Properties

Label 7220.2.a.p.1.1
Level $7220$
Weight $2$
Character 7220.1
Self dual yes
Analytic conductor $57.652$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [7220,2,Mod(1,7220)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(7220, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("7220.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 7220 = 2^{2} \cdot 5 \cdot 19^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 7220.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(57.6519902594\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.133593.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 8x^{2} + 3x + 2 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 380)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(3.16505\) of defining polynomial
Character \(\chi\) \(=\) 7220.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.16505 q^{3} +1.00000 q^{5} -1.53315 q^{7} +7.01755 q^{9} -3.79695 q^{11} +6.69820 q^{13} -3.16505 q^{15} -6.01755 q^{17} +4.85250 q^{21} +4.38565 q^{23} +1.00000 q^{25} -12.7158 q^{27} +1.09875 q^{29} +1.05555 q^{31} +12.0175 q^{33} -1.53315 q^{35} +10.7970 q^{37} -21.2002 q^{39} -3.53315 q^{41} +5.55070 q^{43} +7.01755 q^{45} -11.2381 q^{47} -4.64945 q^{49} +19.0459 q^{51} -1.57636 q^{53} -3.79695 q^{55} -3.23135 q^{59} +0.0663000 q^{61} -10.7590 q^{63} +6.69820 q^{65} +5.70500 q^{67} -13.8808 q^{69} +6.47760 q^{71} +13.9796 q^{73} -3.16505 q^{75} +5.82130 q^{77} +1.99320 q^{79} +19.1934 q^{81} -10.3477 q^{83} -6.01755 q^{85} -3.47760 q^{87} -3.07310 q^{89} -10.2693 q^{91} -3.34086 q^{93} -8.87005 q^{97} -26.6453 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{3} + 4 q^{5} + 5 q^{9} + 2 q^{11} + 9 q^{13} - q^{15} - q^{17} + 8 q^{21} + 4 q^{25} - 10 q^{27} + 5 q^{29} + 10 q^{31} + 25 q^{33} + 26 q^{37} - 27 q^{39} - 8 q^{41} - 7 q^{43} + 5 q^{45} - 16 q^{47}+ \cdots - 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.16505 −1.82734 −0.913672 0.406453i \(-0.866765\pi\)
−0.913672 + 0.406453i \(0.866765\pi\)
\(4\) 0 0
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.53315 −0.579476 −0.289738 0.957106i \(-0.593568\pi\)
−0.289738 + 0.957106i \(0.593568\pi\)
\(8\) 0 0
\(9\) 7.01755 2.33918
\(10\) 0 0
\(11\) −3.79695 −1.14482 −0.572412 0.819966i \(-0.693992\pi\)
−0.572412 + 0.819966i \(0.693992\pi\)
\(12\) 0 0
\(13\) 6.69820 1.85775 0.928873 0.370397i \(-0.120778\pi\)
0.928873 + 0.370397i \(0.120778\pi\)
\(14\) 0 0
\(15\) −3.16505 −0.817213
\(16\) 0 0
\(17\) −6.01755 −1.45947 −0.729735 0.683730i \(-0.760357\pi\)
−0.729735 + 0.683730i \(0.760357\pi\)
\(18\) 0 0
\(19\) 0 0
\(20\) 0 0
\(21\) 4.85250 1.05890
\(22\) 0 0
\(23\) 4.38565 0.914471 0.457235 0.889346i \(-0.348840\pi\)
0.457235 + 0.889346i \(0.348840\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −12.7158 −2.44715
\(28\) 0 0
\(29\) 1.09875 0.204033 0.102016 0.994783i \(-0.467471\pi\)
0.102016 + 0.994783i \(0.467471\pi\)
\(30\) 0 0
\(31\) 1.05555 0.189582 0.0947908 0.995497i \(-0.469782\pi\)
0.0947908 + 0.995497i \(0.469782\pi\)
\(32\) 0 0
\(33\) 12.0175 2.09199
\(34\) 0 0
\(35\) −1.53315 −0.259150
\(36\) 0 0
\(37\) 10.7970 1.77501 0.887504 0.460800i \(-0.152437\pi\)
0.887504 + 0.460800i \(0.152437\pi\)
\(38\) 0 0
\(39\) −21.2002 −3.39474
\(40\) 0 0
\(41\) −3.53315 −0.551785 −0.275893 0.961188i \(-0.588973\pi\)
−0.275893 + 0.961188i \(0.588973\pi\)
\(42\) 0 0
\(43\) 5.55070 0.846474 0.423237 0.906019i \(-0.360894\pi\)
0.423237 + 0.906019i \(0.360894\pi\)
\(44\) 0 0
\(45\) 7.01755 1.04611
\(46\) 0 0
\(47\) −11.2381 −1.63925 −0.819626 0.572899i \(-0.805819\pi\)
−0.819626 + 0.572899i \(0.805819\pi\)
\(48\) 0 0
\(49\) −4.64945 −0.664207
\(50\) 0 0
\(51\) 19.0459 2.66695
\(52\) 0 0
\(53\) −1.57636 −0.216529 −0.108265 0.994122i \(-0.534529\pi\)
−0.108265 + 0.994122i \(0.534529\pi\)
\(54\) 0 0
\(55\) −3.79695 −0.511981
\(56\) 0 0
\(57\) 0 0
\(58\) 0 0
\(59\) −3.23135 −0.420686 −0.210343 0.977628i \(-0.567458\pi\)
−0.210343 + 0.977628i \(0.567458\pi\)
\(60\) 0 0
\(61\) 0.0663000 0.00848885 0.00424442 0.999991i \(-0.498649\pi\)
0.00424442 + 0.999991i \(0.498649\pi\)
\(62\) 0 0
\(63\) −10.7590 −1.35550
\(64\) 0 0
\(65\) 6.69820 0.830810
\(66\) 0 0
\(67\) 5.70500 0.696976 0.348488 0.937313i \(-0.386695\pi\)
0.348488 + 0.937313i \(0.386695\pi\)
\(68\) 0 0
\(69\) −13.8808 −1.67105
\(70\) 0 0
\(71\) 6.47760 0.768750 0.384375 0.923177i \(-0.374417\pi\)
0.384375 + 0.923177i \(0.374417\pi\)
\(72\) 0 0
\(73\) 13.9796 1.63618 0.818091 0.575088i \(-0.195032\pi\)
0.818091 + 0.575088i \(0.195032\pi\)
\(74\) 0 0
\(75\) −3.16505 −0.365469
\(76\) 0 0
\(77\) 5.82130 0.663398
\(78\) 0 0
\(79\) 1.99320 0.224253 0.112127 0.993694i \(-0.464234\pi\)
0.112127 + 0.993694i \(0.464234\pi\)
\(80\) 0 0
\(81\) 19.1934 2.13260
\(82\) 0 0
\(83\) −10.3477 −1.13580 −0.567901 0.823097i \(-0.692244\pi\)
−0.567901 + 0.823097i \(0.692244\pi\)
\(84\) 0 0
\(85\) −6.01755 −0.652695
\(86\) 0 0
\(87\) −3.47760 −0.372838
\(88\) 0 0
\(89\) −3.07310 −0.325747 −0.162874 0.986647i \(-0.552076\pi\)
−0.162874 + 0.986647i \(0.552076\pi\)
\(90\) 0 0
\(91\) −10.2693 −1.07652
\(92\) 0 0
\(93\) −3.34086 −0.346431
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −8.87005 −0.900617 −0.450308 0.892873i \(-0.648686\pi\)
−0.450308 + 0.892873i \(0.648686\pi\)
\(98\) 0 0
\(99\) −26.6453 −2.67795
\(100\) 0 0
\(101\) 6.20826 0.617745 0.308872 0.951104i \(-0.400048\pi\)
0.308872 + 0.951104i \(0.400048\pi\)
\(102\) 0 0
\(103\) 0.253048 0.0249336 0.0124668 0.999922i \(-0.496032\pi\)
0.0124668 + 0.999922i \(0.496032\pi\)
\(104\) 0 0
\(105\) 4.85250 0.473555
\(106\) 0 0
\(107\) 6.05555 0.585412 0.292706 0.956203i \(-0.405444\pi\)
0.292706 + 0.956203i \(0.405444\pi\)
\(108\) 0 0
\(109\) −5.24890 −0.502754 −0.251377 0.967889i \(-0.580883\pi\)
−0.251377 + 0.967889i \(0.580883\pi\)
\(110\) 0 0
\(111\) −34.1729 −3.24355
\(112\) 0 0
\(113\) −2.42885 −0.228487 −0.114244 0.993453i \(-0.536444\pi\)
−0.114244 + 0.993453i \(0.536444\pi\)
\(114\) 0 0
\(115\) 4.38565 0.408964
\(116\) 0 0
\(117\) 47.0050 4.34561
\(118\) 0 0
\(119\) 9.22581 0.845728
\(120\) 0 0
\(121\) 3.41685 0.310623
\(122\) 0 0
\(123\) 11.1826 1.00830
\(124\) 0 0
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) 19.2989 1.71250 0.856250 0.516561i \(-0.172788\pi\)
0.856250 + 0.516561i \(0.172788\pi\)
\(128\) 0 0
\(129\) −17.5682 −1.54680
\(130\) 0 0
\(131\) −13.2597 −1.15850 −0.579251 0.815149i \(-0.696655\pi\)
−0.579251 + 0.815149i \(0.696655\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0 0
\(135\) −12.7158 −1.09440
\(136\) 0 0
\(137\) −15.5507 −1.32859 −0.664293 0.747472i \(-0.731267\pi\)
−0.664293 + 0.747472i \(0.731267\pi\)
\(138\) 0 0
\(139\) −18.6222 −1.57952 −0.789758 0.613419i \(-0.789794\pi\)
−0.789758 + 0.613419i \(0.789794\pi\)
\(140\) 0 0
\(141\) 35.5693 2.99548
\(142\) 0 0
\(143\) −25.4328 −2.12679
\(144\) 0 0
\(145\) 1.09875 0.0912463
\(146\) 0 0
\(147\) 14.7158 1.21373
\(148\) 0 0
\(149\) −4.68745 −0.384011 −0.192005 0.981394i \(-0.561499\pi\)
−0.192005 + 0.981394i \(0.561499\pi\)
\(150\) 0 0
\(151\) 5.93370 0.482878 0.241439 0.970416i \(-0.422381\pi\)
0.241439 + 0.970416i \(0.422381\pi\)
\(152\) 0 0
\(153\) −42.2285 −3.41397
\(154\) 0 0
\(155\) 1.05555 0.0847835
\(156\) 0 0
\(157\) −9.29369 −0.741717 −0.370859 0.928689i \(-0.620937\pi\)
−0.370859 + 0.928689i \(0.620937\pi\)
\(158\) 0 0
\(159\) 4.98925 0.395673
\(160\) 0 0
\(161\) −6.72386 −0.529914
\(162\) 0 0
\(163\) 5.88495 0.460945 0.230472 0.973079i \(-0.425973\pi\)
0.230472 + 0.973079i \(0.425973\pi\)
\(164\) 0 0
\(165\) 12.0175 0.935565
\(166\) 0 0
\(167\) −12.7970 −0.990258 −0.495129 0.868819i \(-0.664879\pi\)
−0.495129 + 0.868819i \(0.664879\pi\)
\(168\) 0 0
\(169\) 31.8659 2.45122
\(170\) 0 0
\(171\) 0 0
\(172\) 0 0
\(173\) 15.0406 1.14352 0.571760 0.820421i \(-0.306261\pi\)
0.571760 + 0.820421i \(0.306261\pi\)
\(174\) 0 0
\(175\) −1.53315 −0.115895
\(176\) 0 0
\(177\) 10.2274 0.768738
\(178\) 0 0
\(179\) −21.5452 −1.61036 −0.805180 0.593030i \(-0.797931\pi\)
−0.805180 + 0.593030i \(0.797931\pi\)
\(180\) 0 0
\(181\) −4.27060 −0.317431 −0.158716 0.987324i \(-0.550735\pi\)
−0.158716 + 0.987324i \(0.550735\pi\)
\(182\) 0 0
\(183\) −0.209843 −0.0155120
\(184\) 0 0
\(185\) 10.7970 0.793808
\(186\) 0 0
\(187\) 22.8484 1.67084
\(188\) 0 0
\(189\) 19.4952 1.41806
\(190\) 0 0
\(191\) −6.30180 −0.455982 −0.227991 0.973663i \(-0.573216\pi\)
−0.227991 + 0.973663i \(0.573216\pi\)
\(192\) 0 0
\(193\) 15.3789 1.10699 0.553497 0.832851i \(-0.313293\pi\)
0.553497 + 0.832851i \(0.313293\pi\)
\(194\) 0 0
\(195\) −21.2002 −1.51817
\(196\) 0 0
\(197\) −12.7210 −0.906331 −0.453165 0.891426i \(-0.649705\pi\)
−0.453165 + 0.891426i \(0.649705\pi\)
\(198\) 0 0
\(199\) 10.2177 0.724314 0.362157 0.932117i \(-0.382040\pi\)
0.362157 + 0.932117i \(0.382040\pi\)
\(200\) 0 0
\(201\) −18.0566 −1.27361
\(202\) 0 0
\(203\) −1.68455 −0.118232
\(204\) 0 0
\(205\) −3.53315 −0.246766
\(206\) 0 0
\(207\) 30.7765 2.13912
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −5.07310 −0.349246 −0.174623 0.984635i \(-0.555871\pi\)
−0.174623 + 0.984635i \(0.555871\pi\)
\(212\) 0 0
\(213\) −20.5019 −1.40477
\(214\) 0 0
\(215\) 5.55070 0.378555
\(216\) 0 0
\(217\) −1.61831 −0.109858
\(218\) 0 0
\(219\) −44.2460 −2.98987
\(220\) 0 0
\(221\) −40.3068 −2.71133
\(222\) 0 0
\(223\) 8.52635 0.570967 0.285483 0.958384i \(-0.407846\pi\)
0.285483 + 0.958384i \(0.407846\pi\)
\(224\) 0 0
\(225\) 7.01755 0.467837
\(226\) 0 0
\(227\) 20.0566 1.33120 0.665602 0.746307i \(-0.268175\pi\)
0.665602 + 0.746307i \(0.268175\pi\)
\(228\) 0 0
\(229\) 7.92955 0.524000 0.262000 0.965068i \(-0.415618\pi\)
0.262000 + 0.965068i \(0.415618\pi\)
\(230\) 0 0
\(231\) −18.4247 −1.21226
\(232\) 0 0
\(233\) 10.5790 0.693054 0.346527 0.938040i \(-0.387361\pi\)
0.346527 + 0.938040i \(0.387361\pi\)
\(234\) 0 0
\(235\) −11.2381 −0.733096
\(236\) 0 0
\(237\) −6.30859 −0.409787
\(238\) 0 0
\(239\) −5.68065 −0.367451 −0.183725 0.982978i \(-0.558816\pi\)
−0.183725 + 0.982978i \(0.558816\pi\)
\(240\) 0 0
\(241\) −9.51429 −0.612869 −0.306435 0.951892i \(-0.599136\pi\)
−0.306435 + 0.951892i \(0.599136\pi\)
\(242\) 0 0
\(243\) −22.6007 −1.44984
\(244\) 0 0
\(245\) −4.64945 −0.297043
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 32.7509 2.07550
\(250\) 0 0
\(251\) 12.5332 0.791085 0.395543 0.918448i \(-0.370557\pi\)
0.395543 + 0.918448i \(0.370557\pi\)
\(252\) 0 0
\(253\) −16.6521 −1.04691
\(254\) 0 0
\(255\) 19.0459 1.19270
\(256\) 0 0
\(257\) 17.0891 1.06599 0.532993 0.846120i \(-0.321067\pi\)
0.532993 + 0.846120i \(0.321067\pi\)
\(258\) 0 0
\(259\) −16.5533 −1.02857
\(260\) 0 0
\(261\) 7.71054 0.477271
\(262\) 0 0
\(263\) 0.920109 0.0567363 0.0283682 0.999598i \(-0.490969\pi\)
0.0283682 + 0.999598i \(0.490969\pi\)
\(264\) 0 0
\(265\) −1.57636 −0.0968347
\(266\) 0 0
\(267\) 9.72651 0.595252
\(268\) 0 0
\(269\) −25.3652 −1.54654 −0.773272 0.634075i \(-0.781381\pi\)
−0.773272 + 0.634075i \(0.781381\pi\)
\(270\) 0 0
\(271\) −11.2366 −0.682572 −0.341286 0.939959i \(-0.610863\pi\)
−0.341286 + 0.939959i \(0.610863\pi\)
\(272\) 0 0
\(273\) 32.5030 1.96717
\(274\) 0 0
\(275\) −3.79695 −0.228965
\(276\) 0 0
\(277\) 16.5491 0.994340 0.497170 0.867653i \(-0.334373\pi\)
0.497170 + 0.867653i \(0.334373\pi\)
\(278\) 0 0
\(279\) 7.40735 0.443466
\(280\) 0 0
\(281\) 10.5790 0.631090 0.315545 0.948911i \(-0.397813\pi\)
0.315545 + 0.948911i \(0.397813\pi\)
\(282\) 0 0
\(283\) 20.7414 1.23295 0.616474 0.787375i \(-0.288560\pi\)
0.616474 + 0.787375i \(0.288560\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 5.41685 0.319746
\(288\) 0 0
\(289\) 19.2109 1.13005
\(290\) 0 0
\(291\) 28.0742 1.64574
\(292\) 0 0
\(293\) −13.6846 −0.799460 −0.399730 0.916633i \(-0.630896\pi\)
−0.399730 + 0.916633i \(0.630896\pi\)
\(294\) 0 0
\(295\) −3.23135 −0.188137
\(296\) 0 0
\(297\) 48.2811 2.80155
\(298\) 0 0
\(299\) 29.3760 1.69886
\(300\) 0 0
\(301\) −8.51006 −0.490511
\(302\) 0 0
\(303\) −19.6495 −1.12883
\(304\) 0 0
\(305\) 0.0663000 0.00379633
\(306\) 0 0
\(307\) 8.63745 0.492965 0.246483 0.969147i \(-0.420725\pi\)
0.246483 + 0.969147i \(0.420725\pi\)
\(308\) 0 0
\(309\) −0.800911 −0.0455622
\(310\) 0 0
\(311\) 29.7658 1.68786 0.843930 0.536453i \(-0.180236\pi\)
0.843930 + 0.536453i \(0.180236\pi\)
\(312\) 0 0
\(313\) 11.2083 0.633528 0.316764 0.948504i \(-0.397404\pi\)
0.316764 + 0.948504i \(0.397404\pi\)
\(314\) 0 0
\(315\) −10.7590 −0.606199
\(316\) 0 0
\(317\) 4.69299 0.263585 0.131792 0.991277i \(-0.457927\pi\)
0.131792 + 0.991277i \(0.457927\pi\)
\(318\) 0 0
\(319\) −4.17191 −0.233582
\(320\) 0 0
\(321\) −19.1661 −1.06975
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 6.69820 0.371549
\(326\) 0 0
\(327\) 16.6130 0.918703
\(328\) 0 0
\(329\) 17.2298 0.949908
\(330\) 0 0
\(331\) −29.1137 −1.60024 −0.800118 0.599843i \(-0.795230\pi\)
−0.800118 + 0.599843i \(0.795230\pi\)
\(332\) 0 0
\(333\) 75.7682 4.15207
\(334\) 0 0
\(335\) 5.70500 0.311697
\(336\) 0 0
\(337\) −23.1580 −1.26150 −0.630749 0.775987i \(-0.717252\pi\)
−0.630749 + 0.775987i \(0.717252\pi\)
\(338\) 0 0
\(339\) 7.68745 0.417525
\(340\) 0 0
\(341\) −4.00786 −0.217038
\(342\) 0 0
\(343\) 17.8604 0.964369
\(344\) 0 0
\(345\) −13.8808 −0.747317
\(346\) 0 0
\(347\) 15.6618 0.840769 0.420385 0.907346i \(-0.361895\pi\)
0.420385 + 0.907346i \(0.361895\pi\)
\(348\) 0 0
\(349\) −9.72130 −0.520369 −0.260185 0.965559i \(-0.583783\pi\)
−0.260185 + 0.965559i \(0.583783\pi\)
\(350\) 0 0
\(351\) −85.1727 −4.54618
\(352\) 0 0
\(353\) 11.3789 0.605635 0.302818 0.953049i \(-0.402073\pi\)
0.302818 + 0.953049i \(0.402073\pi\)
\(354\) 0 0
\(355\) 6.47760 0.343796
\(356\) 0 0
\(357\) −29.2002 −1.54544
\(358\) 0 0
\(359\) 28.7753 1.51870 0.759350 0.650682i \(-0.225517\pi\)
0.759350 + 0.650682i \(0.225517\pi\)
\(360\) 0 0
\(361\) 0 0
\(362\) 0 0
\(363\) −10.8145 −0.567614
\(364\) 0 0
\(365\) 13.9796 0.731723
\(366\) 0 0
\(367\) −24.1297 −1.25956 −0.629780 0.776773i \(-0.716855\pi\)
−0.629780 + 0.776773i \(0.716855\pi\)
\(368\) 0 0
\(369\) −24.7941 −1.29073
\(370\) 0 0
\(371\) 2.41679 0.125473
\(372\) 0 0
\(373\) 26.7281 1.38393 0.691964 0.721932i \(-0.256746\pi\)
0.691964 + 0.721932i \(0.256746\pi\)
\(374\) 0 0
\(375\) −3.16505 −0.163443
\(376\) 0 0
\(377\) 7.35966 0.379042
\(378\) 0 0
\(379\) −4.29369 −0.220552 −0.110276 0.993901i \(-0.535174\pi\)
−0.110276 + 0.993901i \(0.535174\pi\)
\(380\) 0 0
\(381\) −61.0820 −3.12933
\(382\) 0 0
\(383\) −5.57221 −0.284727 −0.142363 0.989814i \(-0.545470\pi\)
−0.142363 + 0.989814i \(0.545470\pi\)
\(384\) 0 0
\(385\) 5.82130 0.296681
\(386\) 0 0
\(387\) 38.9523 1.98006
\(388\) 0 0
\(389\) 28.1486 1.42719 0.713594 0.700559i \(-0.247066\pi\)
0.713594 + 0.700559i \(0.247066\pi\)
\(390\) 0 0
\(391\) −26.3909 −1.33464
\(392\) 0 0
\(393\) 41.9675 2.11698
\(394\) 0 0
\(395\) 1.99320 0.100289
\(396\) 0 0
\(397\) 34.7425 1.74367 0.871837 0.489796i \(-0.162929\pi\)
0.871837 + 0.489796i \(0.162929\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 0 0
\(401\) 23.8740 1.19221 0.596106 0.802906i \(-0.296714\pi\)
0.596106 + 0.802906i \(0.296714\pi\)
\(402\) 0 0
\(403\) 7.07026 0.352195
\(404\) 0 0
\(405\) 19.1934 0.953725
\(406\) 0 0
\(407\) −40.9955 −2.03207
\(408\) 0 0
\(409\) 37.4692 1.85273 0.926365 0.376626i \(-0.122916\pi\)
0.926365 + 0.376626i \(0.122916\pi\)
\(410\) 0 0
\(411\) 49.2188 2.42778
\(412\) 0 0
\(413\) 4.95415 0.243778
\(414\) 0 0
\(415\) −10.3477 −0.507946
\(416\) 0 0
\(417\) 58.9402 2.88632
\(418\) 0 0
\(419\) −0.360241 −0.0175989 −0.00879947 0.999961i \(-0.502801\pi\)
−0.00879947 + 0.999961i \(0.502801\pi\)
\(420\) 0 0
\(421\) −24.2486 −1.18180 −0.590901 0.806744i \(-0.701228\pi\)
−0.590901 + 0.806744i \(0.701228\pi\)
\(422\) 0 0
\(423\) −78.8643 −3.83451
\(424\) 0 0
\(425\) −6.01755 −0.291894
\(426\) 0 0
\(427\) −0.101648 −0.00491909
\(428\) 0 0
\(429\) 80.4960 3.88638
\(430\) 0 0
\(431\) 12.6413 0.608912 0.304456 0.952526i \(-0.401525\pi\)
0.304456 + 0.952526i \(0.401525\pi\)
\(432\) 0 0
\(433\) 24.4640 1.17566 0.587831 0.808984i \(-0.299982\pi\)
0.587831 + 0.808984i \(0.299982\pi\)
\(434\) 0 0
\(435\) −3.47760 −0.166738
\(436\) 0 0
\(437\) 0 0
\(438\) 0 0
\(439\) 24.8009 1.18368 0.591840 0.806055i \(-0.298402\pi\)
0.591840 + 0.806055i \(0.298402\pi\)
\(440\) 0 0
\(441\) −32.6278 −1.55370
\(442\) 0 0
\(443\) 30.2636 1.43786 0.718932 0.695080i \(-0.244631\pi\)
0.718932 + 0.695080i \(0.244631\pi\)
\(444\) 0 0
\(445\) −3.07310 −0.145679
\(446\) 0 0
\(447\) 14.8360 0.701719
\(448\) 0 0
\(449\) 29.0742 1.37209 0.686047 0.727557i \(-0.259344\pi\)
0.686047 + 0.727557i \(0.259344\pi\)
\(450\) 0 0
\(451\) 13.4152 0.631697
\(452\) 0 0
\(453\) −18.7805 −0.882383
\(454\) 0 0
\(455\) −10.2693 −0.481434
\(456\) 0 0
\(457\) −3.06234 −0.143250 −0.0716251 0.997432i \(-0.522819\pi\)
−0.0716251 + 0.997432i \(0.522819\pi\)
\(458\) 0 0
\(459\) 76.5177 3.57154
\(460\) 0 0
\(461\) −26.5869 −1.23827 −0.619137 0.785283i \(-0.712517\pi\)
−0.619137 + 0.785283i \(0.712517\pi\)
\(462\) 0 0
\(463\) 4.82684 0.224322 0.112161 0.993690i \(-0.464223\pi\)
0.112161 + 0.993690i \(0.464223\pi\)
\(464\) 0 0
\(465\) −3.34086 −0.154929
\(466\) 0 0
\(467\) −1.31539 −0.0608690 −0.0304345 0.999537i \(-0.509689\pi\)
−0.0304345 + 0.999537i \(0.509689\pi\)
\(468\) 0 0
\(469\) −8.74662 −0.403881
\(470\) 0 0
\(471\) 29.4150 1.35537
\(472\) 0 0
\(473\) −21.0757 −0.969064
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −11.0622 −0.506501
\(478\) 0 0
\(479\) 19.0783 0.871710 0.435855 0.900017i \(-0.356446\pi\)
0.435855 + 0.900017i \(0.356446\pi\)
\(480\) 0 0
\(481\) 72.3202 3.29752
\(482\) 0 0
\(483\) 21.2814 0.968335
\(484\) 0 0
\(485\) −8.87005 −0.402768
\(486\) 0 0
\(487\) 8.23656 0.373234 0.186617 0.982433i \(-0.440248\pi\)
0.186617 + 0.982433i \(0.440248\pi\)
\(488\) 0 0
\(489\) −18.6262 −0.842304
\(490\) 0 0
\(491\) 30.9551 1.39699 0.698493 0.715617i \(-0.253854\pi\)
0.698493 + 0.715617i \(0.253854\pi\)
\(492\) 0 0
\(493\) −6.61179 −0.297780
\(494\) 0 0
\(495\) −26.6453 −1.19762
\(496\) 0 0
\(497\) −9.93114 −0.445472
\(498\) 0 0
\(499\) 1.10951 0.0496683 0.0248341 0.999692i \(-0.492094\pi\)
0.0248341 + 0.999692i \(0.492094\pi\)
\(500\) 0 0
\(501\) 40.5030 1.80954
\(502\) 0 0
\(503\) 8.65104 0.385731 0.192865 0.981225i \(-0.438222\pi\)
0.192865 + 0.981225i \(0.438222\pi\)
\(504\) 0 0
\(505\) 6.20826 0.276264
\(506\) 0 0
\(507\) −100.857 −4.47923
\(508\) 0 0
\(509\) 20.7888 0.921449 0.460725 0.887543i \(-0.347590\pi\)
0.460725 + 0.887543i \(0.347590\pi\)
\(510\) 0 0
\(511\) −21.4328 −0.948129
\(512\) 0 0
\(513\) 0 0
\(514\) 0 0
\(515\) 0.253048 0.0111506
\(516\) 0 0
\(517\) 42.6707 1.87666
\(518\) 0 0
\(519\) −47.6044 −2.08960
\(520\) 0 0
\(521\) 24.5098 1.07379 0.536897 0.843648i \(-0.319596\pi\)
0.536897 + 0.843648i \(0.319596\pi\)
\(522\) 0 0
\(523\) −18.0689 −0.790100 −0.395050 0.918660i \(-0.629273\pi\)
−0.395050 + 0.918660i \(0.629273\pi\)
\(524\) 0 0
\(525\) 4.85250 0.211780
\(526\) 0 0
\(527\) −6.35180 −0.276689
\(528\) 0 0
\(529\) −3.76609 −0.163743
\(530\) 0 0
\(531\) −22.6762 −0.984062
\(532\) 0 0
\(533\) −23.6658 −1.02508
\(534\) 0 0
\(535\) 6.05555 0.261804
\(536\) 0 0
\(537\) 68.1915 2.94268
\(538\) 0 0
\(539\) 17.6537 0.760401
\(540\) 0 0
\(541\) −17.5088 −0.752762 −0.376381 0.926465i \(-0.622832\pi\)
−0.376381 + 0.926465i \(0.622832\pi\)
\(542\) 0 0
\(543\) 13.5167 0.580055
\(544\) 0 0
\(545\) −5.24890 −0.224838
\(546\) 0 0
\(547\) −26.9728 −1.15327 −0.576636 0.817001i \(-0.695635\pi\)
−0.576636 + 0.817001i \(0.695635\pi\)
\(548\) 0 0
\(549\) 0.465264 0.0198570
\(550\) 0 0
\(551\) 0 0
\(552\) 0 0
\(553\) −3.05588 −0.129949
\(554\) 0 0
\(555\) −34.1729 −1.45056
\(556\) 0 0
\(557\) −15.9672 −0.676553 −0.338276 0.941047i \(-0.609844\pi\)
−0.338276 + 0.941047i \(0.609844\pi\)
\(558\) 0 0
\(559\) 37.1797 1.57253
\(560\) 0 0
\(561\) −72.3162 −3.05319
\(562\) 0 0
\(563\) 8.58711 0.361904 0.180952 0.983492i \(-0.442082\pi\)
0.180952 + 0.983492i \(0.442082\pi\)
\(564\) 0 0
\(565\) −2.42885 −0.102183
\(566\) 0 0
\(567\) −29.4263 −1.23579
\(568\) 0 0
\(569\) −22.5910 −0.947064 −0.473532 0.880777i \(-0.657021\pi\)
−0.473532 + 0.880777i \(0.657021\pi\)
\(570\) 0 0
\(571\) 17.1000 0.715613 0.357806 0.933796i \(-0.383525\pi\)
0.357806 + 0.933796i \(0.383525\pi\)
\(572\) 0 0
\(573\) 19.9455 0.833236
\(574\) 0 0
\(575\) 4.38565 0.182894
\(576\) 0 0
\(577\) −0.677755 −0.0282153 −0.0141077 0.999900i \(-0.504491\pi\)
−0.0141077 + 0.999900i \(0.504491\pi\)
\(578\) 0 0
\(579\) −48.6749 −2.02286
\(580\) 0 0
\(581\) 15.8645 0.658171
\(582\) 0 0
\(583\) 5.98535 0.247888
\(584\) 0 0
\(585\) 47.0050 1.94342
\(586\) 0 0
\(587\) 27.3718 1.12976 0.564878 0.825175i \(-0.308923\pi\)
0.564878 + 0.825175i \(0.308923\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 40.2625 1.65618
\(592\) 0 0
\(593\) 8.37879 0.344076 0.172038 0.985090i \(-0.444965\pi\)
0.172038 + 0.985090i \(0.444965\pi\)
\(594\) 0 0
\(595\) 9.22581 0.378221
\(596\) 0 0
\(597\) −32.3395 −1.32357
\(598\) 0 0
\(599\) 33.9107 1.38555 0.692777 0.721152i \(-0.256387\pi\)
0.692777 + 0.721152i \(0.256387\pi\)
\(600\) 0 0
\(601\) 5.74951 0.234528 0.117264 0.993101i \(-0.462588\pi\)
0.117264 + 0.993101i \(0.462588\pi\)
\(602\) 0 0
\(603\) 40.0351 1.63036
\(604\) 0 0
\(605\) 3.41685 0.138915
\(606\) 0 0
\(607\) 8.87815 0.360353 0.180177 0.983634i \(-0.442333\pi\)
0.180177 + 0.983634i \(0.442333\pi\)
\(608\) 0 0
\(609\) 5.33169 0.216051
\(610\) 0 0
\(611\) −75.2754 −3.04532
\(612\) 0 0
\(613\) −12.0420 −0.486370 −0.243185 0.969980i \(-0.578192\pi\)
−0.243185 + 0.969980i \(0.578192\pi\)
\(614\) 0 0
\(615\) 11.1826 0.450926
\(616\) 0 0
\(617\) 46.8724 1.88701 0.943505 0.331358i \(-0.107507\pi\)
0.943505 + 0.331358i \(0.107507\pi\)
\(618\) 0 0
\(619\) 14.8700 0.597678 0.298839 0.954304i \(-0.403401\pi\)
0.298839 + 0.954304i \(0.403401\pi\)
\(620\) 0 0
\(621\) −55.7668 −2.23785
\(622\) 0 0
\(623\) 4.71152 0.188763
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) −64.9712 −2.59057
\(630\) 0 0
\(631\) 17.4247 0.693667 0.346833 0.937927i \(-0.387257\pi\)
0.346833 + 0.937927i \(0.387257\pi\)
\(632\) 0 0
\(633\) 16.0566 0.638193
\(634\) 0 0
\(635\) 19.2989 0.765854
\(636\) 0 0
\(637\) −31.1430 −1.23393
\(638\) 0 0
\(639\) 45.4569 1.79825
\(640\) 0 0
\(641\) −31.9945 −1.26371 −0.631854 0.775087i \(-0.717706\pi\)
−0.631854 + 0.775087i \(0.717706\pi\)
\(642\) 0 0
\(643\) 35.0406 1.38187 0.690934 0.722918i \(-0.257199\pi\)
0.690934 + 0.722918i \(0.257199\pi\)
\(644\) 0 0
\(645\) −17.5682 −0.691749
\(646\) 0 0
\(647\) 17.4260 0.685087 0.342544 0.939502i \(-0.388712\pi\)
0.342544 + 0.939502i \(0.388712\pi\)
\(648\) 0 0
\(649\) 12.2693 0.481612
\(650\) 0 0
\(651\) 5.12203 0.200748
\(652\) 0 0
\(653\) −49.1457 −1.92322 −0.961609 0.274422i \(-0.911513\pi\)
−0.961609 + 0.274422i \(0.911513\pi\)
\(654\) 0 0
\(655\) −13.2597 −0.518098
\(656\) 0 0
\(657\) 98.1022 3.82733
\(658\) 0 0
\(659\) −1.72544 −0.0672137 −0.0336069 0.999435i \(-0.510699\pi\)
−0.0336069 + 0.999435i \(0.510699\pi\)
\(660\) 0 0
\(661\) −21.9187 −0.852540 −0.426270 0.904596i \(-0.640173\pi\)
−0.426270 + 0.904596i \(0.640173\pi\)
\(662\) 0 0
\(663\) 127.573 4.95452
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) 4.81874 0.186582
\(668\) 0 0
\(669\) −26.9863 −1.04335
\(670\) 0 0
\(671\) −0.251738 −0.00971824
\(672\) 0 0
\(673\) −6.63165 −0.255631 −0.127816 0.991798i \(-0.540797\pi\)
−0.127816 + 0.991798i \(0.540797\pi\)
\(674\) 0 0
\(675\) −12.7158 −0.489429
\(676\) 0 0
\(677\) −32.7008 −1.25679 −0.628397 0.777893i \(-0.716289\pi\)
−0.628397 + 0.777893i \(0.716289\pi\)
\(678\) 0 0
\(679\) 13.5991 0.521886
\(680\) 0 0
\(681\) −63.4802 −2.43257
\(682\) 0 0
\(683\) 51.9872 1.98923 0.994617 0.103622i \(-0.0330432\pi\)
0.994617 + 0.103622i \(0.0330432\pi\)
\(684\) 0 0
\(685\) −15.5507 −0.594162
\(686\) 0 0
\(687\) −25.0974 −0.957527
\(688\) 0 0
\(689\) −10.5587 −0.402256
\(690\) 0 0
\(691\) −8.93635 −0.339955 −0.169977 0.985448i \(-0.554369\pi\)
−0.169977 + 0.985448i \(0.554369\pi\)
\(692\) 0 0
\(693\) 40.8512 1.55181
\(694\) 0 0
\(695\) −18.6222 −0.706381
\(696\) 0 0
\(697\) 21.2609 0.805314
\(698\) 0 0
\(699\) −33.4831 −1.26645
\(700\) 0 0
\(701\) 2.25853 0.0853036 0.0426518 0.999090i \(-0.486419\pi\)
0.0426518 + 0.999090i \(0.486419\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 35.5693 1.33962
\(706\) 0 0
\(707\) −9.51819 −0.357968
\(708\) 0 0
\(709\) 46.8090 1.75795 0.878975 0.476867i \(-0.158228\pi\)
0.878975 + 0.476867i \(0.158228\pi\)
\(710\) 0 0
\(711\) 13.9874 0.524569
\(712\) 0 0
\(713\) 4.62925 0.173367
\(714\) 0 0
\(715\) −25.4328 −0.951131
\(716\) 0 0
\(717\) 17.9796 0.671459
\(718\) 0 0
\(719\) −23.5140 −0.876925 −0.438462 0.898750i \(-0.644477\pi\)
−0.438462 + 0.898750i \(0.644477\pi\)
\(720\) 0 0
\(721\) −0.387961 −0.0144484
\(722\) 0 0
\(723\) 30.1132 1.11992
\(724\) 0 0
\(725\) 1.09875 0.0408066
\(726\) 0 0
\(727\) −25.4747 −0.944805 −0.472402 0.881383i \(-0.656613\pi\)
−0.472402 + 0.881383i \(0.656613\pi\)
\(728\) 0 0
\(729\) 13.9523 0.516752
\(730\) 0 0
\(731\) −33.4016 −1.23540
\(732\) 0 0
\(733\) −1.41916 −0.0524179 −0.0262090 0.999656i \(-0.508344\pi\)
−0.0262090 + 0.999656i \(0.508344\pi\)
\(734\) 0 0
\(735\) 14.7158 0.542799
\(736\) 0 0
\(737\) −21.6616 −0.797915
\(738\) 0 0
\(739\) −21.5398 −0.792353 −0.396176 0.918174i \(-0.629663\pi\)
−0.396176 + 0.918174i \(0.629663\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 42.5625 1.56147 0.780734 0.624864i \(-0.214846\pi\)
0.780734 + 0.624864i \(0.214846\pi\)
\(744\) 0 0
\(745\) −4.68745 −0.171735
\(746\) 0 0
\(747\) −72.6152 −2.65685
\(748\) 0 0
\(749\) −9.28406 −0.339232
\(750\) 0 0
\(751\) −18.6142 −0.679240 −0.339620 0.940563i \(-0.610299\pi\)
−0.339620 + 0.940563i \(0.610299\pi\)
\(752\) 0 0
\(753\) −39.6681 −1.44558
\(754\) 0 0
\(755\) 5.93370 0.215949
\(756\) 0 0
\(757\) −30.7684 −1.11830 −0.559148 0.829068i \(-0.688872\pi\)
−0.559148 + 0.829068i \(0.688872\pi\)
\(758\) 0 0
\(759\) 52.7047 1.91306
\(760\) 0 0
\(761\) 13.9270 0.504853 0.252427 0.967616i \(-0.418771\pi\)
0.252427 + 0.967616i \(0.418771\pi\)
\(762\) 0 0
\(763\) 8.04735 0.291334
\(764\) 0 0
\(765\) −42.2285 −1.52677
\(766\) 0 0
\(767\) −21.6442 −0.781528
\(768\) 0 0
\(769\) −48.6332 −1.75376 −0.876880 0.480710i \(-0.840379\pi\)
−0.876880 + 0.480710i \(0.840379\pi\)
\(770\) 0 0
\(771\) −54.0877 −1.94792
\(772\) 0 0
\(773\) 19.5855 0.704442 0.352221 0.935917i \(-0.385426\pi\)
0.352221 + 0.935917i \(0.385426\pi\)
\(774\) 0 0
\(775\) 1.05555 0.0379163
\(776\) 0 0
\(777\) 52.3922 1.87956
\(778\) 0 0
\(779\) 0 0
\(780\) 0 0
\(781\) −24.5952 −0.880084
\(782\) 0 0
\(783\) −13.9714 −0.499299
\(784\) 0 0
\(785\) −9.29369 −0.331706
\(786\) 0 0
\(787\) −13.4029 −0.477760 −0.238880 0.971049i \(-0.576780\pi\)
−0.238880 + 0.971049i \(0.576780\pi\)
\(788\) 0 0
\(789\) −2.91219 −0.103677
\(790\) 0 0
\(791\) 3.72380 0.132403
\(792\) 0 0
\(793\) 0.444091 0.0157701
\(794\) 0 0
\(795\) 4.98925 0.176950
\(796\) 0 0
\(797\) −30.0201 −1.06337 −0.531684 0.846943i \(-0.678441\pi\)
−0.531684 + 0.846943i \(0.678441\pi\)
\(798\) 0 0
\(799\) 67.6261 2.39244
\(800\) 0 0
\(801\) −21.5656 −0.761983
\(802\) 0 0
\(803\) −53.0797 −1.87314
\(804\) 0 0
\(805\) −6.72386 −0.236985
\(806\) 0 0
\(807\) 80.2822 2.82607
\(808\) 0 0
\(809\) −13.4967 −0.474520 −0.237260 0.971446i \(-0.576249\pi\)
−0.237260 + 0.971446i \(0.576249\pi\)
\(810\) 0 0
\(811\) 5.26520 0.184886 0.0924431 0.995718i \(-0.470532\pi\)
0.0924431 + 0.995718i \(0.470532\pi\)
\(812\) 0 0
\(813\) 35.5643 1.24729
\(814\) 0 0
\(815\) 5.88495 0.206141
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −72.0657 −2.51818
\(820\) 0 0
\(821\) −32.8295 −1.14576 −0.572879 0.819640i \(-0.694173\pi\)
−0.572879 + 0.819640i \(0.694173\pi\)
\(822\) 0 0
\(823\) 41.7154 1.45411 0.727054 0.686580i \(-0.240889\pi\)
0.727054 + 0.686580i \(0.240889\pi\)
\(824\) 0 0
\(825\) 12.0175 0.418397
\(826\) 0 0
\(827\) 12.1905 0.423904 0.211952 0.977280i \(-0.432018\pi\)
0.211952 + 0.977280i \(0.432018\pi\)
\(828\) 0 0
\(829\) 52.9958 1.84062 0.920310 0.391190i \(-0.127936\pi\)
0.920310 + 0.391190i \(0.127936\pi\)
\(830\) 0 0
\(831\) −52.3788 −1.81700
\(832\) 0 0
\(833\) 27.9783 0.969391
\(834\) 0 0
\(835\) −12.7970 −0.442857
\(836\) 0 0
\(837\) −13.4221 −0.463934
\(838\) 0 0
\(839\) 15.2164 0.525330 0.262665 0.964887i \(-0.415399\pi\)
0.262665 + 0.964887i \(0.415399\pi\)
\(840\) 0 0
\(841\) −27.7927 −0.958371
\(842\) 0 0
\(843\) −33.4831 −1.15322
\(844\) 0 0
\(845\) 31.8659 1.09622
\(846\) 0 0
\(847\) −5.23854 −0.179998
\(848\) 0 0
\(849\) −65.6476 −2.25302
\(850\) 0 0
\(851\) 47.3516 1.62319
\(852\) 0 0
\(853\) −47.1459 −1.61424 −0.807122 0.590385i \(-0.798976\pi\)
−0.807122 + 0.590385i \(0.798976\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 51.3812 1.75515 0.877574 0.479442i \(-0.159161\pi\)
0.877574 + 0.479442i \(0.159161\pi\)
\(858\) 0 0
\(859\) 2.06109 0.0703235 0.0351618 0.999382i \(-0.488805\pi\)
0.0351618 + 0.999382i \(0.488805\pi\)
\(860\) 0 0
\(861\) −17.1446 −0.584287
\(862\) 0 0
\(863\) 35.8646 1.22084 0.610422 0.792076i \(-0.291000\pi\)
0.610422 + 0.792076i \(0.291000\pi\)
\(864\) 0 0
\(865\) 15.0406 0.511397
\(866\) 0 0
\(867\) −60.8035 −2.06500
\(868\) 0 0
\(869\) −7.56810 −0.256730
\(870\) 0 0
\(871\) 38.2132 1.29481
\(872\) 0 0
\(873\) −62.2460 −2.10671
\(874\) 0 0
\(875\) −1.53315 −0.0518299
\(876\) 0 0
\(877\) −13.0920 −0.442084 −0.221042 0.975264i \(-0.570946\pi\)
−0.221042 + 0.975264i \(0.570946\pi\)
\(878\) 0 0
\(879\) 43.3123 1.46089
\(880\) 0 0
\(881\) −26.9322 −0.907369 −0.453684 0.891162i \(-0.649891\pi\)
−0.453684 + 0.891162i \(0.649891\pi\)
\(882\) 0 0
\(883\) −29.6345 −0.997280 −0.498640 0.866809i \(-0.666167\pi\)
−0.498640 + 0.866809i \(0.666167\pi\)
\(884\) 0 0
\(885\) 10.2274 0.343790
\(886\) 0 0
\(887\) 30.4302 1.02175 0.510873 0.859656i \(-0.329322\pi\)
0.510873 + 0.859656i \(0.329322\pi\)
\(888\) 0 0
\(889\) −29.5881 −0.992353
\(890\) 0 0
\(891\) −72.8763 −2.44145
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) −21.5452 −0.720175
\(896\) 0 0
\(897\) −92.9764 −3.10439
\(898\) 0 0
\(899\) 1.15978 0.0386809
\(900\) 0 0
\(901\) 9.48580 0.316018
\(902\) 0 0
\(903\) 26.9348 0.896333
\(904\) 0 0
\(905\) −4.27060 −0.141959
\(906\) 0 0
\(907\) −11.1936 −0.371678 −0.185839 0.982580i \(-0.559500\pi\)
−0.185839 + 0.982580i \(0.559500\pi\)
\(908\) 0 0
\(909\) 43.5668 1.44502
\(910\) 0 0
\(911\) 0.339795 0.0112579 0.00562895 0.999984i \(-0.498208\pi\)
0.00562895 + 0.999984i \(0.498208\pi\)
\(912\) 0 0
\(913\) 39.2895 1.30029
\(914\) 0 0
\(915\) −0.209843 −0.00693720
\(916\) 0 0
\(917\) 20.3290 0.671324
\(918\) 0 0
\(919\) −15.0715 −0.497163 −0.248582 0.968611i \(-0.579964\pi\)
−0.248582 + 0.968611i \(0.579964\pi\)
\(920\) 0 0
\(921\) −27.3380 −0.900816
\(922\) 0 0
\(923\) 43.3883 1.42814
\(924\) 0 0
\(925\) 10.7970 0.355002
\(926\) 0 0
\(927\) 1.77578 0.0583243
\(928\) 0 0
\(929\) 22.6557 0.743310 0.371655 0.928371i \(-0.378790\pi\)
0.371655 + 0.928371i \(0.378790\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) 0 0
\(933\) −94.2101 −3.08430
\(934\) 0 0
\(935\) 22.8484 0.747221
\(936\) 0 0
\(937\) 18.8253 0.614996 0.307498 0.951549i \(-0.400508\pi\)
0.307498 + 0.951549i \(0.400508\pi\)
\(938\) 0 0
\(939\) −35.4747 −1.15767
\(940\) 0 0
\(941\) 13.8308 0.450871 0.225436 0.974258i \(-0.427619\pi\)
0.225436 + 0.974258i \(0.427619\pi\)
\(942\) 0 0
\(943\) −15.4952 −0.504592
\(944\) 0 0
\(945\) 19.4952 0.634177
\(946\) 0 0
\(947\) 46.0105 1.49514 0.747570 0.664183i \(-0.231220\pi\)
0.747570 + 0.664183i \(0.231220\pi\)
\(948\) 0 0
\(949\) 93.6379 3.03961
\(950\) 0 0
\(951\) −14.8536 −0.481660
\(952\) 0 0
\(953\) 7.44384 0.241130 0.120565 0.992705i \(-0.461529\pi\)
0.120565 + 0.992705i \(0.461529\pi\)
\(954\) 0 0
\(955\) −6.30180 −0.203921
\(956\) 0 0
\(957\) 13.2043 0.426834
\(958\) 0 0
\(959\) 23.8416 0.769884
\(960\) 0 0
\(961\) −29.8858 −0.964059
\(962\) 0 0
\(963\) 42.4951 1.36939
\(964\) 0 0
\(965\) 15.3789 0.495063
\(966\) 0 0
\(967\) −41.6752 −1.34018 −0.670092 0.742278i \(-0.733745\pi\)
−0.670092 + 0.742278i \(0.733745\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 19.2690 0.618372 0.309186 0.951002i \(-0.399943\pi\)
0.309186 + 0.951002i \(0.399943\pi\)
\(972\) 0 0
\(973\) 28.5506 0.915292
\(974\) 0 0
\(975\) −21.2002 −0.678948
\(976\) 0 0
\(977\) −19.7307 −0.631242 −0.315621 0.948885i \(-0.602213\pi\)
−0.315621 + 0.948885i \(0.602213\pi\)
\(978\) 0 0
\(979\) 11.6684 0.372924
\(980\) 0 0
\(981\) −36.8344 −1.17603
\(982\) 0 0
\(983\) −33.2636 −1.06094 −0.530472 0.847702i \(-0.677985\pi\)
−0.530472 + 0.847702i \(0.677985\pi\)
\(984\) 0 0
\(985\) −12.7210 −0.405324
\(986\) 0 0
\(987\) −54.5331 −1.73581
\(988\) 0 0
\(989\) 24.3434 0.774076
\(990\) 0 0
\(991\) 17.8161 0.565947 0.282973 0.959128i \(-0.408679\pi\)
0.282973 + 0.959128i \(0.408679\pi\)
\(992\) 0 0
\(993\) 92.1465 2.92418
\(994\) 0 0
\(995\) 10.2177 0.323923
\(996\) 0 0
\(997\) 21.2096 0.671715 0.335857 0.941913i \(-0.390974\pi\)
0.335857 + 0.941913i \(0.390974\pi\)
\(998\) 0 0
\(999\) −137.291 −4.34371
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 7220.2.a.p.1.1 4
19.8 odd 6 380.2.i.c.121.1 8
19.12 odd 6 380.2.i.c.201.1 yes 8
19.18 odd 2 7220.2.a.r.1.4 4
57.8 even 6 3420.2.t.w.1261.2 8
57.50 even 6 3420.2.t.w.3241.2 8
76.27 even 6 1520.2.q.m.881.4 8
76.31 even 6 1520.2.q.m.961.4 8
95.8 even 12 1900.2.s.d.349.8 16
95.12 even 12 1900.2.s.d.49.8 16
95.27 even 12 1900.2.s.d.349.1 16
95.69 odd 6 1900.2.i.d.201.4 8
95.84 odd 6 1900.2.i.d.501.4 8
95.88 even 12 1900.2.s.d.49.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
380.2.i.c.121.1 8 19.8 odd 6
380.2.i.c.201.1 yes 8 19.12 odd 6
1520.2.q.m.881.4 8 76.27 even 6
1520.2.q.m.961.4 8 76.31 even 6
1900.2.i.d.201.4 8 95.69 odd 6
1900.2.i.d.501.4 8 95.84 odd 6
1900.2.s.d.49.1 16 95.88 even 12
1900.2.s.d.49.8 16 95.12 even 12
1900.2.s.d.349.1 16 95.27 even 12
1900.2.s.d.349.8 16 95.8 even 12
3420.2.t.w.1261.2 8 57.8 even 6
3420.2.t.w.3241.2 8 57.50 even 6
7220.2.a.p.1.1 4 1.1 even 1 trivial
7220.2.a.r.1.4 4 19.18 odd 2