Properties

Label 725.2.c.h
Level 725725
Weight 22
Character orbit 725.c
Analytic conductor 5.7895.789
Analytic rank 00
Dimension 1010
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(376,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.376");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 725=5229 725 = 5^{2} \cdot 29
Weight: k k == 2 2
Character orbit: [χ][\chi] == 725.c (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 5.789154146545.78915414654
Analytic rank: 00
Dimension: 1010
Coefficient field: Q[x]/(x10+)\mathbb{Q}[x]/(x^{10} + \cdots)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x10+16x8+89x6+209x4+185x2+25 x^{10} + 16x^{8} + 89x^{6} + 209x^{4} + 185x^{2} + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 5 5
Twist minimal: yes
Sato-Tate group: SU(2)[C2]\mathrm{SU}(2)[C_{2}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,,β91,\beta_1,\ldots,\beta_{9} for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+β1q2β4q3+(β21)q4+(β9+β3+1)q6+β9q7+(β8β7β5β1)q8+(β6+β31)q9++(2β8+4β7+4β1)q99+O(q100) q + \beta_1 q^{2} - \beta_{4} q^{3} + (\beta_{2} - 1) q^{4} + ( - \beta_{9} + \beta_{3} + 1) q^{6} + \beta_{9} q^{7} + (\beta_{8} - \beta_{7} - \beta_{5} - \beta_1) q^{8} + (\beta_{6} + \beta_{3} - 1) q^{9}+ \cdots + ( - 2 \beta_{8} + 4 \beta_{7} + \cdots - 4 \beta_1) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 10q12q4+2q6+4q710q94q13+4q1628q22+2q236q2416q28+18q2922q3310q34+10q3614q3832q42+2q49+18q51++24q96+O(q100) 10 q - 12 q^{4} + 2 q^{6} + 4 q^{7} - 10 q^{9} - 4 q^{13} + 4 q^{16} - 28 q^{22} + 2 q^{23} - 6 q^{24} - 16 q^{28} + 18 q^{29} - 22 q^{33} - 10 q^{34} + 10 q^{36} - 14 q^{38} - 32 q^{42} + 2 q^{49} + 18 q^{51}+ \cdots + 24 q^{96}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x10+16x8+89x6+209x4+185x2+25 x^{10} + 16x^{8} + 89x^{6} + 209x^{4} + 185x^{2} + 25 : Copy content Toggle raw display

β1\beta_{1}== ν \nu Copy content Toggle raw display
β2\beta_{2}== ν2+3 \nu^{2} + 3 Copy content Toggle raw display
β3\beta_{3}== (ν8+10ν6+19ν415ν220)/5 ( \nu^{8} + 10\nu^{6} + 19\nu^{4} - 15\nu^{2} - 20 ) / 5 Copy content Toggle raw display
β4\beta_{4}== (ν9+12ν7+39ν5+28ν315ν)/5 ( \nu^{9} + 12\nu^{7} + 39\nu^{5} + 28\nu^{3} - 15\nu ) / 5 Copy content Toggle raw display
β5\beta_{5}== (ν9+13ν7+49ν5+47ν325ν)/5 ( \nu^{9} + 13\nu^{7} + 49\nu^{5} + 47\nu^{3} - 25\nu ) / 5 Copy content Toggle raw display
β6\beta_{6}== (2ν825ν688ν480ν2+15)/5 ( -2\nu^{8} - 25\nu^{6} - 88\nu^{4} - 80\nu^{2} + 15 ) / 5 Copy content Toggle raw display
β7\beta_{7}== (ν9+14ν7+64ν5+116ν3+70ν)/5 ( \nu^{9} + 14\nu^{7} + 64\nu^{5} + 116\nu^{3} + 70\nu ) / 5 Copy content Toggle raw display
β8\beta_{8}== (2ν9+27ν7+113ν5+168ν3+70ν)/5 ( 2\nu^{9} + 27\nu^{7} + 113\nu^{5} + 168\nu^{3} + 70\nu ) / 5 Copy content Toggle raw display
β9\beta_{9}== (3ν840ν6162ν4215ν240)/5 ( -3\nu^{8} - 40\nu^{6} - 162\nu^{4} - 215\nu^{2} - 40 ) / 5 Copy content Toggle raw display
ν\nu== β1 \beta_1 Copy content Toggle raw display
ν2\nu^{2}== β23 \beta_{2} - 3 Copy content Toggle raw display
ν3\nu^{3}== β8β7β55β1 \beta_{8} - \beta_{7} - \beta_{5} - 5\beta_1 Copy content Toggle raw display
ν4\nu^{4}== β9+2β6+β38β2+14 -\beta_{9} + 2\beta_{6} + \beta_{3} - 8\beta_{2} + 14 Copy content Toggle raw display
ν5\nu^{5}== 10β8+11β7+8β5+β4+29β1 -10\beta_{8} + 11\beta_{7} + 8\beta_{5} + \beta_{4} + 29\beta_1 Copy content Toggle raw display
ν6\nu^{6}== 10β921β612β3+58β279 10\beta_{9} - 21\beta_{6} - 12\beta_{3} + 58\beta_{2} - 79 Copy content Toggle raw display
ν7\nu^{7}== 81β891β756β515β4185β1 81\beta_{8} - 91\beta_{7} - 56\beta_{5} - 15\beta_{4} - 185\beta_1 Copy content Toggle raw display
ν8\nu^{8}== 81β9+172β6+106β3413β2+499 -81\beta_{9} + 172\beta_{6} + 106\beta_{3} - 413\beta_{2} + 499 Copy content Toggle raw display
ν9\nu^{9}== 610β8+691β7+388β5+146β4+1244β1 -610\beta_{8} + 691\beta_{7} + 388\beta_{5} + 146\beta_{4} + 1244\beta_1 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/725Z)×\left(\mathbb{Z}/725\mathbb{Z}\right)^\times.

nn 176176 552552
χ(n)\chi(n) 1-1 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
376.1
2.66826i
1.94602i
1.75883i
1.35526i
0.403970i
0.403970i
1.35526i
1.75883i
1.94602i
2.66826i
2.66826i 0.671523i −5.11962 0 1.79180 1.28715 8.32395i 2.54906 0
376.2 1.94602i 3.02664i −1.78699 0 −5.88990 1.26169 0.414527i −6.16057 0
376.3 1.75883i 2.79103i −1.09347 0 4.90893 −3.15518 1.59443i −4.78982 0
376.4 1.35526i 0.587096i 0.163265 0 0.795669 4.41763 2.93179i 2.65532 0
376.5 0.403970i 1.50133i 1.83681 0 −0.606490 −1.81129 1.54995i 0.746019 0
376.6 0.403970i 1.50133i 1.83681 0 −0.606490 −1.81129 1.54995i 0.746019 0
376.7 1.35526i 0.587096i 0.163265 0 0.795669 4.41763 2.93179i 2.65532 0
376.8 1.75883i 2.79103i −1.09347 0 4.90893 −3.15518 1.59443i −4.78982 0
376.9 1.94602i 3.02664i −1.78699 0 −5.88990 1.26169 0.414527i −6.16057 0
376.10 2.66826i 0.671523i −5.11962 0 1.79180 1.28715 8.32395i 2.54906 0
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 376.10
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
29.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 725.2.c.h yes 10
5.b even 2 1 725.2.c.g 10
5.c odd 4 2 725.2.d.d 20
29.b even 2 1 inner 725.2.c.h yes 10
145.d even 2 1 725.2.c.g 10
145.h odd 4 2 725.2.d.d 20
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
725.2.c.g 10 5.b even 2 1
725.2.c.g 10 145.d even 2 1
725.2.c.h yes 10 1.a even 1 1 trivial
725.2.c.h yes 10 29.b even 2 1 inner
725.2.d.d 20 5.c odd 4 2
725.2.d.d 20 145.h odd 4 2

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(725,[χ])S_{2}^{\mathrm{new}}(725, [\chi]):

T210+16T28+89T26+209T24+185T22+25 T_{2}^{10} + 16T_{2}^{8} + 89T_{2}^{6} + 209T_{2}^{4} + 185T_{2}^{2} + 25 Copy content Toggle raw display
T310+20T38+125T36+251T34+145T32+25 T_{3}^{10} + 20T_{3}^{8} + 125T_{3}^{6} + 251T_{3}^{4} + 145T_{3}^{2} + 25 Copy content Toggle raw display
T752T7416T73+17T72+38T741 T_{7}^{5} - 2T_{7}^{4} - 16T_{7}^{3} + 17T_{7}^{2} + 38T_{7} - 41 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T10+16T8++25 T^{10} + 16 T^{8} + \cdots + 25 Copy content Toggle raw display
33 T10+20T8++25 T^{10} + 20 T^{8} + \cdots + 25 Copy content Toggle raw display
55 T10 T^{10} Copy content Toggle raw display
77 (T52T416T3+41)2 (T^{5} - 2 T^{4} - 16 T^{3} + \cdots - 41)^{2} Copy content Toggle raw display
1111 T10+44T8++625 T^{10} + 44 T^{8} + \cdots + 625 Copy content Toggle raw display
1313 (T5+2T428T3+23)2 (T^{5} + 2 T^{4} - 28 T^{3} + \cdots - 23)^{2} Copy content Toggle raw display
1717 T10+47T8++25 T^{10} + 47 T^{8} + \cdots + 25 Copy content Toggle raw display
1919 T10+140T8++6579225 T^{10} + 140 T^{8} + \cdots + 6579225 Copy content Toggle raw display
2323 (T5T438T3+27)2 (T^{5} - T^{4} - 38 T^{3} + \cdots - 27)^{2} Copy content Toggle raw display
2929 T1018T9++20511149 T^{10} - 18 T^{9} + \cdots + 20511149 Copy content Toggle raw display
3131 T10+173T8++455625 T^{10} + 173 T^{8} + \cdots + 455625 Copy content Toggle raw display
3737 T10+256T8++51194025 T^{10} + 256 T^{8} + \cdots + 51194025 Copy content Toggle raw display
4141 T10+173T8++625 T^{10} + 173 T^{8} + \cdots + 625 Copy content Toggle raw display
4343 T10+182T8++1476225 T^{10} + 182 T^{8} + \cdots + 1476225 Copy content Toggle raw display
4747 T10+341T8++84916225 T^{10} + 341 T^{8} + \cdots + 84916225 Copy content Toggle raw display
5353 (T510T4+25353)2 (T^{5} - 10 T^{4} + \cdots - 25353)^{2} Copy content Toggle raw display
5959 (T5T4124T3++2565)2 (T^{5} - T^{4} - 124 T^{3} + \cdots + 2565)^{2} Copy content Toggle raw display
6161 T10++200930625 T^{10} + \cdots + 200930625 Copy content Toggle raw display
6767 (T5+23T4+4783)2 (T^{5} + 23 T^{4} + \cdots - 4783)^{2} Copy content Toggle raw display
7171 (T5+T4+15525)2 (T^{5} + T^{4} + \cdots - 15525)^{2} Copy content Toggle raw display
7373 T10+288T8++1476225 T^{10} + 288 T^{8} + \cdots + 1476225 Copy content Toggle raw display
7979 T10++610337025 T^{10} + \cdots + 610337025 Copy content Toggle raw display
8383 (T5+3T4+59373)2 (T^{5} + 3 T^{4} + \cdots - 59373)^{2} Copy content Toggle raw display
8989 T10++2883153025 T^{10} + \cdots + 2883153025 Copy content Toggle raw display
9797 T10++312759225 T^{10} + \cdots + 312759225 Copy content Toggle raw display
show more
show less