546e6 1.65494
276276 −198175. −0.156594
277277 648448. 0.507780 0.253890 0.967233i 0.418290π-0.418290\pi
0.253890 + 0.967233i 0.418290π0.418290\pi
278278 1.47792e6 1.14693
279279 −896051. −0.689163
280280 1.41973e6 1.08221
281281 −501822. −0.379126 −0.189563 0.981869i 0.560707π-0.560707\pi
−0.189563 + 0.981869i 0.560707π0.560707\pi
282282 −881722. −0.660251
283283 1.36912e6 1.01619 0.508096 0.861301i 0.330350π-0.330350\pi
0.508096 + 0.861301i 0.330350π0.330350\pi
284284 −499203. −0.367266
285285 0 0
286286 700513. 0.506408
287287 −3.73409e6 −2.67596
288288 −138023. −0.0980552
289289 −784506. −0.552525
290290 −162536. −0.113489
291291 1.00899e6 0.698479
292292 31876.5 0.0218783
293293 −684715. −0.465952 −0.232976 0.972483i 0.574846π-0.574846\pi
−0.232976 + 0.972483i 0.574846π0.574846\pi
294294 1.54450e6 1.04212
295295 892825. 0.597326
296296 −502463. −0.333331
297297 −1.35929e6 −0.894169
298298 43382.0 0.0282988
299299 −602867. −0.389981
300300 998727. 0.640684
301301 3.00081e6 1.90907
302302 134373. 0.0847805
303303 −1.76940e6 −1.10718
304304 0 0
305305 −794883. −0.489276
306306 429753. 0.262370
307307 −1.43283e6 −0.867656 −0.433828 0.900996i 0.642837π-0.642837\pi
−0.433828 + 0.900996i 0.642837π0.642837\pi
308308 1.28511e6 0.771907
309309 −754919. −0.449784
310310 2.54021e6 1.50129
311311 −286576. −0.168012 −0.0840058 0.996465i 0.526771π-0.526771\pi
−0.0840058 + 0.996465i 0.526771π0.526771\pi
312312 337092. 0.196048
313313 326263. 0.188238 0.0941189 0.995561i 0.469997π-0.469997\pi
0.0941189 + 0.995561i 0.469997π0.469997\pi
314314 2.28645e6 1.30869
315315 −2.99004e6 −1.69786
316316 −153972. −0.0867411
317317 3.04382e6 1.70126 0.850631 0.525764i 0.176220π-0.176220\pi
0.850631 + 0.525764i 0.176220π0.176220\pi
318318 −1.21051e6 −0.671274
319319 −147125. −0.0809485
320320 391281. 0.213606
321321 −707592. −0.383284
322322 −1.10598e6 −0.594440
323323 0 0
324324 −130042. −0.0688211
325325 3.03823e6 1.59556
326326 1.76423e6 0.919412
327327 −201627. −0.104275
328328 −1.02912e6 −0.528182
329329 −4.92075e6 −2.50635
330330 1.37484e6 0.694971
331331 −2.26302e6 −1.13532 −0.567660 0.823263i 0.692151π-0.692151\pi
−0.567660 + 0.823263i 0.692151π0.692151\pi
332332 −546871. −0.272295
333333 1.05822e6 0.522956
334334 −129227. −0.0633851
335335 −1.37054e6 −0.667237
336336 618407. 0.298831
337337 2.34013e6 1.12245 0.561223 0.827665i 0.310331π-0.310331\pi
0.561223 + 0.827665i 0.310331π0.310331\pi
338338 −459704. −0.218870
339339 −1.33422e6 −0.630562
340340 −1.21830e6 −0.571556
341341 2.29936e6 1.07083
342342 0 0
343343 4.71670e6 2.16472
344344 827031. 0.376813
345345 −1.18320e6 −0.535191
346346 −560430. −0.251670
347347 −1.61523e6 −0.720128 −0.360064 0.932928i 0.617245π-0.617245\pi
−0.360064 + 0.932928i 0.617245π0.617245\pi
348348 −70797.5 −0.0313379
349349 49878.2 0.0219203 0.0109602 0.999940i 0.496511π-0.496511\pi
0.0109602 + 0.999940i 0.496511π0.496511\pi
350350 5.57374e6 2.43207
351351 −1.98983e6 −0.862083
352352 354181. 0.152359
353353 3.46683e6 1.48080 0.740399 0.672167i 0.234636π-0.234636\pi
0.740399 + 0.672167i 0.234636π0.234636\pi
354354 388897. 0.164940
355355 −2.98048e6 −1.25521
356356 −1.78115e6 −0.744863
357357 −1.92549e6 −0.799596
358358 820348. 0.338291
359359 2.97986e6 1.22028 0.610140 0.792294i 0.291113π-0.291113\pi
0.610140 + 0.792294i 0.291113π0.291113\pi
360360 −824063. −0.335123
361361 0 0
362362 −2.38726e6 −0.957478
363363 −430853. −0.171618
364364 1.88126e6 0.744208
365365 190318. 0.0747735
366366 −346236. −0.135104
367367 2.23837e6 0.867495 0.433748 0.901034i 0.357191π-0.357191\pi
0.433748 + 0.901034i 0.357191π0.357191\pi
368368 −304811. −0.117331
369369 2.16740e6 0.828655
370370 −2.99995e6 −1.13922
371371 −6.75565e6 −2.54819
372372 1.10647e6 0.414554
373373 1.11334e6 0.414338 0.207169 0.978305i 0.433575π-0.433575\pi
0.207169 + 0.978305i 0.433575π0.433575\pi
374374 −1.10279e6 −0.407674
375375 2.85748e6 1.04931
376376 −1.35617e6 −0.494703
377377 −215373. −0.0780437
378378 −3.65042e6 −1.31405
379379 3.21599e6 1.15005 0.575026 0.818135i 0.304992π-0.304992\pi
0.575026 + 0.818135i 0.304992π0.304992\pi
380380 0 0
381381 987467. 0.348506
382382 1.49690e6 0.524847
383383 491800. 0.171313 0.0856567 0.996325i 0.472701π-0.472701\pi
0.0856567 + 0.996325i 0.472701π0.472701\pi
384384 170434. 0.0589833
385385 7.67275e6 2.63815
386386 740360. 0.252915
387387 −1.74178e6 −0.591175
388388 1.55192e6 0.523346
389389 −2.10114e6 −0.704015 −0.352007 0.935997i 0.614501π-0.614501\pi
−0.352007 + 0.935997i 0.614501π0.614501\pi
390390 2.01260e6 0.670032
391391 949068. 0.313946
392392 2.37558e6 0.780827
393393 2.76119e6 0.901809
394394 598077. 0.194096
395395 −919288. −0.296455
396396 −745928. −0.239033
397397 −5.27092e6 −1.67846 −0.839229 0.543778i 0.816993π-0.816993\pi
−0.839229 + 0.543778i 0.816993π0.816993\pi
398398 −1.22369e6 −0.387225
399399 0 0
400400 1.53614e6 0.480042
401401 −4.12441e6 −1.28086 −0.640430 0.768017i 0.721244π-0.721244\pi
−0.640430 + 0.768017i 0.721244π0.721244\pi
402402 −596981. −0.184245
403403 3.36598e6 1.03240
404404 −2.72150e6 −0.829575
405405 −776414. −0.235210
406406 −395109. −0.118960
407407 −2.71550e6 −0.812575
408408 −530670. −0.157824
409409 −4.71220e6 −1.39289 −0.696443 0.717613i 0.745235π-0.745235\pi
−0.696443 + 0.717613i 0.745235π0.745235\pi
410410 −6.14437e6 −1.80517
411411 −724244. −0.211485
412412 −1.16113e6 −0.337008
413413 2.17037e6 0.626122
414414 641951. 0.184078
415415 −3.26508e6 −0.930623
416416 518479. 0.146892
417417 3.84350e6 1.08240
418418 0 0
419419 −3.47084e6 −0.965827 −0.482914 0.875668i 0.660422π-0.660422\pi
−0.482914 + 0.875668i 0.660422π0.660422\pi
420420 3.69218e6 1.02132
421421 −1.19223e6 −0.327835 −0.163918 0.986474i 0.552413π-0.552413\pi
−0.163918 + 0.986474i 0.552413π0.552413\pi
422422 3.23895e6 0.885367
423423 2.85618e6 0.776131
424424 −1.86187e6 −0.502962
425425 −4.78295e6 −1.28447
426426 −1.29824e6 −0.346601
427427 −1.93229e6 −0.512863
428428 −1.08834e6 −0.287181
429429 1.82177e6 0.477914
430430 4.93777e6 1.28783
431431 −679294. −0.176143 −0.0880714 0.996114i 0.528070π-0.528070\pi
−0.0880714 + 0.996114i 0.528070π0.528070\pi
432432 −1.00606e6 −0.259368
433433 −7.14219e6 −1.83068 −0.915339 0.402685i 0.868077π-0.868077\pi
−0.915339 + 0.402685i 0.868077π0.868077\pi
434434 6.17501e6 1.57367
435435 −422695. −0.107103
436436 −310121. −0.0781296
437437 0 0
438438 82898.8 0.0206473
439439 1.61627e6 0.400271 0.200135 0.979768i 0.435862π-0.435862\pi
0.200135 + 0.979768i 0.435862π0.435862\pi
440440 2.11463e6 0.520718
441441 −5.00313e6 −1.22503
442442 −1.61435e6 −0.393045
443443 −3.15786e6 −0.764511 −0.382255 0.924057i 0.624853π-0.624853\pi
−0.382255 + 0.924057i 0.624853π0.624853\pi
444444 −1.30672e6 −0.314575
445445 −1.06343e7 −2.54572
446446 2.53836e6 0.604249
447447 112820. 0.0267066
448448 951167. 0.223904
449449 1.47951e6 0.346338 0.173169 0.984892i 0.444599π-0.444599\pi
0.173169 + 0.984892i 0.444599π0.444599\pi
450450 −3.23520e6 −0.753130
451451 −5.56177e6 −1.28757
452452 −2.05215e6 −0.472458
453453 349455. 0.0800102
454454 −375439. −0.0854869
455455 1.12320e7 2.54348
456456 0 0
457457 −5.30763e6 −1.18880 −0.594402 0.804168i 0.702611π-0.702611\pi
−0.594402 + 0.804168i 0.702611π0.702611\pi
458458 704739. 0.156987
459459 3.13251e6 0.694002
460460 −1.81987e6 −0.401000
461461 −1.54790e6 −0.339227 −0.169613 0.985511i 0.554252π-0.554252\pi
−0.169613 + 0.985511i 0.554252π0.554252\pi
462462 3.34210e6 0.728474
463463 7.32198e6 1.58736 0.793682 0.608333i 0.208162π-0.208162\pi
0.793682 + 0.608333i 0.208162π0.208162\pi
464464 −108893. −0.0234804
465465 6.60614e6 1.41682
466466 −904642. −0.192980
467467 6.91574e6 1.46739 0.733696 0.679478i 0.237794π-0.237794\pi
0.733696 + 0.679478i 0.237794π0.237794\pi
468468 −1.09195e6 −0.230456
469469 −3.33165e6 −0.699403
470470 −8.09698e6 −1.69075
471471 5.94619e6 1.23506
472472 598160. 0.123584
473473 4.46958e6 0.918573
474474 −400424. −0.0818605
475475 0 0
476476 −2.96158e6 −0.599110
477477 3.92122e6 0.789089
478478 −1.37599e6 −0.275451
479479 3.22667e6 0.642563 0.321281 0.946984i 0.395886π-0.395886\pi
0.321281 + 0.946984i 0.395886π0.395886\pi
480480 1.01757e6 0.201587
481481 −3.97517e6 −0.783416
482482 6.34744e6 1.24446
483483 −2.87624e6 −0.560992
484484 −662693. −0.128588
485485 9.26568e6 1.78864
486486 3.48171e6 0.668655
487487 −4.64992e6 −0.888430 −0.444215 0.895920i 0.646517π-0.646517\pi
−0.444215 + 0.895920i 0.646517π0.646517\pi
488488 −532543. −0.101229
489489 4.58809e6 0.867680
490490 1.41834e7 2.66863
491491 8.23773e6 1.54207 0.771034 0.636794i 0.219740π-0.219740\pi
0.771034 + 0.636794i 0.219740π0.219740\pi
492492 −2.67637e6 −0.498463
493493 339053. 0.0628275
494494 0 0
495495 −4.45354e6 −0.816945
496496 1.70185e6 0.310611
497497 −7.24526e6 −1.31572
498498 −1.42221e6 −0.256974
499499 −3.72990e6 −0.670572 −0.335286 0.942116i 0.608833π-0.608833\pi
−0.335286 + 0.942116i 0.608833π0.608833\pi
500500 4.39508e6 0.786215
501501 −336071. −0.0598186
502502 2.98387e6 0.528470
503503 −1.51655e6 −0.267261 −0.133630 0.991031i 0.542664π-0.542664\pi
−0.133630 + 0.991031i 0.542664π0.542664\pi
504504 −2.00322e6 −0.351279
505505 −1.62487e7 −2.83524
506506 −1.64731e6 −0.286022
507507 −1.19552e6 −0.206555
508508 1.51882e6 0.261123
509509 1.12361e7 1.92231 0.961154 0.276014i 0.0890135π-0.0890135\pi
0.961154 + 0.276014i 0.0890135π0.0890135\pi
510510 −3.16835e6 −0.539396
511511 462645. 0.0783782
512512 262144. 0.0441942
513513 0 0
514514 7.70520e6 1.28640
515515 −6.93253e6 −1.15179
516516 2.15080e6 0.355611
517517 −7.32924e6 −1.20596
518518 −7.29258e6 −1.19414
519519 −1.45747e6 −0.237509
520520 3.09557e6 0.502032
521521 4.99957e6 0.806934 0.403467 0.914994i 0.367805π-0.367805\pi
0.403467 + 0.914994i 0.367805π0.367805\pi
522522 229336. 0.0368380
523523 −4.90563e6 −0.784225 −0.392113 0.919917i 0.628256π-0.628256\pi
−0.392113 + 0.919917i 0.628256π0.628256\pi
524524 4.24697e6 0.675695
525525 1.44952e7 2.29523
526526 −3.85848e6 −0.608067
527527 −5.29893e6 −0.831116
528528 921091. 0.143786
529529 −5.01865e6 −0.779737
530530 −1.11163e7 −1.71897
531531 −1.25976e6 −0.193889
532532 0 0
533533 −8.14178e6 −1.24137
534534 −4.63211e6 −0.702952
535535 −6.49792e6 −0.981500
536536 −918212. −0.138048
537537 2.13342e6 0.319256
538538 −6.44248e6 −0.959616
539539 1.28385e7 1.90346
540540 −6.00668e6 −0.886442
541541 3.83360e6 0.563137 0.281568 0.959541i 0.409145π-0.409145\pi
0.281568 + 0.959541i 0.409145π0.409145\pi
542542 4.54599e6 0.664707
543543 −6.20837e6 −0.903604
544544 −816219. −0.118252
545545 −1.85157e6 −0.267024
546546 4.89244e6 0.702334
547547 −5.83247e6 −0.833458 −0.416729 0.909031i 0.636824π-0.636824\pi
−0.416729 + 0.909031i 0.636824π0.636824\pi
548548 −1.11396e6 −0.158459
549549 1.12157e6 0.158816
550550 8.30184e6 1.17022
551551 0 0
552552 −792698. −0.110729
553553 −2.23470e6 −0.310747
554554 2.59379e6 0.359055
555555 −7.80173e6 −1.07512
556556 5.91166e6 0.811004
557557 1.47427e6 0.201344 0.100672 0.994920i 0.467901π-0.467901\pi
0.100672 + 0.994920i 0.467901π0.467901\pi
558558 −3.58420e6 −0.487312
559559 6.54294e6 0.885611
560560 5.67892e6 0.765237
561561 −2.86793e6 −0.384735
562562 −2.00729e6 −0.268083
563563 −1.71502e6 −0.228033 −0.114016 0.993479i 0.536372π-0.536372\pi
−0.114016 + 0.993479i 0.536372π0.536372\pi
564564 −3.52689e6 −0.466868
565565 −1.22523e7 −1.61472
566566 5.47648e6 0.718556
567567 −1.88739e6 −0.246549
568568 −1.99681e6 −0.259696
569569 1.09443e7 1.41712 0.708558 0.705652i 0.249346π-0.249346\pi
0.708558 + 0.705652i 0.249346π0.249346\pi
570570 0 0
571571 −7.80064e6 −1.00124 −0.500622 0.865666i 0.666895π-0.666895\pi
−0.500622 + 0.865666i 0.666895π0.666895\pi
572572 2.80205e6 0.358085
573573 3.89286e6 0.495316
574574 −1.49364e7 −1.89219
575575 −7.14463e6 −0.901177
576576 −552092. −0.0693355
577577 −8.00141e6 −1.00052 −0.500262 0.865874i 0.666763π-0.666763\pi
−0.500262 + 0.865874i 0.666763π0.666763\pi
578578 −3.13802e6 −0.390694
579579 1.92540e6 0.238684
580580 −650144. −0.0802489
581581 −7.93711e6 −0.975488
582582 4.03595e6 0.493899
583583 −1.00622e7 −1.22609
584584 127506. 0.0154703
585585 −6.51946e6 −0.787630
586586 −2.73886e6 −0.329478
587587 −7.68911e6 −0.921045 −0.460523 0.887648i 0.652338π-0.652338\pi
−0.460523 + 0.887648i 0.652338π0.652338\pi
588588 6.17799e6 0.736892
589589 0 0
590590 3.57130e6 0.422373
591591 1.55537e6 0.183175
592592 −2.00985e6 −0.235700
593593 3.87367e6 0.452362 0.226181 0.974085i 0.427376π-0.427376\pi
0.226181 + 0.974085i 0.427376π0.427376\pi
594594 −5.43714e6 −0.632273
595595 −1.76821e7 −2.04758
596596 173528. 0.0200103
597597 −3.18236e6 −0.365438
598598 −2.41147e6 −0.275758
599599 −1.25262e7 −1.42644 −0.713220 0.700940i 0.752764π-0.752764\pi
−0.713220 + 0.700940i 0.752764π0.752764\pi
600600 3.99491e6 0.453032
601601 293637. 0.0331608 0.0165804 0.999863i 0.494722π-0.494722\pi
0.0165804 + 0.999863i 0.494722π0.494722\pi
602602 1.20032e7 1.34992
603603 1.93381e6 0.216581
604604 537494. 0.0599489
605605 −3.95659e6 −0.439474
606606 −7.07761e6 −0.782897
607607 −4.13932e6 −0.455993 −0.227996 0.973662i 0.573217π-0.573217\pi
−0.227996 + 0.973662i 0.573217π0.573217\pi
608608 0 0
609609 −1.02753e6 −0.112267
610610 −3.17953e6 −0.345970
611611 −1.07291e7 −1.16269
612612 1.71901e6 0.185524
613613 5.73897e6 0.616854 0.308427 0.951248i 0.400197π-0.400197\pi
0.308427 + 0.951248i 0.400197π0.400197\pi
614614 −5.73130e6 −0.613525
615615 −1.59792e7 −1.70360
616616 5.14046e6 0.545821
617617 −1.15672e7 −1.22325 −0.611627 0.791146i 0.709485π-0.709485\pi
−0.611627 + 0.791146i 0.709485π0.709485\pi
618618 −3.01967e6 −0.318045
619619 −1.84780e7 −1.93833 −0.969167 0.246404i 0.920751π-0.920751\pi
−0.969167 + 0.246404i 0.920751π0.920751\pi
620620 1.01608e7 1.06158
621621 4.67925e6 0.486908
622622 −1.14630e6 −0.118802
623623 −2.58510e7 −2.66844
624624 1.34837e6 0.138627
625625 7.48906e6 0.766879
626626 1.30505e6 0.133104
627627 0 0
628628 9.14580e6 0.925385
629629 6.25794e6 0.630674
630630 −1.19602e7 −1.20057
631631 8.95725e6 0.895573 0.447787 0.894140i 0.352212π-0.352212\pi
0.447787 + 0.894140i 0.352212π0.352212\pi
632632 −615889. −0.0613352
633633 8.42329e6 0.835550
634634 1.21753e7 1.20297
635635 9.06805e6 0.892441
636636 −4.84203e6 −0.474662
637637 1.87941e7 1.83515
638638 −588498. −0.0572392
639639 4.20541e6 0.407433
640640 1.56512e6 0.151042
641641 1.46979e7 1.41290 0.706450 0.707763i 0.250296π-0.250296\pi
0.706450 + 0.707763i 0.250296π0.250296\pi
642642 −2.83037e6 −0.271023
643643 1.55533e7 1.48352 0.741762 0.670664i 0.233991π-0.233991\pi
0.741762 + 0.670664i 0.233991π0.233991\pi
644644 −4.42392e6 −0.420332
645645 1.28413e7 1.21537
646646 0 0
647647 −5.91558e6 −0.555567 −0.277784 0.960644i 0.589600π-0.589600\pi
−0.277784 + 0.960644i 0.589600π0.589600\pi
648648 −520169. −0.0486639
649649 3.23268e6 0.301266
650650 1.21529e7 1.12823
651651 1.60589e7 1.48512
652652 7.05691e6 0.650123
653653 1.27377e6 0.116898 0.0584492 0.998290i 0.481384π-0.481384\pi
0.0584492 + 0.998290i 0.481384π0.481384\pi
654654 −806509. −0.0737335
655655 2.53564e7 2.30932
656656 −4.11650e6 −0.373481
657657 −268536. −0.0242711
658658 −1.96830e7 −1.77226
659659 −6.98055e6 −0.626147 −0.313073 0.949729i 0.601359π-0.601359\pi
−0.313073 + 0.949729i 0.601359π0.601359\pi
660660 5.49935e6 0.491419
661661 −1.02987e7 −0.916812 −0.458406 0.888743i 0.651579π-0.651579\pi
−0.458406 + 0.888743i 0.651579π0.651579\pi
662662 −9.05208e6 −0.802792
663663 −4.19832e6 −0.370930
664664 −2.18749e6 −0.192542
665665 0 0
666666 4.23288e6 0.369786
667667 506467. 0.0440795
668668 −516908. −0.0448200
669669 6.60131e6 0.570249
670670 −5.48216e6 −0.471808
671671 −2.87806e6 −0.246770
672672 2.47363e6 0.211306
673673 −5.48362e6 −0.466692 −0.233346 0.972394i 0.574967π-0.574967\pi
−0.233346 + 0.972394i 0.574967π0.574967\pi
674674 9.36052e6 0.793689
675675 −2.35817e7 −1.99212
676676 −1.83882e6 −0.154765
677677 4.99313e6 0.418698 0.209349 0.977841i 0.432866π-0.432866\pi
0.209349 + 0.977841i 0.432866π0.432866\pi
678678 −5.33687e6 −0.445875
679679 2.25240e7 1.87487
680680 −4.87322e6 −0.404151
681681 −976375. −0.0806768
682682 9.19742e6 0.757190
683683 −6.96239e6 −0.571093 −0.285546 0.958365i 0.592175π-0.592175\pi
−0.285546 + 0.958365i 0.592175π0.592175\pi
684684 0 0
685685 −6.65084e6 −0.541565
686686 1.88668e7 1.53069
687687 1.83276e6 0.148154
688688 3.30812e6 0.266447
689689 −1.47299e7 −1.18210
690690 −4.73279e6 −0.378438
691691 9.29521e6 0.740566 0.370283 0.928919i 0.379261π-0.379261\pi
0.370283 + 0.928919i 0.379261π0.379261\pi
692692 −2.24172e6 −0.177957
693693 −1.08261e7 −0.856329
694694 −6.46091e6 −0.509208
695695 3.52955e7 2.77177
696696 −283190. −0.0221592
697697 1.28173e7 0.999340
698698 199513. 0.0155000
699699 −2.35263e6 −0.182121
700700 2.22949e7 1.71973
701701 −7.70223e6 −0.591999 −0.296000 0.955188i 0.595653π-0.595653\pi
−0.296000 + 0.955188i 0.595653π0.595653\pi
702702 −7.95933e6 −0.609585
703703 0 0
704704 1.41672e6 0.107734
705705 −2.10572e7 −1.59561
706706 1.38673e7 1.04708
707707 −3.94990e7 −2.97192
708708 1.55559e6 0.116630
709709 513218. 0.0383430 0.0191715 0.999816i 0.493897π-0.493897\pi
0.0191715 + 0.999816i 0.493897π0.493897\pi
710710 −1.19219e7 −0.887565
711711 1.29710e6 0.0962278
712712 −7.12461e6 −0.526697
713713 −7.91538e6 −0.583106
714714 −7.70196e6 −0.565400
715715 1.67296e7 1.22383
716716 3.28139e6 0.239208
717717 −3.57842e6 −0.259952
718718 1.19194e7 0.862868
719719 3.80611e6 0.274574 0.137287 0.990531i 0.456162π-0.456162\pi
0.137287 + 0.990531i 0.456162π0.456162\pi
720720 −3.29625e6 −0.236968
721721 −1.68523e7 −1.20732
722722 0 0
723723 1.65073e7 1.17444
724724 −9.54905e6 −0.677039
725725 −2.55241e6 −0.180345
726726 −1.72341e6 −0.121352
727727 −2.43735e7 −1.71033 −0.855167 0.518352i 0.826546π-0.826546\pi
−0.855167 + 0.518352i 0.826546π0.826546\pi
728728 7.52502e6 0.526235
729729 1.10296e7 0.768674
730730 761272. 0.0528728
731731 −1.03003e7 −0.712944
732732 −1.38494e6 −0.0955331
733733 4.46559e6 0.306986 0.153493 0.988150i 0.450948π-0.450948\pi
0.153493 + 0.988150i 0.450948π0.450948\pi
734734 8.95349e6 0.613412
735735 3.68856e7 2.51848
736736 −1.21924e6 −0.0829652
737737 −4.96236e6 −0.336526
738738 8.66962e6 0.585948
739739 −2.04421e6 −0.137694 −0.0688468 0.997627i 0.521932π-0.521932\pi
−0.0688468 + 0.997627i 0.521932π0.521932\pi
740740 −1.19998e7 −0.805553
741741 0 0
742742 −2.70226e7 −1.80184
743743 1.90490e7 1.26590 0.632950 0.774193i 0.281844π-0.281844\pi
0.632950 + 0.774193i 0.281844π0.281844\pi
744744 4.42587e6 0.293134
745745 1.03604e6 0.0683892
746746 4.45335e6 0.292981
747747 4.60699e6 0.302075
748748 −4.41115e6 −0.288269
749749 −1.57958e7 −1.02882
750750 1.14299e7 0.741978
751751 1.08826e7 0.704097 0.352048 0.935982i 0.385485π-0.385485\pi
0.352048 + 0.935982i 0.385485π0.385485\pi
752752 −5.42468e6 −0.349808
753753 7.75992e6 0.498735
754754 −861492. −0.0551852
755755 3.20909e6 0.204887
756756 −1.46017e7 −0.929176
757757 2.24795e6 0.142576 0.0712881 0.997456i 0.477289π-0.477289\pi
0.0712881 + 0.997456i 0.477289π0.477289\pi
758758 1.28640e7 0.813209
759759 −4.28403e6 −0.269928
760760 0 0
761761 1.37969e7 0.863614 0.431807 0.901966i 0.357876π-0.357876\pi
0.431807 + 0.901966i 0.357876π0.357876\pi
762762 3.94987e6 0.246431
763763 −4.50100e6 −0.279896
764764 5.98758e6 0.371123
765765 1.02633e7 0.634065
766766 1.96720e6 0.121137
767767 4.73226e6 0.290456
768768 681738. 0.0417075
769769 3.16040e7 1.92720 0.963599 0.267352i 0.0861487π-0.0861487\pi
0.963599 + 0.267352i 0.0861487π0.0861487\pi
770770 3.06910e7 1.86545
771771 2.00383e7 1.21402
772772 2.96144e6 0.178838
773773 −2.13708e7 −1.28639 −0.643195 0.765702i 0.722392π-0.722392\pi
−0.643195 + 0.765702i 0.722392π0.722392\pi
774774 −6.96712e6 −0.418024
775775 3.98906e7 2.38570
776776 6.20767e6 0.370062
777777 −1.89653e7 −1.12695
778778 −8.40458e6 −0.497814
779779 0 0
780780 8.05040e6 0.473785
781781 −1.07915e7 −0.633074
782782 3.79627e6 0.221994
783783 1.67165e6 0.0974410
784784 9.50233e6 0.552128
785785 5.46048e7 3.16269
786786 1.10448e7 0.637676
787787 −1.91269e7 −1.10080 −0.550399 0.834901i 0.685525π-0.685525\pi
−0.550399 + 0.834901i 0.685525π0.685525\pi
788788 2.39231e6 0.137247
789789 −1.00344e7 −0.573853
790790 −3.67715e6 −0.209625
791791 −2.97842e7 −1.69256
792792 −2.98371e6 −0.169022
793793 −4.21313e6 −0.237915
794794 −2.10837e7 −1.18685
795795 −2.89092e7 −1.62225
796796 −4.89476e6 −0.273810
797797 −8.28296e6 −0.461891 −0.230946 0.972967i 0.574182π-0.574182\pi
−0.230946 + 0.972967i 0.574182π0.574182\pi
798798 0 0
799799 1.68904e7 0.935996
800800 6.14454e6 0.339441
801801 1.50049e7 0.826326
802802 −1.64977e7 −0.905704
803803 689090. 0.0377126
804804 −2.38792e6 −0.130281
805805 −2.64129e7 −1.43657
806806 1.34639e7 0.730019
807807 −1.67545e7 −0.905622
808808 −1.08860e7 −0.586598
809809 −8.91658e6 −0.478991 −0.239495 0.970898i 0.576982π-0.576982\pi
−0.239495 + 0.970898i 0.576982π0.576982\pi
810810 −3.10565e6 −0.166319
811811 −1.52149e7 −0.812302 −0.406151 0.913806i 0.633129π-0.633129\pi
−0.406151 + 0.913806i 0.633129π0.633129\pi
812812 −1.58044e6 −0.0841177
813813 1.18224e7 0.627306
814814 −1.08620e7 −0.574577
815815 4.21331e7 2.22192
816816 −2.12268e6 −0.111599
817817 0 0
818818 −1.88488e7 −0.984918
819819 −1.58482e7 −0.825600
820820 −2.45775e7 −1.27645
821821 2.23907e7 1.15934 0.579669 0.814852i 0.303182π-0.303182\pi
0.579669 + 0.814852i 0.303182π0.303182\pi
822822 −2.89698e6 −0.149543
823823 −2.10545e7 −1.08354 −0.541772 0.840526i 0.682246π-0.682246\pi
−0.541772 + 0.840526i 0.682246π0.682246\pi
824824 −4.64454e6 −0.238300
825825 2.15900e7 1.10438
826826 8.68149e6 0.442735
827827 2.23530e7 1.13651 0.568253 0.822854i 0.307619π-0.307619\pi
0.568253 + 0.822854i 0.307619π0.307619\pi
828828 2.56781e6 0.130163
829829 −3.04175e7 −1.53723 −0.768613 0.639714i 0.779053π-0.779053\pi
−0.768613 + 0.639714i 0.779053π0.779053\pi
830830 −1.30603e7 −0.658050
831831 6.74548e6 0.338852
832832 2.07391e6 0.103868
833833 −2.95867e7 −1.47735
834834 1.53740e7 0.765371
835835 −3.08619e6 −0.153181
836836 0 0
837837 −2.61256e7 −1.28900
838838 −1.38834e7 −0.682943
839839 −2.41182e7 −1.18288 −0.591439 0.806350i 0.701440π-0.701440\pi
−0.591439 + 0.806350i 0.701440π0.701440\pi
840840 1.47687e7 0.722179
841841 −2.03302e7 −0.991179
842842 −4.76893e6 −0.231814
843843 −5.22020e6 −0.252999
844844 1.29558e7 0.626049
845845 −1.09786e7 −0.528939
846846 1.14247e7 0.548807
847847 −9.61810e6 −0.460660
848848 −7.44749e6 −0.355648
849849 1.42423e7 0.678125
850850 −1.91318e7 −0.908257
851851 9.34792e6 0.442477
852852 −5.19295e6 −0.245084
853853 1.65084e7 0.776842 0.388421 0.921482i 0.373021π-0.373021\pi
0.388421 + 0.921482i 0.373021π0.373021\pi
854854 −7.72914e6 −0.362649
855855 0 0
856856 −4.35337e6 −0.203068
857857 −1.13507e7 −0.527923 −0.263962 0.964533i 0.585029π-0.585029\pi
−0.263962 + 0.964533i 0.585029π0.585029\pi
858858 7.28708e6 0.337937
859859 2.00932e7 0.929108 0.464554 0.885545i 0.346215π-0.346215\pi
0.464554 + 0.885545i 0.346215π0.346215\pi
860860 1.97511e7 0.910635
861861 −3.88439e7 −1.78573
862862 −2.71718e6 −0.124552
863863 1.97337e7 0.901950 0.450975 0.892537i 0.351076π-0.351076\pi
0.450975 + 0.892537i 0.351076π0.351076\pi
864864 −4.02426e6 −0.183401
865865 −1.33841e7 −0.608205
866866 −2.85688e7 −1.29448
867867 −8.16082e6 −0.368711
868868 2.47001e7 1.11275
869869 −3.32849e6 −0.149520
870870 −1.69078e6 −0.0757336
871871 −7.26430e6 −0.324451
872872 −1.24049e6 −0.0552460
873873 −1.30737e7 −0.580583
874874 0 0
875875 6.37887e7 2.81659
876876 331595. 0.0145998
877877 1.84073e7 0.808149 0.404074 0.914726i 0.367594π-0.367594\pi
0.404074 + 0.914726i 0.367594π0.367594\pi
878878 6.46510e6 0.283034
879879 −7.12275e6 −0.310939
880880 8.45851e6 0.368203
881881 1.42310e7 0.617727 0.308864 0.951106i 0.400051π-0.400051\pi
0.308864 + 0.951106i 0.400051π0.400051\pi
882882 −2.00125e7 −0.866224
883883 1.06212e7 0.458430 0.229215 0.973376i 0.426384π-0.426384\pi
0.229215 + 0.973376i 0.426384π0.426384\pi
884884 −6.45740e6 −0.277925
885885 9.28761e6 0.398608
886886 −1.26314e7 −0.540591
887887 4.79046e6 0.204441 0.102220 0.994762i 0.467405π-0.467405\pi
0.102220 + 0.994762i 0.467405π0.467405\pi
888888 −5.22687e6 −0.222438
889889 2.20436e7 0.935465
890890 −4.25373e7 −1.80009
891891 −2.81118e6 −0.118630
892892 1.01534e7 0.427268
893893 0 0
894894 451281. 0.0188844
895895 1.95915e7 0.817541
896896 3.80467e6 0.158324
897897 −6.27132e6 −0.260242
898898 5.91802e6 0.244898
899899 −2.82775e6 −0.116692
900900 −1.29408e7 −0.532543
901901 2.31887e7 0.951623
902902 −2.22471e7 −0.910451
903903 3.12159e7 1.27396
904904 −8.20861e6 −0.334078
905905 −5.70124e7 −2.31392
906906 1.39782e6 0.0565758
907907 −3.87079e7 −1.56236 −0.781180 0.624306i 0.785382π-0.785382\pi
−0.781180 + 0.624306i 0.785382π0.785382\pi
908908 −1.50176e6 −0.0604484
909909 2.29267e7 0.920303
910910 4.49280e7 1.79851
911911 2.75114e7 1.09829 0.549146 0.835727i 0.314953π-0.314953\pi
0.549146 + 0.835727i 0.314953π0.314953\pi
912912 0 0
913913 −1.18220e7 −0.469368
914914 −2.12305e7 −0.840612
915915 −8.26877e6 −0.326504
916916 2.81896e6 0.111007
917917 6.16390e7 2.42065
918918 1.25300e7 0.490734
919919 −1.32340e7 −0.516896 −0.258448 0.966025i 0.583211π-0.583211\pi
−0.258448 + 0.966025i 0.583211π0.583211\pi
920920 −7.27947e6 −0.283550
921921 −1.49050e7 −0.579004
922922 −6.19159e6 −0.239870
923923 −1.57975e7 −0.610357
924924 1.33684e7 0.515109
925925 −4.71101e7 −1.81034
926926 2.92879e7 1.12244
927927 9.78170e6 0.373865
928928 −435572. −0.0166031
929929 −1.94057e7 −0.737717 −0.368858 0.929486i 0.620251π-0.620251\pi
−0.368858 + 0.929486i 0.620251π0.620251\pi
930930 2.64245e7 1.00184
931931 0 0
932932 −3.61857e6 −0.136457
933933 −2.98111e6 −0.112118
934934 2.76629e7 1.03760
935935 −2.63367e7 −0.985217
936936 −4.36780e6 −0.162957
937937 4.70727e7 1.75154 0.875770 0.482729i 0.160354π-0.160354\pi
0.875770 + 0.482729i 0.160354π0.160354\pi
938938 −1.33266e7 −0.494553
939939 3.39395e6 0.125615
940940 −3.23879e7 −1.19554
941941 5.01568e7 1.84653 0.923264 0.384167i 0.125511π-0.125511\pi
0.923264 + 0.384167i 0.125511π0.125511\pi
942942 2.37848e7 0.873317
943943 1.91460e7 0.701131
944944 2.39264e6 0.0873871
945945 −8.71790e7 −3.17565
946946 1.78783e7 0.649529
947947 1.85612e7 0.672561 0.336281 0.941762i 0.390831π-0.390831\pi
0.336281 + 0.941762i 0.390831π0.390831\pi
948948 −1.60170e6 −0.0578841
949949 1.00875e6 0.0363594
950950 0 0
951951 3.16633e7 1.13529
952952 −1.18463e7 −0.423635
953953 3.60296e7 1.28507 0.642536 0.766255i 0.277882π-0.277882\pi
0.642536 + 0.766255i 0.277882π0.277882\pi
954954 1.56849e7 0.557970
955955 3.57487e7 1.26839
956956 −5.50394e6 −0.194773
957957 −1.53046e6 −0.0540185
958958 1.29067e7 0.454361
959959 −1.61676e7 −0.567673
960960 4.07030e6 0.142544
961961 1.55647e7 0.543667
962962 −1.59007e7 −0.553959
963963 9.16848e6 0.318590
964964 2.53898e7 0.879966
965965 1.76812e7 0.611215
966966 −1.15050e7 −0.396682
967967 1.22925e7 0.422740 0.211370 0.977406i 0.432207π-0.432207\pi
0.211370 + 0.977406i 0.432207π0.432207\pi
968968 −2.65077e6 −0.0909251
969969 0 0
970970 3.70627e7 1.26476
971971 1.73779e7 0.591493 0.295746 0.955267i 0.404432π-0.404432\pi
0.295746 + 0.955267i 0.404432π0.404432\pi
972972 1.39268e7 0.472810
973973 8.57999e7 2.90539
974974 −1.85997e7 −0.628215
975975 3.16051e7 1.06475
976976 −2.13017e6 −0.0715797
977977 −1.54100e7 −0.516496 −0.258248 0.966079i 0.583145π-0.583145\pi
−0.258248 + 0.966079i 0.583145π0.583145\pi
978978 1.83524e7 0.613542
979979 −3.85040e7 −1.28395
980980 5.67334e7 1.88701
981981 2.61254e6 0.0866744
982982 3.29509e7 1.09041
983983 5.45907e7 1.80192 0.900959 0.433903i 0.142864π-0.142864\pi
0.900959 + 0.433903i 0.142864π0.142864\pi
984984 −1.07055e7 −0.352466
985985 1.42832e7 0.469068
986986 1.35621e6 0.0444258
987987 −5.11880e7 −1.67254
988988 0 0
989989 −1.53862e7 −0.500197
990990 −1.78142e7 −0.577667
991991 4.29839e7 1.39034 0.695171 0.718845i 0.255329π-0.255329\pi
0.695171 + 0.718845i 0.255329π0.255329\pi
992992 6.80740e6 0.219635
993993 −2.35410e7 −0.757622
994994 −2.89810e7 −0.930353
995995 −2.92241e7 −0.935800
996996 −5.68883e6 −0.181708
997997 −5.32456e7 −1.69647 −0.848234 0.529622i 0.822334π-0.822334\pi
−0.848234 + 0.529622i 0.822334π0.822334\pi
998998 −1.49196e7 −0.474166
999999 3.08539e7 0.978130
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 722.6.a.r.1.10 15
19.6 even 9 38.6.e.b.17.4 yes 30
19.16 even 9 38.6.e.b.9.4 30
19.18 odd 2 722.6.a.q.1.6 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
38.6.e.b.9.4 30 19.16 even 9
38.6.e.b.17.4 yes 30 19.6 even 9
722.6.a.q.1.6 15 19.18 odd 2
722.6.a.r.1.10 15 1.1 even 1 trivial