Properties

Label 725.2.bh.a
Level $725$
Weight $2$
Character orbit 725.bh
Analytic conductor $5.789$
Analytic rank $0$
Dimension $1728$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(4,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(70))
 
chi = DirichletCharacter(H, H._module([7, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.4");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.bh (of order \(70\), degree \(24\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(1728\)
Relative dimension: \(72\) over \(\Q(\zeta_{70})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{70}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 1728 q - 35 q^{2} - 35 q^{3} + 53 q^{4} - 16 q^{5} - 19 q^{6} - 35 q^{8} + 49 q^{9} - 28 q^{10} - 21 q^{11} - 25 q^{13} - 21 q^{14} - 42 q^{15} + 37 q^{16} - 21 q^{19} + 54 q^{20} - 21 q^{21} - 25 q^{22}+ \cdots - 315 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
4.1 −2.33360 1.39426i 0.138522 + 0.0251381i 2.55400 + 4.74613i 1.98321 + 1.03290i −0.288207 0.251799i −1.79078 3.71860i 0.413407 9.20523i −2.79015 1.04716i −3.18788 5.17550i
4.2 −2.28087 1.36276i −0.217703 0.0395073i 2.39754 + 4.45537i −2.21603 0.298704i 0.442714 + 0.386788i 1.95832 + 4.06648i 0.364706 8.12082i −2.76287 1.03692i 4.64742 + 3.70122i
4.3 −2.24894 1.34368i −1.38786 0.251859i 2.30452 + 4.28251i 1.12834 1.93050i 2.78279 + 2.43125i 0.508509 + 1.05593i 0.336527 7.49336i −0.945985 0.355034i −5.13155 + 2.82545i
4.4 −2.21712 1.32467i 2.16210 + 0.392364i 2.21314 + 4.11270i −0.398218 2.20032i −4.27389 3.73399i 0.223641 + 0.464395i 0.309422 6.88982i 1.71203 + 0.642537i −2.03180 + 5.40589i
4.5 −2.20332 1.31642i −1.84341 0.334530i 2.17391 + 4.03980i −1.41303 + 1.73302i 3.62124 + 3.16378i −0.499893 1.03804i 0.297963 6.63465i 0.477548 + 0.179227i 5.39473 1.95825i
4.6 −2.18130 1.30327i 3.21140 + 0.582784i 2.11184 + 3.92445i 1.33443 + 1.79424i −6.24552 5.45655i 0.370306 + 0.768948i 0.280052 6.23585i 7.16478 + 2.68899i −0.572413 5.65290i
4.7 −2.15375 1.28681i −3.21146 0.582795i 2.03504 + 3.78174i 1.48142 + 1.67493i 6.16676 + 5.38773i 0.615446 + 1.27799i 0.258274 5.75091i 7.16515 + 2.68913i −1.03531 5.51369i
4.8 −2.13969 1.27840i 1.81442 + 0.329269i 1.99620 + 3.70957i −2.20970 + 0.342364i −3.46136 3.02410i −1.46091 3.03361i 0.247422 5.50928i 0.375013 + 0.140745i 5.16575 + 2.09234i
4.9 −1.96800 1.17582i 1.24922 + 0.226699i 1.54272 + 2.86685i 2.17891 0.502357i −2.19190 1.91500i 0.936272 + 1.94419i 0.129140 2.87551i −1.29955 0.487731i −4.87877 1.57337i
4.10 −1.82363 1.08957i 0.956181 + 0.173521i 1.19073 + 2.21274i 0.0851828 + 2.23444i −1.55466 1.35826i 1.73684 + 3.60658i 0.0488718 1.08822i −1.92453 0.722289i 2.27924 4.16761i
4.11 −1.70207 1.01694i −1.51388 0.274729i 0.915131 + 1.70060i 1.75880 + 1.38080i 2.29734 + 2.00713i 0.389167 + 0.808114i −0.00612086 + 0.136292i −0.592351 0.222313i −1.58940 4.13881i
4.12 −1.70082 1.01619i −3.19702 0.580174i 0.912409 + 1.69554i −1.21455 1.87746i 4.84800 + 4.23557i 1.89196 + 3.92869i −0.00662701 + 0.147562i 7.07566 + 2.65554i 0.157873 + 4.42745i
4.13 −1.67423 1.00030i −1.28864 0.233854i 0.854692 + 1.58828i 1.09717 1.94839i 1.92355 + 1.68056i 0.129138 + 0.268157i −0.0171808 + 0.382559i −1.20280 0.451419i −3.78589 + 2.16454i
4.14 −1.65958 0.991555i −1.71659 0.311515i 0.823299 + 1.52995i −1.86204 1.23807i 2.53993 + 2.21907i −0.189409 0.393312i −0.0227765 + 0.507159i 0.0409235 + 0.0153588i 1.86259 + 3.90099i
4.15 −1.61949 0.967599i −0.107852 0.0195723i 0.738757 + 1.37284i −0.356062 + 2.20754i 0.155727 + 0.136055i −0.827813 1.71897i −0.0373264 + 0.831138i −2.79746 1.04990i 2.71265 3.23056i
4.16 −1.61165 0.962918i −0.0816339 0.0148144i 0.722480 + 1.34259i −1.82534 1.29156i 0.117301 + 0.102482i −1.08204 2.24688i −0.0400392 + 0.891542i −2.80226 1.05171i 1.69816 + 3.83920i
4.17 −1.60269 0.957560i −2.75047 0.499136i 0.703941 + 1.30814i 1.96928 1.05921i 3.93018 + 3.43369i −2.16712 4.50007i −0.0430932 + 0.959544i 4.50722 + 1.69159i −4.17040 0.188130i
4.18 −1.56877 0.937299i 2.82082 + 0.511904i 0.634787 + 1.17963i 1.28947 1.82682i −3.94543 3.44702i −1.39105 2.88854i −0.0541463 + 1.20566i 4.88628 + 1.83385i −3.73516 + 1.65725i
4.19 −1.31977 0.788525i 1.92901 + 0.350064i 0.172280 + 0.320150i −1.98290 + 1.03350i −2.26981 1.98308i 0.115631 + 0.240109i −0.112873 + 2.51331i 0.789833 + 0.296429i 3.43190 + 0.199590i
4.20 −1.30926 0.782244i 2.06659 + 0.375031i 0.154508 + 0.287124i −0.872774 2.05870i −2.41233 2.10759i 1.84445 + 3.83004i −0.114540 + 2.55043i 1.32145 + 0.495948i −0.467725 + 3.37809i
See next 80 embeddings (of 1728 total)
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 4.72
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
25.e even 10 1 inner
29.e even 14 1 inner
725.bh even 70 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 725.2.bh.a 1728
25.e even 10 1 inner 725.2.bh.a 1728
29.e even 14 1 inner 725.2.bh.a 1728
725.bh even 70 1 inner 725.2.bh.a 1728
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
725.2.bh.a 1728 1.a even 1 1 trivial
725.2.bh.a 1728 25.e even 10 1 inner
725.2.bh.a 1728 29.e even 14 1 inner
725.2.bh.a 1728 725.bh even 70 1 inner

Hecke kernels

This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(725, [\chi])\).