Properties

Label 725.2.y.a.18.7
Level $725$
Weight $2$
Character 725.18
Analytic conductor $5.789$
Analytic rank $0$
Dimension $120$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [725,2,Mod(18,725)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(725, base_ring=CyclotomicField(28))
 
chi = DirichletCharacter(H, H._module([21, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("725.18");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 725 = 5^{2} \cdot 29 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 725.y (of order \(28\), degree \(12\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.78915414654\)
Analytic rank: \(0\)
Dimension: \(120\)
Relative dimension: \(10\) over \(\Q(\zeta_{28})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{28}]$

Embedding invariants

Embedding label 18.7
Character \(\chi\) \(=\) 725.18
Dual form 725.2.y.a.282.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.368695 + 0.177554i) q^{2} +(-2.43448 - 1.94143i) q^{3} +(-1.14257 - 1.43274i) q^{4} +(-0.552871 - 1.14805i) q^{6} +(0.376408 + 3.34071i) q^{7} +(-0.348992 - 1.52903i) q^{8} +(1.48996 + 6.52795i) q^{9} +(0.822283 - 0.516675i) q^{11} +5.70618i q^{12} +(1.29101 + 2.05464i) q^{13} +(-0.454377 + 1.29854i) q^{14} +(-0.672742 + 2.94747i) q^{16} -6.45849 q^{17} +(-0.609723 + 2.67137i) q^{18} +(6.60252 + 0.743926i) q^{19} +(5.56940 - 8.86365i) q^{21} +(0.394910 - 0.0444956i) q^{22} +(-1.54377 - 0.540188i) q^{23} +(-2.11890 + 4.39994i) q^{24} +(0.111181 + 0.986759i) q^{26} +(4.99318 - 10.3684i) q^{27} +(4.35628 - 4.35628i) q^{28} +(3.75211 - 3.86286i) q^{29} +(0.744261 + 2.12697i) q^{31} +(-2.72708 + 3.41965i) q^{32} +(-3.00492 - 0.338573i) q^{33} +(-2.38121 - 1.14673i) q^{34} +(7.65044 - 9.59335i) q^{36} +(3.33623 - 0.761473i) q^{37} +(2.30223 + 1.44659i) q^{38} +(0.845991 - 7.50838i) q^{39} +(4.23097 - 4.23097i) q^{41} +(3.62719 - 2.27911i) q^{42} +(2.99805 + 6.22552i) q^{43} +(-1.67977 - 0.587778i) q^{44} +(-0.473268 - 0.473268i) q^{46} +(7.83824 + 1.78903i) q^{47} +(7.36009 - 5.86947i) q^{48} +(-4.19416 + 0.957290i) q^{49} +(15.7230 + 12.5387i) q^{51} +(1.46868 - 4.19725i) q^{52} +(-0.690719 - 1.97396i) q^{53} +(3.68192 - 2.93624i) q^{54} +(4.97669 - 1.74142i) q^{56} +(-14.6294 - 14.6294i) q^{57} +(2.06925 - 0.758015i) q^{58} +9.81641i q^{59} +(-14.5399 + 1.63826i) q^{61} +(-0.103248 + 0.916352i) q^{62} +(-21.2471 + 7.43470i) q^{63} +(3.83512 - 1.84690i) q^{64} +(-1.04778 - 0.658366i) q^{66} +(1.09196 - 1.73785i) q^{67} +(7.37927 + 9.25331i) q^{68} +(2.70953 + 4.31220i) q^{69} +(-6.27144 - 1.43141i) q^{71} +(9.46146 - 4.55640i) q^{72} +(13.2147 - 6.36386i) q^{73} +(1.36525 + 0.311611i) q^{74} +(-6.47799 - 10.3097i) q^{76} +(2.03557 + 2.55253i) q^{77} +(1.64506 - 2.61809i) q^{78} +(12.1834 + 7.65532i) q^{79} +(-14.1872 + 6.83220i) q^{81} +(2.31117 - 0.808712i) q^{82} +(-0.725433 + 6.43840i) q^{83} +(-19.0627 + 2.14785i) q^{84} +2.82764i q^{86} +(-16.6339 + 2.11958i) q^{87} +(-1.07698 - 1.07698i) q^{88} +(-10.7763 + 3.77081i) q^{89} +(-6.37799 + 5.08628i) q^{91} +(0.989916 + 2.82902i) q^{92} +(2.31749 - 6.62300i) q^{93} +(2.57227 + 2.05132i) q^{94} +(13.2780 - 3.03062i) q^{96} +(-3.97853 + 3.17277i) q^{97} +(-1.71634 - 0.391743i) q^{98} +(4.59800 + 4.59800i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 120 q - 20 q^{4} + 28 q^{9} - 12 q^{11} + 20 q^{16} + 4 q^{19} + 4 q^{21} + 12 q^{29} - 32 q^{31} - 40 q^{34} - 16 q^{36} - 184 q^{39} - 4 q^{41} + 36 q^{44} + 76 q^{46} - 84 q^{49} + 112 q^{51} + 168 q^{54}+ \cdots - 208 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/725\mathbb{Z}\right)^\times\).

\(n\) \(176\) \(552\)
\(\chi(n)\) \(e\left(\frac{11}{28}\right)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.368695 + 0.177554i 0.260707 + 0.125550i 0.559672 0.828714i \(-0.310927\pi\)
−0.298965 + 0.954264i \(0.596641\pi\)
\(3\) −2.43448 1.94143i −1.40555 1.12089i −0.975983 0.217848i \(-0.930096\pi\)
−0.429563 0.903037i \(-0.641332\pi\)
\(4\) −1.14257 1.43274i −0.571284 0.716368i
\(5\) 0 0
\(6\) −0.552871 1.14805i −0.225708 0.468688i
\(7\) 0.376408 + 3.34071i 0.142269 + 1.26267i 0.838520 + 0.544871i \(0.183421\pi\)
−0.696251 + 0.717798i \(0.745150\pi\)
\(8\) −0.348992 1.52903i −0.123387 0.540595i
\(9\) 1.48996 + 6.52795i 0.496654 + 2.17598i
\(10\) 0 0
\(11\) 0.822283 0.516675i 0.247928 0.155783i −0.402336 0.915492i \(-0.631801\pi\)
0.650263 + 0.759709i \(0.274659\pi\)
\(12\) 5.70618i 1.64723i
\(13\) 1.29101 + 2.05464i 0.358063 + 0.569854i 0.976376 0.216078i \(-0.0693266\pi\)
−0.618313 + 0.785932i \(0.712184\pi\)
\(14\) −0.454377 + 1.29854i −0.121437 + 0.347048i
\(15\) 0 0
\(16\) −0.672742 + 2.94747i −0.168185 + 0.736868i
\(17\) −6.45849 −1.56641 −0.783207 0.621761i \(-0.786418\pi\)
−0.783207 + 0.621761i \(0.786418\pi\)
\(18\) −0.609723 + 2.67137i −0.143713 + 0.629648i
\(19\) 6.60252 + 0.743926i 1.51472 + 0.170668i 0.829847 0.557991i \(-0.188428\pi\)
0.684876 + 0.728660i \(0.259856\pi\)
\(20\) 0 0
\(21\) 5.56940 8.86365i 1.21534 1.93421i
\(22\) 0.394910 0.0444956i 0.0841950 0.00948650i
\(23\) −1.54377 0.540188i −0.321898 0.112637i 0.164493 0.986378i \(-0.447401\pi\)
−0.486391 + 0.873741i \(0.661687\pi\)
\(24\) −2.11890 + 4.39994i −0.432518 + 0.898133i
\(25\) 0 0
\(26\) 0.111181 + 0.986759i 0.0218044 + 0.193519i
\(27\) 4.99318 10.3684i 0.960938 1.99541i
\(28\) 4.35628 4.35628i 0.823260 0.823260i
\(29\) 3.75211 3.86286i 0.696749 0.717315i
\(30\) 0 0
\(31\) 0.744261 + 2.12697i 0.133673 + 0.382016i 0.991191 0.132438i \(-0.0422805\pi\)
−0.857518 + 0.514454i \(0.827995\pi\)
\(32\) −2.72708 + 3.41965i −0.482084 + 0.604514i
\(33\) −3.00492 0.338573i −0.523089 0.0589380i
\(34\) −2.38121 1.14673i −0.408375 0.196663i
\(35\) 0 0
\(36\) 7.65044 9.59335i 1.27507 1.59889i
\(37\) 3.33623 0.761473i 0.548473 0.125185i 0.0607003 0.998156i \(-0.480667\pi\)
0.487773 + 0.872971i \(0.337809\pi\)
\(38\) 2.30223 + 1.44659i 0.373471 + 0.234668i
\(39\) 0.845991 7.50838i 0.135467 1.20230i
\(40\) 0 0
\(41\) 4.23097 4.23097i 0.660767 0.660767i −0.294794 0.955561i \(-0.595251\pi\)
0.955561 + 0.294794i \(0.0952511\pi\)
\(42\) 3.62719 2.27911i 0.559687 0.351675i
\(43\) 2.99805 + 6.22552i 0.457199 + 0.949383i 0.994375 + 0.105913i \(0.0337766\pi\)
−0.537176 + 0.843470i \(0.680509\pi\)
\(44\) −1.67977 0.587778i −0.253235 0.0886109i
\(45\) 0 0
\(46\) −0.473268 0.473268i −0.0697795 0.0697795i
\(47\) 7.83824 + 1.78903i 1.14332 + 0.260956i 0.751915 0.659260i \(-0.229130\pi\)
0.391410 + 0.920216i \(0.371987\pi\)
\(48\) 7.36009 5.86947i 1.06234 0.847186i
\(49\) −4.19416 + 0.957290i −0.599166 + 0.136756i
\(50\) 0 0
\(51\) 15.7230 + 12.5387i 2.20167 + 1.75577i
\(52\) 1.46868 4.19725i 0.203669 0.582053i
\(53\) −0.690719 1.97396i −0.0948775 0.271144i 0.886658 0.462427i \(-0.153021\pi\)
−0.981535 + 0.191282i \(0.938735\pi\)
\(54\) 3.68192 2.93624i 0.501046 0.399571i
\(55\) 0 0
\(56\) 4.97669 1.74142i 0.665038 0.232707i
\(57\) −14.6294 14.6294i −1.93771 1.93771i
\(58\) 2.06925 0.758015i 0.271706 0.0995322i
\(59\) 9.81641i 1.27799i 0.769212 + 0.638994i \(0.220649\pi\)
−0.769212 + 0.638994i \(0.779351\pi\)
\(60\) 0 0
\(61\) −14.5399 + 1.63826i −1.86165 + 0.209757i −0.970022 0.243019i \(-0.921862\pi\)
−0.891624 + 0.452776i \(0.850434\pi\)
\(62\) −0.103248 + 0.916352i −0.0131125 + 0.116377i
\(63\) −21.2471 + 7.43470i −2.67689 + 0.936684i
\(64\) 3.83512 1.84690i 0.479390 0.230862i
\(65\) 0 0
\(66\) −1.04778 0.658366i −0.128973 0.0810392i
\(67\) 1.09196 1.73785i 0.133404 0.212312i −0.773341 0.633990i \(-0.781416\pi\)
0.906745 + 0.421678i \(0.138559\pi\)
\(68\) 7.37927 + 9.25331i 0.894868 + 1.12213i
\(69\) 2.70953 + 4.31220i 0.326189 + 0.519127i
\(70\) 0 0
\(71\) −6.27144 1.43141i −0.744283 0.169878i −0.166469 0.986047i \(-0.553237\pi\)
−0.577813 + 0.816169i \(0.696094\pi\)
\(72\) 9.46146 4.55640i 1.11504 0.536977i
\(73\) 13.2147 6.36386i 1.54666 0.744833i 0.550708 0.834698i \(-0.314358\pi\)
0.995954 + 0.0898647i \(0.0286435\pi\)
\(74\) 1.36525 + 0.311611i 0.158708 + 0.0362240i
\(75\) 0 0
\(76\) −6.47799 10.3097i −0.743076 1.18260i
\(77\) 2.03557 + 2.55253i 0.231975 + 0.290888i
\(78\) 1.64506 2.61809i 0.186266 0.296441i
\(79\) 12.1834 + 7.65532i 1.37074 + 0.861291i 0.997782 0.0665589i \(-0.0212020\pi\)
0.372954 + 0.927850i \(0.378345\pi\)
\(80\) 0 0
\(81\) −14.1872 + 6.83220i −1.57636 + 0.759133i
\(82\) 2.31117 0.808712i 0.255226 0.0893073i
\(83\) −0.725433 + 6.43840i −0.0796267 + 0.706706i 0.888952 + 0.458000i \(0.151434\pi\)
−0.968579 + 0.248706i \(0.919995\pi\)
\(84\) −19.0627 + 2.14785i −2.07991 + 0.234350i
\(85\) 0 0
\(86\) 2.82764i 0.304912i
\(87\) −16.6339 + 2.11958i −1.78334 + 0.227243i
\(88\) −1.07698 1.07698i −0.114807 0.114807i
\(89\) −10.7763 + 3.77081i −1.14229 + 0.399705i −0.834096 0.551619i \(-0.814010\pi\)
−0.308194 + 0.951323i \(0.599725\pi\)
\(90\) 0 0
\(91\) −6.37799 + 5.08628i −0.668596 + 0.533187i
\(92\) 0.989916 + 2.82902i 0.103206 + 0.294945i
\(93\) 2.31749 6.62300i 0.240312 0.686773i
\(94\) 2.57227 + 2.05132i 0.265310 + 0.211577i
\(95\) 0 0
\(96\) 13.2780 3.03062i 1.35518 0.309311i
\(97\) −3.97853 + 3.17277i −0.403958 + 0.322146i −0.804304 0.594218i \(-0.797462\pi\)
0.400345 + 0.916364i \(0.368890\pi\)
\(98\) −1.71634 0.391743i −0.173376 0.0395720i
\(99\) 4.59800 + 4.59800i 0.462116 + 0.462116i
\(100\) 0 0
\(101\) 17.6481 + 6.17534i 1.75605 + 0.614469i 0.999233 0.0391557i \(-0.0124668\pi\)
0.756819 + 0.653625i \(0.226753\pi\)
\(102\) 3.57071 + 7.41465i 0.353553 + 0.734160i
\(103\) −3.98499 + 2.50394i −0.392653 + 0.246720i −0.713860 0.700289i \(-0.753055\pi\)
0.321206 + 0.947009i \(0.395912\pi\)
\(104\) 2.69105 2.69105i 0.263879 0.263879i
\(105\) 0 0
\(106\) 0.0958204 0.850430i 0.00930690 0.0826011i
\(107\) 10.4958 + 6.59492i 1.01466 + 0.637555i 0.933288 0.359129i \(-0.116926\pi\)
0.0813745 + 0.996684i \(0.474069\pi\)
\(108\) −20.5603 + 4.69275i −1.97842 + 0.451561i
\(109\) −1.30985 + 1.64250i −0.125461 + 0.157323i −0.840595 0.541664i \(-0.817794\pi\)
0.715134 + 0.698988i \(0.246366\pi\)
\(110\) 0 0
\(111\) −9.60032 4.62327i −0.911222 0.438822i
\(112\) −10.0999 1.13798i −0.954349 0.107529i
\(113\) 8.75582 10.9795i 0.823679 1.03286i −0.175153 0.984541i \(-0.556042\pi\)
0.998832 0.0483193i \(-0.0153865\pi\)
\(114\) −2.79628 7.99131i −0.261896 0.748454i
\(115\) 0 0
\(116\) −9.82150 0.962198i −0.911903 0.0893378i
\(117\) −11.4890 + 11.4890i −1.06216 + 1.06216i
\(118\) −1.74295 + 3.61926i −0.160451 + 0.333180i
\(119\) −2.43102 21.5759i −0.222852 1.97786i
\(120\) 0 0
\(121\) −4.36352 + 9.06095i −0.396684 + 0.823723i
\(122\) −5.65168 1.97761i −0.511679 0.179044i
\(123\) −18.5143 + 2.08606i −1.66938 + 0.188094i
\(124\) 2.19702 3.49654i 0.197299 0.313999i
\(125\) 0 0
\(126\) −9.15378 1.03138i −0.815484 0.0918829i
\(127\) −2.85906 + 12.5264i −0.253701 + 1.11154i 0.674153 + 0.738592i \(0.264509\pi\)
−0.927854 + 0.372944i \(0.878348\pi\)
\(128\) 10.4897 0.927167
\(129\) 4.78773 20.9764i 0.421536 1.84687i
\(130\) 0 0
\(131\) −0.641091 + 1.83213i −0.0560124 + 0.160074i −0.968490 0.249052i \(-0.919881\pi\)
0.912478 + 0.409127i \(0.134167\pi\)
\(132\) 2.94824 + 4.69210i 0.256611 + 0.408395i
\(133\) 22.3371i 1.93688i
\(134\) 0.711163 0.446853i 0.0614351 0.0386022i
\(135\) 0 0
\(136\) 2.25396 + 9.87524i 0.193275 + 0.846795i
\(137\) 2.88703 + 12.6489i 0.246656 + 1.08067i 0.934822 + 0.355117i \(0.115559\pi\)
−0.688166 + 0.725553i \(0.741584\pi\)
\(138\) 0.233343 + 2.07097i 0.0198635 + 0.176293i
\(139\) 3.97416 + 8.25242i 0.337083 + 0.699961i 0.998758 0.0498304i \(-0.0158681\pi\)
−0.661674 + 0.749791i \(0.730154\pi\)
\(140\) 0 0
\(141\) −15.6087 19.5727i −1.31449 1.64832i
\(142\) −2.05809 1.64128i −0.172711 0.137733i
\(143\) 2.12316 + 1.02246i 0.177547 + 0.0855023i
\(144\) −20.2433 −1.68694
\(145\) 0 0
\(146\) 6.00212 0.496739
\(147\) 12.0691 + 5.81217i 0.995442 + 0.479380i
\(148\) −4.90286 3.90990i −0.403013 0.321392i
\(149\) −5.48621 6.87949i −0.449448 0.563589i 0.504558 0.863378i \(-0.331655\pi\)
−0.954006 + 0.299788i \(0.903084\pi\)
\(150\) 0 0
\(151\) 0.851278 + 1.76770i 0.0692760 + 0.143853i 0.932731 0.360572i \(-0.117419\pi\)
−0.863455 + 0.504425i \(0.831704\pi\)
\(152\) −1.16674 10.3551i −0.0946350 0.839909i
\(153\) −9.62290 42.1607i −0.777966 3.40849i
\(154\) 0.297294 + 1.30253i 0.0239566 + 0.104961i
\(155\) 0 0
\(156\) −11.7241 + 7.36676i −0.938681 + 0.589812i
\(157\) 9.57129i 0.763872i 0.924189 + 0.381936i \(0.124743\pi\)
−0.924189 + 0.381936i \(0.875257\pi\)
\(158\) 3.13272 + 4.98569i 0.249226 + 0.396640i
\(159\) −2.15077 + 6.14654i −0.170567 + 0.487453i
\(160\) 0 0
\(161\) 1.22353 5.36062i 0.0964273 0.422476i
\(162\) −6.44384 −0.506276
\(163\) 4.68798 20.5394i 0.367191 1.60877i −0.367268 0.930115i \(-0.619707\pi\)
0.734459 0.678653i \(-0.237436\pi\)
\(164\) −10.8960 1.22769i −0.850838 0.0958664i
\(165\) 0 0
\(166\) −1.41063 + 2.24500i −0.109486 + 0.174246i
\(167\) 11.7539 1.32434i 0.909543 0.102481i 0.355220 0.934783i \(-0.384406\pi\)
0.554323 + 0.832302i \(0.312977\pi\)
\(168\) −15.4965 5.42245i −1.19558 0.418351i
\(169\) 3.08567 6.40747i 0.237360 0.492882i
\(170\) 0 0
\(171\) 4.98120 + 44.2094i 0.380922 + 3.38077i
\(172\) 5.49405 11.4085i 0.418917 0.869891i
\(173\) −3.61857 + 3.61857i −0.275115 + 0.275115i −0.831155 0.556041i \(-0.812320\pi\)
0.556041 + 0.831155i \(0.312320\pi\)
\(174\) −6.50918 2.17194i −0.493459 0.164654i
\(175\) 0 0
\(176\) 0.969701 + 2.77125i 0.0730940 + 0.208891i
\(177\) 19.0579 23.8978i 1.43248 1.79627i
\(178\) −4.64271 0.523108i −0.347986 0.0392086i
\(179\) 9.13064 + 4.39709i 0.682456 + 0.328654i 0.742790 0.669525i \(-0.233502\pi\)
−0.0603336 + 0.998178i \(0.519216\pi\)
\(180\) 0 0
\(181\) −5.67771 + 7.11962i −0.422021 + 0.529197i −0.946706 0.322099i \(-0.895612\pi\)
0.524685 + 0.851296i \(0.324183\pi\)
\(182\) −3.25463 + 0.742847i −0.241249 + 0.0550635i
\(183\) 38.5776 + 24.2399i 2.85174 + 1.79187i
\(184\) −0.287203 + 2.54899i −0.0211729 + 0.187914i
\(185\) 0 0
\(186\) 2.03039 2.03039i 0.148875 0.148875i
\(187\) −5.31071 + 3.33694i −0.388357 + 0.244021i
\(188\) −6.39253 13.2742i −0.466223 0.968122i
\(189\) 36.5174 + 12.7780i 2.65625 + 0.929463i
\(190\) 0 0
\(191\) −9.21557 9.21557i −0.666815 0.666815i 0.290162 0.956977i \(-0.406291\pi\)
−0.956977 + 0.290162i \(0.906291\pi\)
\(192\) −12.9221 2.94939i −0.932574 0.212854i
\(193\) 7.88229 6.28591i 0.567379 0.452470i −0.297307 0.954782i \(-0.596089\pi\)
0.864686 + 0.502312i \(0.167517\pi\)
\(194\) −2.03020 + 0.463381i −0.145760 + 0.0332688i
\(195\) 0 0
\(196\) 6.16366 + 4.91536i 0.440262 + 0.351097i
\(197\) 5.40945 15.4593i 0.385408 1.10143i −0.573865 0.818950i \(-0.694557\pi\)
0.959273 0.282482i \(-0.0911577\pi\)
\(198\) 0.878865 + 2.51165i 0.0624582 + 0.178495i
\(199\) −9.36325 + 7.46694i −0.663743 + 0.529318i −0.896403 0.443241i \(-0.853829\pi\)
0.232659 + 0.972558i \(0.425257\pi\)
\(200\) 0 0
\(201\) −6.03226 + 2.11078i −0.425483 + 0.148883i
\(202\) 5.41031 + 5.41031i 0.380668 + 0.380668i
\(203\) 14.3170 + 11.0807i 1.00486 + 0.777712i
\(204\) 36.8533i 2.58025i
\(205\) 0 0
\(206\) −1.91383 + 0.215637i −0.133343 + 0.0150242i
\(207\) 1.22616 10.8825i 0.0852243 0.756386i
\(208\) −6.92450 + 2.42299i −0.480128 + 0.168004i
\(209\) 5.81351 2.79964i 0.402129 0.193655i
\(210\) 0 0
\(211\) 6.25359 + 3.92939i 0.430515 + 0.270510i 0.729810 0.683650i \(-0.239609\pi\)
−0.299295 + 0.954161i \(0.596751\pi\)
\(212\) −2.03897 + 3.24500i −0.140037 + 0.222868i
\(213\) 12.4887 + 15.6603i 0.855710 + 1.07303i
\(214\) 2.69878 + 4.29508i 0.184485 + 0.293606i
\(215\) 0 0
\(216\) −17.5963 4.01623i −1.19727 0.273270i
\(217\) −6.82546 + 3.28697i −0.463342 + 0.223134i
\(218\) −0.774570 + 0.373013i −0.0524605 + 0.0252636i
\(219\) −44.5258 10.1627i −3.00878 0.686734i
\(220\) 0 0
\(221\) −8.33800 13.2698i −0.560874 0.892627i
\(222\) −2.71871 3.40916i −0.182468 0.228808i
\(223\) 5.86600 9.33568i 0.392816 0.625164i −0.590506 0.807033i \(-0.701072\pi\)
0.983323 + 0.181869i \(0.0582148\pi\)
\(224\) −12.4505 7.82320i −0.831887 0.522709i
\(225\) 0 0
\(226\) 5.17768 2.49344i 0.344414 0.165861i
\(227\) 3.56082 1.24599i 0.236340 0.0826990i −0.209510 0.977806i \(-0.567187\pi\)
0.445851 + 0.895107i \(0.352901\pi\)
\(228\) −4.24497 + 37.6752i −0.281130 + 2.49510i
\(229\) 8.55442 0.963852i 0.565292 0.0636931i 0.175306 0.984514i \(-0.443908\pi\)
0.389986 + 0.920821i \(0.372480\pi\)
\(230\) 0 0
\(231\) 10.1660i 0.668873i
\(232\) −7.21589 4.38899i −0.473746 0.288151i
\(233\) −1.57326 1.57326i −0.103068 0.103068i 0.653692 0.756760i \(-0.273219\pi\)
−0.756760 + 0.653692i \(0.773219\pi\)
\(234\) −6.27586 + 2.19602i −0.410266 + 0.143558i
\(235\) 0 0
\(236\) 14.0643 11.2159i 0.915510 0.730095i
\(237\) −14.7979 42.2899i −0.961225 2.74702i
\(238\) 2.93459 8.38658i 0.190221 0.543621i
\(239\) −5.34017 4.25865i −0.345427 0.275469i 0.435373 0.900250i \(-0.356617\pi\)
−0.780800 + 0.624781i \(0.785188\pi\)
\(240\) 0 0
\(241\) 6.54369 1.49355i 0.421516 0.0962083i −0.00650118 0.999979i \(-0.502069\pi\)
0.428017 + 0.903771i \(0.359212\pi\)
\(242\) −3.21762 + 2.56597i −0.206836 + 0.164947i
\(243\) 14.1439 + 3.22826i 0.907333 + 0.207093i
\(244\) 18.9600 + 18.9600i 1.21379 + 1.21379i
\(245\) 0 0
\(246\) −7.19653 2.51818i −0.458834 0.160553i
\(247\) 6.99545 + 14.5262i 0.445110 + 0.924280i
\(248\) 2.99247 1.88029i 0.190022 0.119399i
\(249\) 14.2658 14.2658i 0.904055 0.904055i
\(250\) 0 0
\(251\) 0.287687 2.55329i 0.0181586 0.161162i −0.981360 0.192177i \(-0.938445\pi\)
0.999519 + 0.0310146i \(0.00987384\pi\)
\(252\) 34.9283 + 21.9469i 2.20028 + 1.38252i
\(253\) −1.54852 + 0.353439i −0.0973544 + 0.0222205i
\(254\) −3.27823 + 4.11078i −0.205695 + 0.257933i
\(255\) 0 0
\(256\) −3.80273 1.83130i −0.237671 0.114456i
\(257\) −26.6059 2.99776i −1.65963 0.186995i −0.768218 0.640189i \(-0.778856\pi\)
−0.891412 + 0.453194i \(0.850285\pi\)
\(258\) 5.48966 6.88382i 0.341771 0.428568i
\(259\) 3.79964 + 10.8588i 0.236098 + 0.674730i
\(260\) 0 0
\(261\) 30.8070 + 18.7381i 1.90691 + 1.15986i
\(262\) −0.561670 + 0.561670i −0.0347001 + 0.0347001i
\(263\) 0.698461 1.45037i 0.0430689 0.0894336i −0.878324 0.478066i \(-0.841338\pi\)
0.921393 + 0.388632i \(0.127052\pi\)
\(264\) 0.531002 + 4.71277i 0.0326809 + 0.290051i
\(265\) 0 0
\(266\) −3.96605 + 8.23559i −0.243174 + 0.504957i
\(267\) 33.5555 + 11.7416i 2.05356 + 0.718573i
\(268\) −3.73752 + 0.421117i −0.228305 + 0.0257238i
\(269\) −2.51693 + 4.00567i −0.153460 + 0.244230i −0.914602 0.404355i \(-0.867496\pi\)
0.761142 + 0.648585i \(0.224639\pi\)
\(270\) 0 0
\(271\) −9.25283 1.04254i −0.562069 0.0633300i −0.173641 0.984809i \(-0.555553\pi\)
−0.388428 + 0.921479i \(0.626982\pi\)
\(272\) 4.34490 19.0362i 0.263448 1.15424i
\(273\) 25.4017 1.53738
\(274\) −1.18143 + 5.17620i −0.0713730 + 0.312706i
\(275\) 0 0
\(276\) 3.08241 8.80903i 0.185539 0.530241i
\(277\) 1.87024 + 2.97647i 0.112372 + 0.178839i 0.898175 0.439638i \(-0.144893\pi\)
−0.785803 + 0.618476i \(0.787750\pi\)
\(278\) 3.74825i 0.224805i
\(279\) −12.7759 + 8.02760i −0.764871 + 0.480600i
\(280\) 0 0
\(281\) −0.994732 4.35821i −0.0593407 0.259989i 0.936552 0.350528i \(-0.113998\pi\)
−0.995893 + 0.0905396i \(0.971141\pi\)
\(282\) −2.27964 9.98777i −0.135751 0.594763i
\(283\) 1.97286 + 17.5096i 0.117274 + 1.04084i 0.905176 + 0.425036i \(0.139739\pi\)
−0.787902 + 0.615800i \(0.788833\pi\)
\(284\) 5.11471 + 10.6208i 0.303502 + 0.630229i
\(285\) 0 0
\(286\) 0.601256 + 0.753951i 0.0355530 + 0.0445821i
\(287\) 15.7270 + 12.5419i 0.928336 + 0.740323i
\(288\) −26.3865 12.7071i −1.55484 0.748772i
\(289\) 24.7121 1.45365
\(290\) 0 0
\(291\) 15.8453 0.928871
\(292\) −24.2164 11.6620i −1.41716 0.682468i
\(293\) 7.08570 + 5.65066i 0.413951 + 0.330115i 0.808221 0.588880i \(-0.200431\pi\)
−0.394269 + 0.918995i \(0.629002\pi\)
\(294\) 3.41784 + 4.28584i 0.199333 + 0.249955i
\(295\) 0 0
\(296\) −2.32863 4.83546i −0.135349 0.281055i
\(297\) −1.25131 11.1056i −0.0726082 0.644415i
\(298\) −0.801256 3.51053i −0.0464155 0.203360i
\(299\) −0.883137 3.86927i −0.0510731 0.223766i
\(300\) 0 0
\(301\) −19.6692 + 12.3590i −1.13371 + 0.712359i
\(302\) 0.802889i 0.0462011i
\(303\) −30.9749 49.2963i −1.77946 2.83200i
\(304\) −6.63450 + 18.9603i −0.380514 + 1.08745i
\(305\) 0 0
\(306\) 3.93789 17.2530i 0.225114 0.986290i
\(307\) −9.63676 −0.549999 −0.274999 0.961444i \(-0.588678\pi\)
−0.274999 + 0.961444i \(0.588678\pi\)
\(308\) 1.33132 5.83288i 0.0758588 0.332359i
\(309\) 14.5626 + 1.64081i 0.828437 + 0.0933424i
\(310\) 0 0
\(311\) −11.8375 + 18.8393i −0.671242 + 1.06828i 0.321371 + 0.946953i \(0.395856\pi\)
−0.992613 + 0.121323i \(0.961286\pi\)
\(312\) −11.7758 + 1.32681i −0.666673 + 0.0751160i
\(313\) −28.5902 10.0042i −1.61602 0.565469i −0.637288 0.770626i \(-0.719944\pi\)
−0.978729 + 0.205158i \(0.934229\pi\)
\(314\) −1.69942 + 3.52889i −0.0959040 + 0.199147i
\(315\) 0 0
\(316\) −2.95229 26.2023i −0.166079 1.47399i
\(317\) −9.56669 + 19.8654i −0.537319 + 1.11575i 0.438814 + 0.898578i \(0.355399\pi\)
−0.976133 + 0.217176i \(0.930316\pi\)
\(318\) −1.88432 + 1.88432i −0.105668 + 0.105668i
\(319\) 1.08945 5.11498i 0.0609977 0.286384i
\(320\) 0 0
\(321\) −12.7481 36.4319i −0.711529 2.03343i
\(322\) 1.40291 1.75919i 0.0781810 0.0980359i
\(323\) −42.6423 4.80464i −2.37268 0.267337i
\(324\) 25.9986 + 12.5203i 1.44437 + 0.695570i
\(325\) 0 0
\(326\) 5.37529 6.74040i 0.297710 0.373316i
\(327\) 6.37761 1.45565i 0.352683 0.0804975i
\(328\) −7.94587 4.99272i −0.438737 0.275677i
\(329\) −3.02625 + 26.8587i −0.166842 + 1.48077i
\(330\) 0 0
\(331\) −7.91949 + 7.91949i −0.435295 + 0.435295i −0.890425 0.455130i \(-0.849593\pi\)
0.455130 + 0.890425i \(0.349593\pi\)
\(332\) 10.0534 6.31696i 0.551751 0.346688i
\(333\) 9.94171 + 20.6442i 0.544802 + 1.13129i
\(334\) 4.56874 + 1.59867i 0.249990 + 0.0874754i
\(335\) 0 0
\(336\) 22.3786 + 22.3786i 1.22085 + 1.22085i
\(337\) 21.0068 + 4.79466i 1.14431 + 0.261182i 0.752327 0.658789i \(-0.228931\pi\)
0.391986 + 0.919971i \(0.371788\pi\)
\(338\) 2.27535 1.81453i 0.123763 0.0986973i
\(339\) −42.6317 + 9.73041i −2.31544 + 0.528483i
\(340\) 0 0
\(341\) 1.71095 + 1.36443i 0.0926530 + 0.0738883i
\(342\) −6.01301 + 17.1842i −0.325147 + 0.929215i
\(343\) 2.99570 + 8.56121i 0.161752 + 0.462262i
\(344\) 8.47273 6.75678i 0.456819 0.364301i
\(345\) 0 0
\(346\) −1.97664 + 0.691657i −0.106265 + 0.0371837i
\(347\) −0.543822 0.543822i −0.0291939 0.0291939i 0.692359 0.721553i \(-0.256571\pi\)
−0.721553 + 0.692359i \(0.756571\pi\)
\(348\) 22.0422 + 21.4102i 1.18158 + 1.14771i
\(349\) 4.38642i 0.234800i 0.993085 + 0.117400i \(0.0374559\pi\)
−0.993085 + 0.117400i \(0.962544\pi\)
\(350\) 0 0
\(351\) 27.7496 3.12663i 1.48117 0.166887i
\(352\) −0.475585 + 4.22093i −0.0253488 + 0.224976i
\(353\) −24.9543 + 8.73188i −1.32818 + 0.464751i −0.898795 0.438369i \(-0.855556\pi\)
−0.429387 + 0.903120i \(0.641270\pi\)
\(354\) 11.2697 5.42721i 0.598978 0.288453i
\(355\) 0 0
\(356\) 17.7153 + 11.1313i 0.938909 + 0.589955i
\(357\) −35.9699 + 57.2458i −1.90373 + 3.02977i
\(358\) 2.58570 + 3.24237i 0.136659 + 0.171364i
\(359\) −12.0702 19.2097i −0.637042 1.01385i −0.996732 0.0807752i \(-0.974260\pi\)
0.359690 0.933072i \(-0.382882\pi\)
\(360\) 0 0
\(361\) 24.5163 + 5.59568i 1.29033 + 0.294509i
\(362\) −3.35746 + 1.61687i −0.176464 + 0.0849807i
\(363\) 28.2141 13.5872i 1.48086 0.713143i
\(364\) 14.5746 + 3.32656i 0.763917 + 0.174359i
\(365\) 0 0
\(366\) 9.91949 + 15.7868i 0.518500 + 0.825188i
\(367\) 1.63625 + 2.05179i 0.0854115 + 0.107103i 0.822701 0.568474i \(-0.192466\pi\)
−0.737290 + 0.675577i \(0.763895\pi\)
\(368\) 2.63075 4.18681i 0.137137 0.218253i
\(369\) 33.9235 + 21.3156i 1.76599 + 1.10964i
\(370\) 0 0
\(371\) 6.33444 3.05050i 0.328868 0.158374i
\(372\) −12.1369 + 4.24688i −0.629269 + 0.220191i
\(373\) −0.394358 + 3.50003i −0.0204191 + 0.181225i −0.999782 0.0208857i \(-0.993351\pi\)
0.979363 + 0.202110i \(0.0647800\pi\)
\(374\) −2.55052 + 0.287375i −0.131884 + 0.0148598i
\(375\) 0 0
\(376\) 12.6093i 0.650274i
\(377\) 12.7808 + 2.72221i 0.658244 + 0.140201i
\(378\) 11.1950 + 11.1950i 0.575809 + 0.575809i
\(379\) −23.0211 + 8.05542i −1.18251 + 0.413779i −0.848707 0.528863i \(-0.822619\pi\)
−0.333805 + 0.942642i \(0.608333\pi\)
\(380\) 0 0
\(381\) 31.2794 24.9445i 1.60249 1.27795i
\(382\) −1.76147 5.03400i −0.0901247 0.257562i
\(383\) −5.85497 + 16.7325i −0.299175 + 0.854992i 0.691937 + 0.721958i \(0.256758\pi\)
−0.991111 + 0.133034i \(0.957528\pi\)
\(384\) −25.5369 20.3650i −1.30318 1.03925i
\(385\) 0 0
\(386\) 4.02225 0.918053i 0.204727 0.0467277i
\(387\) −36.1729 + 28.8469i −1.83877 + 1.46637i
\(388\) 9.09149 + 2.07507i 0.461550 + 0.105346i
\(389\) −20.9074 20.9074i −1.06005 1.06005i −0.998078 0.0619714i \(-0.980261\pi\)
−0.0619714 0.998078i \(-0.519739\pi\)
\(390\) 0 0
\(391\) 9.97042 + 3.48880i 0.504226 + 0.176436i
\(392\) 2.92745 + 6.07892i 0.147859 + 0.307032i
\(393\) 5.11768 3.21565i 0.258153 0.162208i
\(394\) 4.73931 4.73931i 0.238763 0.238763i
\(395\) 0 0
\(396\) 1.33419 11.8412i 0.0670455 0.595045i
\(397\) −7.60573 4.77899i −0.381720 0.239851i 0.327479 0.944858i \(-0.393801\pi\)
−0.709200 + 0.705007i \(0.750944\pi\)
\(398\) −4.77797 + 1.09054i −0.239498 + 0.0546639i
\(399\) 43.3660 54.3792i 2.17101 2.72237i
\(400\) 0 0
\(401\) −16.1128 7.75950i −0.804634 0.387491i −0.0140930 0.999901i \(-0.504486\pi\)
−0.790541 + 0.612410i \(0.790200\pi\)
\(402\) −2.59884 0.292819i −0.129619 0.0146045i
\(403\) −3.40931 + 4.27514i −0.169830 + 0.212960i
\(404\) −11.3165 32.3408i −0.563019 1.60902i
\(405\) 0 0
\(406\) 3.31119 + 6.62744i 0.164332 + 0.328915i
\(407\) 2.34989 2.34989i 0.116480 0.116480i
\(408\) 13.6849 28.4169i 0.677503 1.40685i
\(409\) 1.88589 + 16.7378i 0.0932513 + 0.827628i 0.950076 + 0.312020i \(0.101006\pi\)
−0.856824 + 0.515609i \(0.827566\pi\)
\(410\) 0 0
\(411\) 17.5286 36.3985i 0.864621 1.79540i
\(412\) 8.14061 + 2.84852i 0.401059 + 0.140337i
\(413\) −32.7938 + 3.69497i −1.61368 + 0.181818i
\(414\) 2.38432 3.79462i 0.117183 0.186495i
\(415\) 0 0
\(416\) −10.5468 1.18834i −0.517101 0.0582633i
\(417\) 6.34651 27.8059i 0.310790 1.36166i
\(418\) 2.64050 0.129151
\(419\) −0.726862 + 3.18459i −0.0355095 + 0.155577i −0.989574 0.144023i \(-0.953996\pi\)
0.954065 + 0.299600i \(0.0968533\pi\)
\(420\) 0 0
\(421\) −2.10095 + 6.00416i −0.102394 + 0.292625i −0.983671 0.179975i \(-0.942398\pi\)
0.881277 + 0.472599i \(0.156684\pi\)
\(422\) 1.60799 + 2.55910i 0.0782756 + 0.124575i
\(423\) 53.8332i 2.61746i
\(424\) −2.77719 + 1.74503i −0.134873 + 0.0847460i
\(425\) 0 0
\(426\) 1.82396 + 7.99129i 0.0883712 + 0.387179i
\(427\) −10.9459 47.9570i −0.529708 2.32080i
\(428\) −2.54334 22.5728i −0.122937 1.09110i
\(429\) −3.18374 6.61111i −0.153713 0.319188i
\(430\) 0 0
\(431\) 22.7217 + 28.4921i 1.09447 + 1.37242i 0.921904 + 0.387418i \(0.126633\pi\)
0.172561 + 0.984999i \(0.444796\pi\)
\(432\) 27.2016 + 21.6926i 1.30874 + 1.04368i
\(433\) −25.3951 12.2296i −1.22041 0.587718i −0.290983 0.956728i \(-0.593982\pi\)
−0.929425 + 0.369010i \(0.879697\pi\)
\(434\) −3.10013 −0.148811
\(435\) 0 0
\(436\) 3.84987 0.184375
\(437\) −9.79091 4.71506i −0.468363 0.225552i
\(438\) −14.6120 11.6527i −0.698189 0.556787i
\(439\) 21.5771 + 27.0568i 1.02982 + 1.29135i 0.955775 + 0.294097i \(0.0950190\pi\)
0.0740437 + 0.997255i \(0.476410\pi\)
\(440\) 0 0
\(441\) −12.4983 25.9529i −0.595156 1.23585i
\(442\) −0.718062 6.37298i −0.0341547 0.303132i
\(443\) −3.44728 15.1035i −0.163785 0.717590i −0.988397 0.151891i \(-0.951464\pi\)
0.824612 0.565699i \(-0.191394\pi\)
\(444\) 4.34510 + 19.0371i 0.206209 + 0.903462i
\(445\) 0 0
\(446\) 3.82035 2.40049i 0.180899 0.113666i
\(447\) 27.3990i 1.29593i
\(448\) 7.61351 + 12.1168i 0.359704 + 0.572466i
\(449\) 10.5740 30.2189i 0.499020 1.42612i −0.368926 0.929459i \(-0.620275\pi\)
0.867946 0.496658i \(-0.165440\pi\)
\(450\) 0 0
\(451\) 1.29302 5.66509i 0.0608860 0.266759i
\(452\) −25.7348 −1.21046
\(453\) 1.35944 5.95611i 0.0638722 0.279843i
\(454\) 1.53409 + 0.172850i 0.0719983 + 0.00811226i
\(455\) 0 0
\(456\) −17.2633 + 27.4744i −0.808428 + 1.28661i
\(457\) 26.6134 2.99861i 1.24492 0.140269i 0.535184 0.844735i \(-0.320242\pi\)
0.709738 + 0.704466i \(0.248814\pi\)
\(458\) 3.32511 + 1.16351i 0.155372 + 0.0543671i
\(459\) −32.2484 + 66.9645i −1.50523 + 3.12564i
\(460\) 0 0
\(461\) −4.40376 39.0844i −0.205103 1.82034i −0.501365 0.865236i \(-0.667169\pi\)
0.296262 0.955107i \(-0.404260\pi\)
\(462\) 1.80502 3.74815i 0.0839769 0.174380i
\(463\) 17.3288 17.3288i 0.805338 0.805338i −0.178586 0.983924i \(-0.557152\pi\)
0.983924 + 0.178586i \(0.0571522\pi\)
\(464\) 8.86148 + 13.6579i 0.411384 + 0.634054i
\(465\) 0 0
\(466\) −0.300715 0.859394i −0.0139304 0.0398107i
\(467\) 11.6610 14.6224i 0.539607 0.676646i −0.435035 0.900413i \(-0.643264\pi\)
0.974643 + 0.223767i \(0.0718356\pi\)
\(468\) 29.5877 + 3.33373i 1.36769 + 0.154102i
\(469\) 6.21666 + 2.99379i 0.287059 + 0.138240i
\(470\) 0 0
\(471\) 18.5820 23.3011i 0.856213 1.07366i
\(472\) 15.0096 3.42585i 0.690873 0.157687i
\(473\) 5.68182 + 3.57012i 0.261250 + 0.164154i
\(474\) 2.05284 18.2195i 0.0942902 0.836849i
\(475\) 0 0
\(476\) −28.1350 + 28.1350i −1.28957 + 1.28957i
\(477\) 11.8568 7.45010i 0.542884 0.341117i
\(478\) −1.21276 2.51831i −0.0554701 0.115185i
\(479\) 30.1049 + 10.5342i 1.37553 + 0.481319i 0.913967 0.405789i \(-0.133003\pi\)
0.461563 + 0.887107i \(0.347289\pi\)
\(480\) 0 0
\(481\) 5.87167 + 5.87167i 0.267725 + 0.267725i
\(482\) 2.67781 + 0.611193i 0.121971 + 0.0278391i
\(483\) −13.3859 + 10.6749i −0.609080 + 0.485725i
\(484\) 17.9676 4.10098i 0.816708 0.186408i
\(485\) 0 0
\(486\) 4.64160 + 3.70155i 0.210547 + 0.167906i
\(487\) 6.71341 19.1858i 0.304214 0.869393i −0.685720 0.727865i \(-0.740513\pi\)
0.989934 0.141528i \(-0.0452015\pi\)
\(488\) 7.57926 + 21.6603i 0.343097 + 0.980514i
\(489\) −51.2885 + 40.9012i −2.31935 + 1.84962i
\(490\) 0 0
\(491\) 9.57151 3.34922i 0.431956 0.151148i −0.105538 0.994415i \(-0.533657\pi\)
0.537495 + 0.843267i \(0.319371\pi\)
\(492\) 24.1427 + 24.1427i 1.08844 + 1.08844i
\(493\) −24.2330 + 24.9482i −1.09140 + 1.12361i
\(494\) 6.59781i 0.296850i
\(495\) 0 0
\(496\) −6.76990 + 0.762784i −0.303977 + 0.0342500i
\(497\) 2.42132 21.4898i 0.108611 0.963951i
\(498\) 7.79266 2.72677i 0.349197 0.122189i
\(499\) 1.40772 0.677923i 0.0630183 0.0303480i −0.402109 0.915592i \(-0.631723\pi\)
0.465127 + 0.885244i \(0.346008\pi\)
\(500\) 0 0
\(501\) −31.1857 19.5953i −1.39327 0.875451i
\(502\) 0.559416 0.890306i 0.0249680 0.0397363i
\(503\) −9.15733 11.4829i −0.408305 0.511998i 0.534579 0.845118i \(-0.320470\pi\)
−0.942884 + 0.333120i \(0.891899\pi\)
\(504\) 18.7830 + 29.8929i 0.836660 + 1.33154i
\(505\) 0 0
\(506\) −0.633685 0.144635i −0.0281708 0.00642979i
\(507\) −19.9517 + 9.60821i −0.886084 + 0.426716i
\(508\) 21.2137 10.2160i 0.941204 0.453260i
\(509\) 10.9409 + 2.49719i 0.484947 + 0.110686i 0.458003 0.888951i \(-0.348565\pi\)
0.0269447 + 0.999637i \(0.491422\pi\)
\(510\) 0 0
\(511\) 26.2339 + 41.7510i 1.16052 + 1.84696i
\(512\) −14.1573 17.7527i −0.625672 0.784568i
\(513\) 40.6810 64.7434i 1.79611 2.85849i
\(514\) −9.27720 5.82925i −0.409200 0.257117i
\(515\) 0 0
\(516\) −35.5240 + 17.1074i −1.56385 + 0.753113i
\(517\) 7.36960 2.57873i 0.324115 0.113413i
\(518\) −0.527108 + 4.67821i −0.0231598 + 0.205549i
\(519\) 15.8345 1.78412i 0.695058 0.0783143i
\(520\) 0 0
\(521\) 28.5240i 1.24966i −0.780762 0.624829i \(-0.785169\pi\)
0.780762 0.624829i \(-0.214831\pi\)
\(522\) 8.03139 + 12.3786i 0.351524 + 0.541794i
\(523\) −3.65812 3.65812i −0.159958 0.159958i 0.622590 0.782548i \(-0.286081\pi\)
−0.782548 + 0.622590i \(0.786081\pi\)
\(524\) 3.35745 1.17482i 0.146671 0.0513224i
\(525\) 0 0
\(526\) 0.515038 0.410729i 0.0224567 0.0179086i
\(527\) −4.80680 13.7370i −0.209387 0.598395i
\(528\) 3.01947 8.62914i 0.131405 0.375535i
\(529\) −15.8907 12.6724i −0.690900 0.550974i
\(530\) 0 0
\(531\) −64.0810 + 14.6261i −2.78088 + 0.634718i
\(532\) 32.0032 25.5217i 1.38752 1.10651i
\(533\) 14.1553 + 3.23087i 0.613136 + 0.139944i
\(534\) 10.2870 + 10.2870i 0.445162 + 0.445162i
\(535\) 0 0
\(536\) −3.03831 1.06315i −0.131235 0.0459211i
\(537\) −13.6917 28.4311i −0.590840 1.22689i
\(538\) −1.63920 + 1.02998i −0.0706711 + 0.0444056i
\(539\) −2.95418 + 2.95418i −0.127246 + 0.127246i
\(540\) 0 0
\(541\) −1.69761 + 15.0667i −0.0729858 + 0.647767i 0.902956 + 0.429734i \(0.141393\pi\)
−0.975941 + 0.218033i \(0.930036\pi\)
\(542\) −3.22637 2.02726i −0.138584 0.0870783i
\(543\) 27.6445 6.30967i 1.18634 0.270774i
\(544\) 17.6128 22.0858i 0.755143 0.946920i
\(545\) 0 0
\(546\) 9.36550 + 4.51019i 0.400806 + 0.193018i
\(547\) 25.7574 + 2.90217i 1.10131 + 0.124088i 0.643856 0.765146i \(-0.277333\pi\)
0.457452 + 0.889234i \(0.348762\pi\)
\(548\) 14.8239 18.5886i 0.633247 0.794067i
\(549\) −32.3584 92.4749i −1.38102 3.94673i
\(550\) 0 0
\(551\) 27.6471 22.7133i 1.17780 0.967621i
\(552\) 5.64788 5.64788i 0.240390 0.240390i
\(553\) −20.9883 + 43.5826i −0.892513 + 1.85332i
\(554\) 0.161064 + 1.42948i 0.00684294 + 0.0607328i
\(555\) 0 0
\(556\) 7.28279 15.1229i 0.308859 0.641353i
\(557\) −27.2359 9.53025i −1.15402 0.403810i −0.315632 0.948882i \(-0.602217\pi\)
−0.838389 + 0.545072i \(0.816502\pi\)
\(558\) −6.13573 + 0.691331i −0.259746 + 0.0292664i
\(559\) −8.92066 + 14.1971i −0.377304 + 0.600475i
\(560\) 0 0
\(561\) 19.4072 + 2.18667i 0.819374 + 0.0923213i
\(562\) 0.407065 1.78347i 0.0171710 0.0752311i
\(563\) 17.8844 0.753737 0.376868 0.926267i \(-0.377001\pi\)
0.376868 + 0.926267i \(0.377001\pi\)
\(564\) −10.2085 + 44.7264i −0.429856 + 1.88332i
\(565\) 0 0
\(566\) −2.38152 + 6.80598i −0.100103 + 0.286077i
\(567\) −28.1646 44.8236i −1.18280 1.88242i
\(568\) 10.0888i 0.423316i
\(569\) −5.61413 + 3.52759i −0.235357 + 0.147884i −0.644547 0.764565i \(-0.722954\pi\)
0.409190 + 0.912449i \(0.365811\pi\)
\(570\) 0 0
\(571\) −2.44233 10.7005i −0.102208 0.447804i −0.999973 0.00732878i \(-0.997667\pi\)
0.897765 0.440475i \(-0.145190\pi\)
\(572\) −0.960940 4.21015i −0.0401789 0.176035i
\(573\) 4.54370 + 40.3265i 0.189816 + 1.68466i
\(574\) 3.57161 + 7.41653i 0.149076 + 0.309560i
\(575\) 0 0
\(576\) 17.7706 + 22.2836i 0.740442 + 0.928485i
\(577\) 5.56959 + 4.44160i 0.231865 + 0.184906i 0.732530 0.680735i \(-0.238340\pi\)
−0.500664 + 0.865641i \(0.666911\pi\)
\(578\) 9.11123 + 4.38774i 0.378977 + 0.182506i
\(579\) −31.3929 −1.30464
\(580\) 0 0
\(581\) −21.7819 −0.903665
\(582\) 5.84210 + 2.81341i 0.242163 + 0.116620i
\(583\) −1.58786 1.26628i −0.0657625 0.0524439i
\(584\) −14.3424 17.9848i −0.593491 0.744214i
\(585\) 0 0
\(586\) 1.60917 + 3.34147i 0.0664740 + 0.138035i
\(587\) 1.46166 + 12.9726i 0.0603290 + 0.535435i 0.987134 + 0.159893i \(0.0511148\pi\)
−0.926805 + 0.375542i \(0.877457\pi\)
\(588\) −5.46247 23.9326i −0.225268 0.986965i
\(589\) 3.33169 + 14.5971i 0.137280 + 0.601462i
\(590\) 0 0
\(591\) −43.1824 + 27.1333i −1.77629 + 1.11611i
\(592\) 10.3457i 0.425207i
\(593\) 0.394369 + 0.627634i 0.0161948 + 0.0257739i 0.854724 0.519084i \(-0.173727\pi\)
−0.838529 + 0.544857i \(0.816584\pi\)
\(594\) 1.51050 4.31677i 0.0619768 0.177119i
\(595\) 0 0
\(596\) −3.58812 + 15.7206i −0.146975 + 0.643940i
\(597\) 37.2912 1.52623
\(598\) 0.361398 1.58339i 0.0147787 0.0647495i
\(599\) −5.63173 0.634544i −0.230106 0.0259267i −0.00384165 0.999993i \(-0.501223\pi\)
−0.226265 + 0.974066i \(0.572651\pi\)
\(600\) 0 0
\(601\) −10.8716 + 17.3020i −0.443462 + 0.705765i −0.991416 0.130743i \(-0.958264\pi\)
0.547955 + 0.836508i \(0.315407\pi\)
\(602\) −9.44631 + 1.06434i −0.385003 + 0.0433794i
\(603\) 12.9716 + 4.53894i 0.528242 + 0.184840i
\(604\) 1.56000 3.23937i 0.0634755 0.131808i
\(605\) 0 0
\(606\) −2.66753 23.6750i −0.108361 0.961732i
\(607\) 4.42748 9.19377i 0.179706 0.373163i −0.791585 0.611060i \(-0.790744\pi\)
0.971291 + 0.237896i \(0.0764578\pi\)
\(608\) −20.5496 + 20.5496i −0.833395 + 0.833395i
\(609\) −13.3420 54.7712i −0.540647 2.21944i
\(610\) 0 0
\(611\) 6.44347 + 18.4144i 0.260675 + 0.744966i
\(612\) −49.4103 + 61.9586i −1.99729 + 2.50453i
\(613\) −12.5618 1.41538i −0.507368 0.0571667i −0.145430 0.989369i \(-0.546456\pi\)
−0.361939 + 0.932202i \(0.617885\pi\)
\(614\) −3.55303 1.71105i −0.143388 0.0690522i
\(615\) 0 0
\(616\) 3.19250 4.00327i 0.128630 0.161296i
\(617\) 24.4316 5.57635i 0.983579 0.224495i 0.299654 0.954048i \(-0.403129\pi\)
0.683925 + 0.729553i \(0.260272\pi\)
\(618\) 5.07783 + 3.19061i 0.204260 + 0.128345i
\(619\) 2.36418 20.9827i 0.0950245 0.843366i −0.852292 0.523066i \(-0.824788\pi\)
0.947316 0.320299i \(-0.103783\pi\)
\(620\) 0 0
\(621\) −13.3092 + 13.3092i −0.534081 + 0.534081i
\(622\) −7.70941 + 4.84415i −0.309119 + 0.194233i
\(623\) −16.6535 34.5813i −0.667207 1.38547i
\(624\) 21.5616 + 7.54473i 0.863155 + 0.302031i
\(625\) 0 0
\(626\) −8.76481 8.76481i −0.350312 0.350312i
\(627\) −19.5882 4.47087i −0.782276 0.178549i
\(628\) 13.7131 10.9359i 0.547214 0.436388i
\(629\) −21.5470 + 4.91797i −0.859136 + 0.196092i
\(630\) 0 0
\(631\) −14.8022 11.8044i −0.589268 0.469926i 0.282888 0.959153i \(-0.408707\pi\)
−0.872156 + 0.489227i \(0.837279\pi\)
\(632\) 7.45334 21.3004i 0.296478 0.847285i
\(633\) −7.59558 21.7069i −0.301897 0.862772i
\(634\) −7.05438 + 5.62568i −0.280165 + 0.223424i
\(635\) 0 0
\(636\) 11.2638 3.94137i 0.446638 0.156285i
\(637\) −7.38160 7.38160i −0.292470 0.292470i
\(638\) 1.30986 1.69243i 0.0518580 0.0670041i
\(639\) 43.0724i 1.70392i
\(640\) 0 0
\(641\) 34.3580 3.87121i 1.35706 0.152904i 0.596729 0.802443i \(-0.296467\pi\)
0.760328 + 0.649539i \(0.225038\pi\)
\(642\) 1.76849 15.6958i 0.0697966 0.619462i
\(643\) −24.5385 + 8.58638i −0.967703 + 0.338614i −0.767434 0.641127i \(-0.778467\pi\)
−0.200268 + 0.979741i \(0.564181\pi\)
\(644\) −9.07831 + 4.37188i −0.357736 + 0.172276i
\(645\) 0 0
\(646\) −14.8689 9.34278i −0.585011 0.367587i
\(647\) 14.0132 22.3019i 0.550916 0.876778i −0.448943 0.893560i \(-0.648199\pi\)
0.999859 + 0.0167822i \(0.00534220\pi\)
\(648\) 15.3979 + 19.3083i 0.604885 + 0.758502i
\(649\) 5.07189 + 8.07187i 0.199089 + 0.316849i
\(650\) 0 0
\(651\) 22.9978 + 5.24911i 0.901356 + 0.205729i
\(652\) −34.7838 + 16.7510i −1.36224 + 0.656020i
\(653\) −21.1430 + 10.1819i −0.827389 + 0.398449i −0.799135 0.601151i \(-0.794709\pi\)
−0.0282535 + 0.999601i \(0.508995\pi\)
\(654\) 2.60985 + 0.595682i 0.102053 + 0.0232930i
\(655\) 0 0
\(656\) 9.62433 + 15.3170i 0.375767 + 0.598029i
\(657\) 61.2323 + 76.7829i 2.38890 + 2.99559i
\(658\) −5.88464 + 9.36534i −0.229407 + 0.365099i
\(659\) 4.29921 + 2.70137i 0.167473 + 0.105230i 0.613161 0.789958i \(-0.289898\pi\)
−0.445687 + 0.895189i \(0.647041\pi\)
\(660\) 0 0
\(661\) −8.41615 + 4.05301i −0.327350 + 0.157644i −0.590339 0.807155i \(-0.701006\pi\)
0.262989 + 0.964799i \(0.415292\pi\)
\(662\) −4.32602 + 1.51374i −0.168135 + 0.0588331i
\(663\) −5.46382 + 48.4928i −0.212197 + 1.88330i
\(664\) 10.0977 1.13774i 0.391866 0.0441527i
\(665\) 0 0
\(666\) 9.37660i 0.363336i
\(667\) −7.87906 + 3.93652i −0.305078 + 0.152423i
\(668\) −15.3271 15.3271i −0.593022 0.593022i
\(669\) −32.4052 + 11.3391i −1.25286 + 0.438394i
\(670\) 0 0
\(671\) −11.1095 + 8.85952i −0.428877 + 0.342018i
\(672\) 15.1224 + 43.2172i 0.583358 + 1.66714i
\(673\) 16.7407 47.8420i 0.645305 1.84417i 0.120983 0.992655i \(-0.461395\pi\)
0.524322 0.851520i \(-0.324319\pi\)
\(674\) 6.89379 + 5.49761i 0.265539 + 0.211760i
\(675\) 0 0
\(676\) −12.7058 + 2.90002i −0.488685 + 0.111539i
\(677\) −25.3499 + 20.2159i −0.974277 + 0.776960i −0.974809 0.223040i \(-0.928402\pi\)
0.000532135 1.00000i \(0.499831\pi\)
\(678\) −17.4458 3.98188i −0.670001 0.152923i
\(679\) −12.0969 12.0969i −0.464235 0.464235i
\(680\) 0 0
\(681\) −11.0877 3.87977i −0.424883 0.148673i
\(682\) 0.388557 + 0.806846i 0.0148786 + 0.0308957i
\(683\) 35.8420 22.5210i 1.37146 0.861743i 0.373625 0.927580i \(-0.378115\pi\)
0.997830 + 0.0658371i \(0.0209718\pi\)
\(684\) 57.6490 57.6490i 2.20426 2.20426i
\(685\) 0 0
\(686\) −0.415580 + 3.68837i −0.0158669 + 0.140823i
\(687\) −22.6968 14.2613i −0.865937 0.544104i
\(688\) −20.3665 + 4.64852i −0.776465 + 0.177223i
\(689\) 3.16404 3.96759i 0.120540 0.151153i
\(690\) 0 0
\(691\) −39.8969 19.2134i −1.51775 0.730910i −0.525000 0.851102i \(-0.675935\pi\)
−0.992751 + 0.120192i \(0.961649\pi\)
\(692\) 9.31892 + 1.04999i 0.354252 + 0.0399146i
\(693\) −13.6298 + 17.0913i −0.517755 + 0.649244i
\(694\) −0.103947 0.297063i −0.00394576 0.0112763i
\(695\) 0 0
\(696\) 9.04600 + 24.6940i 0.342888 + 0.936025i
\(697\) −27.3257 + 27.3257i −1.03503 + 1.03503i
\(698\) −0.778828 + 1.61725i −0.0294791 + 0.0612139i
\(699\) 0.775692 + 6.88445i 0.0293393 + 0.260394i
\(700\) 0 0
\(701\) −11.2723 + 23.4071i −0.425747 + 0.884074i 0.572205 + 0.820111i \(0.306088\pi\)
−0.997952 + 0.0639630i \(0.979626\pi\)
\(702\) 10.7863 + 3.77429i 0.407103 + 0.142451i
\(703\) 22.5940 2.54574i 0.852150 0.0960142i
\(704\) 2.19931 3.50018i 0.0828895 0.131918i
\(705\) 0 0
\(706\) −10.7509 1.21134i −0.404616 0.0455892i
\(707\) −13.9871 + 61.2816i −0.526040 + 2.30473i
\(708\) −56.0142 −2.10514
\(709\) 1.44196 6.31766i 0.0541541 0.237265i −0.940606 0.339500i \(-0.889742\pi\)
0.994760 + 0.102235i \(0.0325994\pi\)
\(710\) 0 0
\(711\) −31.8208 + 90.9386i −1.19337 + 3.41046i
\(712\) 9.52654 + 15.1614i 0.357022 + 0.568198i
\(713\) 3.68560i 0.138027i
\(714\) −23.4262 + 14.7196i −0.876702 + 0.550868i
\(715\) 0 0
\(716\) −4.13253 18.1058i −0.154440 0.676645i
\(717\) 4.73266 + 20.7351i 0.176744 + 0.774368i
\(718\) −1.03948 9.22563i −0.0387930 0.344297i
\(719\) 4.39780 + 9.13213i 0.164010 + 0.340571i 0.966735 0.255778i \(-0.0823317\pi\)
−0.802725 + 0.596349i \(0.796617\pi\)
\(720\) 0 0
\(721\) −9.86491 12.3702i −0.367388 0.460691i
\(722\) 8.04549 + 6.41607i 0.299422 + 0.238781i
\(723\) −18.8301 9.06809i −0.700298 0.337246i
\(724\) 16.6877 0.620194
\(725\) 0 0
\(726\) 12.8149 0.475604
\(727\) −8.12829 3.91438i −0.301461 0.145176i 0.277038 0.960859i \(-0.410647\pi\)
−0.578499 + 0.815683i \(0.696362\pi\)
\(728\) 10.0030 + 7.97709i 0.370734 + 0.295651i
\(729\) 1.28795 + 1.61504i 0.0477020 + 0.0598164i
\(730\) 0 0
\(731\) −19.3629 40.2075i −0.716163 1.48713i
\(732\) −9.34818 82.9674i −0.345519 3.06656i
\(733\) 10.8479 + 47.5277i 0.400676 + 1.75548i 0.624674 + 0.780886i \(0.285232\pi\)
−0.223998 + 0.974590i \(0.571911\pi\)
\(734\) 0.238973 + 1.04701i 0.00882065 + 0.0386458i
\(735\) 0 0
\(736\) 6.05723 3.80601i 0.223273 0.140291i
\(737\) 1.99319i 0.0734201i
\(738\) 8.72277 + 13.8822i 0.321090 + 0.511011i
\(739\) 7.43283 21.2418i 0.273421 0.781392i −0.722517 0.691353i \(-0.757015\pi\)
0.995938 0.0900393i \(-0.0286993\pi\)
\(740\) 0 0
\(741\) 11.1713 48.9449i 0.410390 1.79803i
\(742\) 2.87711 0.105622
\(743\) 3.64293 15.9607i 0.133646 0.585542i −0.863107 0.505021i \(-0.831485\pi\)
0.996753 0.0805206i \(-0.0256583\pi\)
\(744\) −10.9356 1.23214i −0.400917 0.0451725i
\(745\) 0 0
\(746\) −0.766843 + 1.22042i −0.0280761 + 0.0446829i
\(747\) −43.1104 + 4.85738i −1.57733 + 0.177722i
\(748\) 10.8488 + 3.79616i 0.396672 + 0.138801i
\(749\) −18.0810 + 37.5456i −0.660666 + 1.37189i
\(750\) 0 0
\(751\) 3.39925 + 30.1691i 0.124040 + 1.10089i 0.889351 + 0.457226i \(0.151157\pi\)
−0.765310 + 0.643661i \(0.777414\pi\)
\(752\) −10.5462 + 21.8995i −0.384581 + 0.798591i
\(753\) −5.65740 + 5.65740i −0.206167 + 0.206167i
\(754\) 4.22888 + 3.27295i 0.154007 + 0.119194i
\(755\) 0 0
\(756\) −23.4162 66.9196i −0.851638 2.43384i
\(757\) −4.90448 + 6.15003i −0.178256 + 0.223527i −0.862930 0.505323i \(-0.831373\pi\)
0.684674 + 0.728850i \(0.259945\pi\)
\(758\) −9.91803 1.11749i −0.360239 0.0405892i
\(759\) 4.45601 + 2.14590i 0.161743 + 0.0778912i
\(760\) 0 0
\(761\) −13.9346 + 17.4735i −0.505130 + 0.633412i −0.967378 0.253338i \(-0.918471\pi\)
0.462248 + 0.886751i \(0.347043\pi\)
\(762\) 15.9616 3.64312i 0.578227 0.131976i
\(763\) −5.98017 3.75759i −0.216497 0.136034i
\(764\) −2.67406 + 23.7329i −0.0967439 + 0.858626i
\(765\) 0 0
\(766\) −5.12963 + 5.12963i −0.185341 + 0.185341i
\(767\) −20.1692 + 12.6731i −0.728266 + 0.457600i
\(768\) 5.70232 + 11.8410i 0.205765 + 0.427275i
\(769\) −22.2341 7.78004i −0.801782 0.280556i −0.101882 0.994797i \(-0.532486\pi\)
−0.699900 + 0.714241i \(0.746772\pi\)
\(770\) 0 0
\(771\) 58.9515 + 58.9515i 2.12308 + 2.12308i
\(772\) −18.0121 4.11115i −0.648270 0.147963i
\(773\) −26.8528 + 21.4144i −0.965829 + 0.770223i −0.973250 0.229750i \(-0.926209\pi\)
0.00742075 + 0.999972i \(0.497638\pi\)
\(774\) −18.4587 + 4.21307i −0.663483 + 0.151436i
\(775\) 0 0
\(776\) 6.23974 + 4.97603i 0.223994 + 0.178629i
\(777\) 11.8314 33.8121i 0.424448 1.21300i
\(778\) −3.99627 11.4207i −0.143273 0.409451i
\(779\) 31.0826 24.7876i 1.11365 0.888107i
\(780\) 0 0
\(781\) −5.89647 + 2.06326i −0.210992 + 0.0738294i
\(782\) 3.05659 + 3.05659i 0.109304 + 0.109304i
\(783\) −21.3169 58.1915i −0.761804 2.07959i
\(784\) 13.0062i 0.464507i
\(785\) 0 0
\(786\) 2.45781 0.276929i 0.0876673 0.00987774i
\(787\) 0.757338 6.72156i 0.0269962 0.239598i −0.972966 0.230947i \(-0.925818\pi\)
0.999963 0.00865096i \(-0.00275372\pi\)
\(788\) −28.3298 + 9.91303i −1.00921 + 0.353137i
\(789\) −4.51618 + 2.17488i −0.160780 + 0.0774276i
\(790\) 0 0
\(791\) 39.9749 + 25.1179i 1.42134 + 0.893090i
\(792\) 5.42582 8.63515i 0.192798 0.306837i
\(793\) −22.1373 27.7592i −0.786117 0.985759i
\(794\) −1.95566 3.11242i −0.0694039 0.110456i
\(795\) 0 0
\(796\) 21.3963 + 4.88357i 0.758373 + 0.173094i
\(797\) 39.3580 18.9538i 1.39413 0.671379i 0.422171 0.906516i \(-0.361268\pi\)
0.971962 + 0.235137i \(0.0755538\pi\)
\(798\) 25.6441 12.3495i 0.907791 0.437169i
\(799\) −50.6232 11.5544i −1.79092 0.408766i
\(800\) 0 0
\(801\) −40.6720 64.7291i −1.43707 2.28709i
\(802\) −4.56297 5.72178i −0.161124 0.202043i
\(803\) 7.57817 12.0606i 0.267428 0.425609i
\(804\) 9.91646 + 6.23093i 0.349727 + 0.219748i
\(805\) 0 0
\(806\) −2.01606 + 0.970885i −0.0710128 + 0.0341980i
\(807\) 13.9041 4.86527i 0.489449 0.171266i
\(808\) 3.28325 29.1397i 0.115504 1.02513i
\(809\) 25.1469 2.83338i 0.884120 0.0996164i 0.341784 0.939778i \(-0.388969\pi\)
0.542335 + 0.840162i \(0.317540\pi\)
\(810\) 0 0
\(811\) 16.4826i 0.578783i 0.957211 + 0.289392i \(0.0934530\pi\)
−0.957211 + 0.289392i \(0.906547\pi\)
\(812\) −0.482463 33.1730i −0.0169311 1.16414i
\(813\) 20.5018 + 20.5018i 0.719028 + 0.719028i
\(814\) 1.28363 0.449161i 0.0449911 0.0157431i
\(815\) 0 0
\(816\) −47.5351 + 37.9079i −1.66406 + 1.32704i
\(817\) 15.1634 + 43.3345i 0.530500 + 1.51608i
\(818\) −2.27654 + 6.50598i −0.0795973 + 0.227476i
\(819\) −42.7059 34.0569i −1.49227 1.19004i
\(820\) 0 0
\(821\) 25.1655 5.74385i 0.878281 0.200462i 0.240471 0.970656i \(-0.422698\pi\)
0.637809 + 0.770194i \(0.279841\pi\)
\(822\) 12.9254 10.3077i 0.450825 0.359521i
\(823\) −32.1157 7.33020i −1.11948 0.255515i −0.377550 0.925989i \(-0.623233\pi\)
−0.741933 + 0.670475i \(0.766091\pi\)
\(824\) 5.21933 + 5.21933i 0.181824 + 0.181824i
\(825\) 0 0
\(826\) −12.7470 4.46036i −0.443524 0.155196i
\(827\) 3.98714 + 8.27938i 0.138646 + 0.287902i 0.958718 0.284359i \(-0.0917807\pi\)
−0.820071 + 0.572261i \(0.806066\pi\)
\(828\) −16.9927 + 10.6772i −0.590538 + 0.371060i
\(829\) 21.1823 21.1823i 0.735693 0.735693i −0.236048 0.971741i \(-0.575852\pi\)
0.971741 + 0.236048i \(0.0758523\pi\)
\(830\) 0 0
\(831\) 1.22555 10.8771i 0.0425140 0.377322i
\(832\) 8.74588 + 5.49540i 0.303209 + 0.190519i
\(833\) 27.0879 6.18265i 0.938542 0.214216i
\(834\) 7.27697 9.12504i 0.251981 0.315974i
\(835\) 0 0
\(836\) −10.6535 5.13045i −0.368458 0.177440i
\(837\) 25.7696 + 2.90354i 0.890729 + 0.100361i
\(838\) −0.833428 + 1.04509i −0.0287903 + 0.0361019i
\(839\) 4.98865 + 14.2567i 0.172227 + 0.492197i 0.997350 0.0727568i \(-0.0231797\pi\)
−0.825123 + 0.564954i \(0.808894\pi\)
\(840\) 0 0
\(841\) −0.843366 28.9877i −0.0290816 0.999577i
\(842\) −1.84067 + 1.84067i −0.0634338 + 0.0634338i
\(843\) −6.03950 + 12.5412i −0.208011 + 0.431940i
\(844\) −1.51538 13.4493i −0.0521614 0.462945i
\(845\) 0 0
\(846\) −9.55831 + 19.8480i −0.328622 + 0.682390i
\(847\) −31.9125 11.1667i −1.09653 0.383691i
\(848\) 6.28287 0.707910i 0.215755 0.0243097i
\(849\) 29.1907 46.4568i 1.00182 1.59439i
\(850\) 0 0
\(851\) −5.56171 0.626654i −0.190653 0.0214814i
\(852\) 8.16791 35.7859i 0.279828 1.22601i
\(853\) 41.9677 1.43695 0.718474 0.695554i \(-0.244841\pi\)
0.718474 + 0.695554i \(0.244841\pi\)
\(854\) 4.47928 19.6250i 0.153278 0.671554i
\(855\) 0 0
\(856\) 6.42091 18.3499i 0.219462 0.627187i
\(857\) 15.1697 + 24.1425i 0.518189 + 0.824692i 0.998630 0.0523346i \(-0.0166662\pi\)
−0.480441 + 0.877027i \(0.659523\pi\)
\(858\) 3.00277i 0.102513i
\(859\) −13.3099 + 8.36320i −0.454130 + 0.285349i −0.739610 0.673036i \(-0.764990\pi\)
0.285480 + 0.958385i \(0.407847\pi\)
\(860\) 0 0
\(861\) −13.9379 61.0658i −0.475001 2.08112i
\(862\) 3.31849 + 14.5392i 0.113028 + 0.495208i
\(863\) 2.26364 + 20.0904i 0.0770552 + 0.683884i 0.971555 + 0.236815i \(0.0761035\pi\)
−0.894500 + 0.447069i \(0.852468\pi\)
\(864\) 21.8396 + 45.3505i 0.743000 + 1.54286i
\(865\) 0 0
\(866\) −7.19161 9.01800i −0.244381 0.306444i
\(867\) −60.1610 47.9768i −2.04318 1.62938i
\(868\) 12.5079 + 6.02349i 0.424546 + 0.204451i
\(869\) 13.9735 0.474018
\(870\) 0 0
\(871\) 4.98038 0.168754
\(872\) 2.96857 + 1.42959i 0.100528 + 0.0484119i
\(873\) −26.6395 21.2443i −0.901612 0.719011i
\(874\) −2.77268 3.47684i −0.0937875 0.117606i
\(875\) 0 0
\(876\) 36.3133 + 75.4054i 1.22691 + 2.54771i
\(877\) 2.72318 + 24.1689i 0.0919553 + 0.816126i 0.952040 + 0.305974i \(0.0989821\pi\)
−0.860084 + 0.510152i \(0.829589\pi\)
\(878\) 3.15132 + 13.8068i 0.106352 + 0.465958i
\(879\) −6.27962 27.5128i −0.211806 0.927983i
\(880\) 0 0
\(881\) 19.1587 12.0382i 0.645472 0.405577i −0.169133 0.985593i \(-0.554097\pi\)
0.814605 + 0.580016i \(0.196954\pi\)
\(882\) 11.7878i 0.396917i
\(883\) 4.81671 + 7.66575i 0.162095 + 0.257973i 0.917889 0.396836i \(-0.129892\pi\)
−0.755794 + 0.654809i \(0.772749\pi\)
\(884\) −9.48545 + 27.1079i −0.319030 + 0.911736i
\(885\) 0 0
\(886\) 1.41070 6.18068i 0.0473934 0.207644i
\(887\) 1.17437 0.0394316 0.0197158 0.999806i \(-0.493724\pi\)
0.0197158 + 0.999806i \(0.493724\pi\)
\(888\) −3.71870 + 16.2927i −0.124791 + 0.546747i
\(889\) −42.9232 4.83628i −1.43960 0.162204i
\(890\) 0 0
\(891\) −8.13587 + 12.9482i −0.272562 + 0.433780i
\(892\) −20.0779 + 2.26223i −0.672257 + 0.0757452i
\(893\) 50.4213 + 17.6432i 1.68728 + 0.590406i
\(894\) −4.86481 + 10.1019i −0.162704 + 0.337858i
\(895\) 0 0
\(896\) 3.94840 + 35.0430i 0.131907 + 1.17071i
\(897\) −5.36195 + 11.1342i −0.179030 + 0.371760i
\(898\) 9.26409 9.26409i 0.309147 0.309147i
\(899\) 11.0087 + 5.10566i 0.367162 + 0.170283i
\(900\) 0 0
\(901\) 4.46100 + 12.7488i 0.148617 + 0.424724i
\(902\) 1.48259 1.85911i 0.0493649 0.0619016i
\(903\) 71.8782 + 8.09873i 2.39196 + 0.269509i
\(904\) −19.8437 9.55620i −0.659990 0.317834i
\(905\) 0 0
\(906\) 1.55875 1.95461i 0.0517861 0.0649377i
\(907\) 10.1261 2.31122i 0.336232 0.0767427i −0.0510717 0.998695i \(-0.516264\pi\)
0.387304 + 0.921952i \(0.373407\pi\)
\(908\) −5.85366 3.67810i −0.194260 0.122062i
\(909\) −14.0173 + 124.407i −0.464924 + 4.12632i
\(910\) 0 0
\(911\) 24.7498 24.7498i 0.819996 0.819996i −0.166111 0.986107i \(-0.553121\pi\)
0.986107 + 0.166111i \(0.0531209\pi\)
\(912\) 52.9616 33.2780i 1.75373 1.10194i
\(913\) 2.73005 + 5.66900i 0.0903514 + 0.187617i
\(914\) 10.3446 + 3.61975i 0.342170 + 0.119731i
\(915\) 0 0
\(916\) −11.1550 11.1550i −0.368570 0.368570i
\(917\) −6.36193 1.45207i −0.210089 0.0479516i
\(918\) −23.7797 + 18.9637i −0.784846 + 0.625894i
\(919\) −18.3243 + 4.18239i −0.604461 + 0.137964i −0.513789 0.857916i \(-0.671759\pi\)
−0.0906722 + 0.995881i \(0.528902\pi\)
\(920\) 0 0
\(921\) 23.4605 + 18.7091i 0.773048 + 0.616486i
\(922\) 5.31596 15.1921i 0.175072 0.500326i
\(923\) −5.15547 14.7335i −0.169694 0.484959i
\(924\) −14.5652 + 11.6154i −0.479160 + 0.382117i
\(925\) 0 0
\(926\) 9.46586 3.31225i 0.311067 0.108847i
\(927\) −22.2831 22.2831i −0.731872 0.731872i
\(928\) 2.97733 + 23.3652i 0.0977355 + 0.767001i
\(929\) 30.7214i 1.00794i −0.863722 0.503968i \(-0.831873\pi\)
0.863722 0.503968i \(-0.168127\pi\)
\(930\) 0 0
\(931\) −28.4042 + 3.20038i −0.930910 + 0.104888i
\(932\) −0.456509 + 4.05163i −0.0149535 + 0.132716i
\(933\) 65.3932 22.8821i 2.14088 0.749125i
\(934\) 6.89563 3.32076i 0.225632 0.108659i
\(935\) 0 0
\(936\) 21.5766 + 13.5575i 0.705254 + 0.443140i
\(937\) 8.45546 13.4568i 0.276228 0.439614i −0.679582 0.733599i \(-0.737839\pi\)
0.955810 + 0.293985i \(0.0949817\pi\)
\(938\) 1.76049 + 2.20759i 0.0574822 + 0.0720803i
\(939\) 50.1799 + 79.8609i 1.63756 + 2.60616i
\(940\) 0 0
\(941\) −29.7233 6.78416i −0.968953 0.221157i −0.291376 0.956609i \(-0.594113\pi\)
−0.677578 + 0.735451i \(0.736970\pi\)
\(942\) 10.9883 5.29169i 0.358018 0.172412i
\(943\) −8.81716 + 4.24612i −0.287126 + 0.138273i
\(944\) −28.9336 6.60391i −0.941709 0.214939i
\(945\) 0 0
\(946\) 1.46097 + 2.32512i 0.0475002 + 0.0755961i
\(947\) −3.42546 4.29539i −0.111312 0.139581i 0.723054 0.690791i \(-0.242738\pi\)
−0.834367 + 0.551210i \(0.814166\pi\)
\(948\) −43.6826 + 69.5205i −1.41875 + 2.25792i
\(949\) 30.1358 + 18.9355i 0.978248 + 0.614674i
\(950\) 0 0
\(951\) 61.8572 29.7889i 2.00586 0.965970i
\(952\) −32.1419 + 11.2469i −1.04173 + 0.364515i
\(953\) 2.34005 20.7685i 0.0758016 0.672758i −0.897146 0.441734i \(-0.854364\pi\)
0.972948 0.231025i \(-0.0742078\pi\)
\(954\) 5.69433 0.641597i 0.184361 0.0207725i
\(955\) 0 0
\(956\) 12.5169i 0.404824i
\(957\) −12.5826 + 10.3372i −0.406739 + 0.334155i
\(958\) 9.22916 + 9.22916i 0.298181 + 0.298181i
\(959\) −41.1697 + 14.4059i −1.32944 + 0.465190i
\(960\) 0 0
\(961\) 20.2667 16.1621i 0.653764 0.521359i
\(962\) 1.12232 + 3.20740i 0.0361849 + 0.103411i
\(963\) −27.4130 + 78.3419i −0.883372 + 2.52453i
\(964\) −9.61648 7.66889i −0.309726 0.246998i
\(965\) 0 0
\(966\) −6.83069 + 1.55906i −0.219774 + 0.0501620i
\(967\) −6.76637 + 5.39600i −0.217592 + 0.173524i −0.726220 0.687463i \(-0.758724\pi\)
0.508628 + 0.860987i \(0.330153\pi\)
\(968\) 15.3773 + 3.50977i 0.494246 + 0.112808i
\(969\) 94.4839 + 94.4839i 3.03526 + 3.03526i
\(970\) 0 0
\(971\) −26.5825 9.30161i −0.853072 0.298503i −0.131903 0.991263i \(-0.542109\pi\)
−0.721168 + 0.692760i \(0.756395\pi\)
\(972\) −11.5352 23.9530i −0.369990 0.768293i
\(973\) −26.0730 + 16.3828i −0.835863 + 0.525207i
\(974\) 5.88173 5.88173i 0.188463 0.188463i
\(975\) 0 0
\(976\) 4.95289 43.9582i 0.158538 1.40707i
\(977\) −33.6606 21.1503i −1.07690 0.676659i −0.127850 0.991794i \(-0.540808\pi\)
−0.949047 + 0.315134i \(0.897950\pi\)
\(978\) −26.1720 + 5.97359i −0.836889 + 0.191014i
\(979\) −6.91293 + 8.66854i −0.220938 + 0.277048i
\(980\) 0 0
\(981\) −12.6738 6.10339i −0.404644 0.194866i
\(982\) 4.12364 + 0.464623i 0.131591 + 0.0148267i
\(983\) 8.51823 10.6815i 0.271689 0.340688i −0.627204 0.778855i \(-0.715801\pi\)
0.898893 + 0.438167i \(0.144372\pi\)
\(984\) 9.65101 + 27.5810i 0.307663 + 0.879250i
\(985\) 0 0
\(986\) −13.3642 + 4.89563i −0.425604 + 0.155909i
\(987\) 59.5116 59.5116i 1.89427 1.89427i
\(988\) 12.8194 26.6198i 0.407840 0.846889i
\(989\) −1.26535 11.2303i −0.0402358 0.357102i
\(990\) 0 0
\(991\) −13.7568 + 28.5662i −0.436998 + 0.907435i 0.559887 + 0.828569i \(0.310844\pi\)
−0.996885 + 0.0788666i \(0.974870\pi\)
\(992\) −9.30316 3.25532i −0.295376 0.103356i
\(993\) 34.6550 3.90468i 1.09974 0.123911i
\(994\) 4.70834 7.49328i 0.149340 0.237673i
\(995\) 0 0
\(996\) −36.7387 4.13945i −1.16411 0.131164i
\(997\) 2.31966 10.1631i 0.0734642 0.321868i −0.924821 0.380402i \(-0.875786\pi\)
0.998285 + 0.0585343i \(0.0186427\pi\)
\(998\) 0.639388 0.0202395
\(999\) 8.76311 38.3937i 0.277253 1.21472i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 725.2.y.a.18.7 yes 120
5.2 odd 4 725.2.bd.a.482.4 yes 120
5.3 odd 4 725.2.bd.a.482.7 yes 120
5.4 even 2 inner 725.2.y.a.18.4 120
29.21 odd 28 725.2.bd.a.543.4 yes 120
145.79 odd 28 725.2.bd.a.543.7 yes 120
145.108 even 28 inner 725.2.y.a.282.4 yes 120
145.137 even 28 inner 725.2.y.a.282.7 yes 120
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
725.2.y.a.18.4 120 5.4 even 2 inner
725.2.y.a.18.7 yes 120 1.1 even 1 trivial
725.2.y.a.282.4 yes 120 145.108 even 28 inner
725.2.y.a.282.7 yes 120 145.137 even 28 inner
725.2.bd.a.482.4 yes 120 5.2 odd 4
725.2.bd.a.482.7 yes 120 5.3 odd 4
725.2.bd.a.543.4 yes 120 29.21 odd 28
725.2.bd.a.543.7 yes 120 145.79 odd 28