Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [725,2,Mod(4,725)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(725, base_ring=CyclotomicField(70))
chi = DirichletCharacter(H, H._module([7, 5]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("725.4");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 725 = 5^{2} \cdot 29 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 725.bh (of order \(70\), degree \(24\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.78915414654\) |
Analytic rank: | \(0\) |
Dimension: | \(1728\) |
Relative dimension: | \(72\) over \(\Q(\zeta_{70})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{70}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
4.1 | −2.33360 | − | 1.39426i | 0.138522 | + | 0.0251381i | 2.55400 | + | 4.74613i | 1.98321 | + | 1.03290i | −0.288207 | − | 0.251799i | −1.79078 | − | 3.71860i | 0.413407 | − | 9.20523i | −2.79015 | − | 1.04716i | −3.18788 | − | 5.17550i |
4.2 | −2.28087 | − | 1.36276i | −0.217703 | − | 0.0395073i | 2.39754 | + | 4.45537i | −2.21603 | − | 0.298704i | 0.442714 | + | 0.386788i | 1.95832 | + | 4.06648i | 0.364706 | − | 8.12082i | −2.76287 | − | 1.03692i | 4.64742 | + | 3.70122i |
4.3 | −2.24894 | − | 1.34368i | −1.38786 | − | 0.251859i | 2.30452 | + | 4.28251i | 1.12834 | − | 1.93050i | 2.78279 | + | 2.43125i | 0.508509 | + | 1.05593i | 0.336527 | − | 7.49336i | −0.945985 | − | 0.355034i | −5.13155 | + | 2.82545i |
4.4 | −2.21712 | − | 1.32467i | 2.16210 | + | 0.392364i | 2.21314 | + | 4.11270i | −0.398218 | − | 2.20032i | −4.27389 | − | 3.73399i | 0.223641 | + | 0.464395i | 0.309422 | − | 6.88982i | 1.71203 | + | 0.642537i | −2.03180 | + | 5.40589i |
4.5 | −2.20332 | − | 1.31642i | −1.84341 | − | 0.334530i | 2.17391 | + | 4.03980i | −1.41303 | + | 1.73302i | 3.62124 | + | 3.16378i | −0.499893 | − | 1.03804i | 0.297963 | − | 6.63465i | 0.477548 | + | 0.179227i | 5.39473 | − | 1.95825i |
4.6 | −2.18130 | − | 1.30327i | 3.21140 | + | 0.582784i | 2.11184 | + | 3.92445i | 1.33443 | + | 1.79424i | −6.24552 | − | 5.45655i | 0.370306 | + | 0.768948i | 0.280052 | − | 6.23585i | 7.16478 | + | 2.68899i | −0.572413 | − | 5.65290i |
4.7 | −2.15375 | − | 1.28681i | −3.21146 | − | 0.582795i | 2.03504 | + | 3.78174i | 1.48142 | + | 1.67493i | 6.16676 | + | 5.38773i | 0.615446 | + | 1.27799i | 0.258274 | − | 5.75091i | 7.16515 | + | 2.68913i | −1.03531 | − | 5.51369i |
4.8 | −2.13969 | − | 1.27840i | 1.81442 | + | 0.329269i | 1.99620 | + | 3.70957i | −2.20970 | + | 0.342364i | −3.46136 | − | 3.02410i | −1.46091 | − | 3.03361i | 0.247422 | − | 5.50928i | 0.375013 | + | 0.140745i | 5.16575 | + | 2.09234i |
4.9 | −1.96800 | − | 1.17582i | 1.24922 | + | 0.226699i | 1.54272 | + | 2.86685i | 2.17891 | − | 0.502357i | −2.19190 | − | 1.91500i | 0.936272 | + | 1.94419i | 0.129140 | − | 2.87551i | −1.29955 | − | 0.487731i | −4.87877 | − | 1.57337i |
4.10 | −1.82363 | − | 1.08957i | 0.956181 | + | 0.173521i | 1.19073 | + | 2.21274i | 0.0851828 | + | 2.23444i | −1.55466 | − | 1.35826i | 1.73684 | + | 3.60658i | 0.0488718 | − | 1.08822i | −1.92453 | − | 0.722289i | 2.27924 | − | 4.16761i |
4.11 | −1.70207 | − | 1.01694i | −1.51388 | − | 0.274729i | 0.915131 | + | 1.70060i | 1.75880 | + | 1.38080i | 2.29734 | + | 2.00713i | 0.389167 | + | 0.808114i | −0.00612086 | + | 0.136292i | −0.592351 | − | 0.222313i | −1.58940 | − | 4.13881i |
4.12 | −1.70082 | − | 1.01619i | −3.19702 | − | 0.580174i | 0.912409 | + | 1.69554i | −1.21455 | − | 1.87746i | 4.84800 | + | 4.23557i | 1.89196 | + | 3.92869i | −0.00662701 | + | 0.147562i | 7.07566 | + | 2.65554i | 0.157873 | + | 4.42745i |
4.13 | −1.67423 | − | 1.00030i | −1.28864 | − | 0.233854i | 0.854692 | + | 1.58828i | 1.09717 | − | 1.94839i | 1.92355 | + | 1.68056i | 0.129138 | + | 0.268157i | −0.0171808 | + | 0.382559i | −1.20280 | − | 0.451419i | −3.78589 | + | 2.16454i |
4.14 | −1.65958 | − | 0.991555i | −1.71659 | − | 0.311515i | 0.823299 | + | 1.52995i | −1.86204 | − | 1.23807i | 2.53993 | + | 2.21907i | −0.189409 | − | 0.393312i | −0.0227765 | + | 0.507159i | 0.0409235 | + | 0.0153588i | 1.86259 | + | 3.90099i |
4.15 | −1.61949 | − | 0.967599i | −0.107852 | − | 0.0195723i | 0.738757 | + | 1.37284i | −0.356062 | + | 2.20754i | 0.155727 | + | 0.136055i | −0.827813 | − | 1.71897i | −0.0373264 | + | 0.831138i | −2.79746 | − | 1.04990i | 2.71265 | − | 3.23056i |
4.16 | −1.61165 | − | 0.962918i | −0.0816339 | − | 0.0148144i | 0.722480 | + | 1.34259i | −1.82534 | − | 1.29156i | 0.117301 | + | 0.102482i | −1.08204 | − | 2.24688i | −0.0400392 | + | 0.891542i | −2.80226 | − | 1.05171i | 1.69816 | + | 3.83920i |
4.17 | −1.60269 | − | 0.957560i | −2.75047 | − | 0.499136i | 0.703941 | + | 1.30814i | 1.96928 | − | 1.05921i | 3.93018 | + | 3.43369i | −2.16712 | − | 4.50007i | −0.0430932 | + | 0.959544i | 4.50722 | + | 1.69159i | −4.17040 | − | 0.188130i |
4.18 | −1.56877 | − | 0.937299i | 2.82082 | + | 0.511904i | 0.634787 | + | 1.17963i | 1.28947 | − | 1.82682i | −3.94543 | − | 3.44702i | −1.39105 | − | 2.88854i | −0.0541463 | + | 1.20566i | 4.88628 | + | 1.83385i | −3.73516 | + | 1.65725i |
4.19 | −1.31977 | − | 0.788525i | 1.92901 | + | 0.350064i | 0.172280 | + | 0.320150i | −1.98290 | + | 1.03350i | −2.26981 | − | 1.98308i | 0.115631 | + | 0.240109i | −0.112873 | + | 2.51331i | 0.789833 | + | 0.296429i | 3.43190 | + | 0.199590i |
4.20 | −1.30926 | − | 0.782244i | 2.06659 | + | 0.375031i | 0.154508 | + | 0.287124i | −0.872774 | − | 2.05870i | −2.41233 | − | 2.10759i | 1.84445 | + | 3.83004i | −0.114540 | + | 2.55043i | 1.32145 | + | 0.495948i | −0.467725 | + | 3.37809i |
See next 80 embeddings (of 1728 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
25.e | even | 10 | 1 | inner |
29.e | even | 14 | 1 | inner |
725.bh | even | 70 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 725.2.bh.a | ✓ | 1728 |
25.e | even | 10 | 1 | inner | 725.2.bh.a | ✓ | 1728 |
29.e | even | 14 | 1 | inner | 725.2.bh.a | ✓ | 1728 |
725.bh | even | 70 | 1 | inner | 725.2.bh.a | ✓ | 1728 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
725.2.bh.a | ✓ | 1728 | 1.a | even | 1 | 1 | trivial |
725.2.bh.a | ✓ | 1728 | 25.e | even | 10 | 1 | inner |
725.2.bh.a | ✓ | 1728 | 29.e | even | 14 | 1 | inner |
725.2.bh.a | ✓ | 1728 | 725.bh | even | 70 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(725, [\chi])\).