Properties

Label 728.1.bl.a.69.1
Level $728$
Weight $1$
Character 728.69
Analytic conductor $0.363$
Analytic rank $0$
Dimension $8$
Projective image $D_{12}$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(69,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.69");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 728.bl (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(0.363319329197\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{24})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{12}\)
Projective field: Galois closure of \(\mathbb{Q}[x]/(x^{12} - \cdots)\)

Embedding invariants

Embedding label 69.1
Root \(0.258819 - 0.965926i\) of defining polynomial
Character \(\chi\) \(=\) 728.69
Dual form 728.1.bl.a.517.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 - 0.500000i) q^{2} +(-0.258819 + 0.448288i) q^{3} +(0.500000 + 0.866025i) q^{4} +1.93185i q^{5} +(0.448288 - 0.258819i) q^{6} +(0.866025 - 0.500000i) q^{7} -1.00000i q^{8} +(0.366025 + 0.633975i) q^{9} +(0.965926 - 1.67303i) q^{10} -0.517638 q^{12} +(-0.965926 - 0.258819i) q^{13} -1.00000 q^{14} +(-0.866025 - 0.500000i) q^{15} +(-0.500000 + 0.866025i) q^{16} -0.732051i q^{18} +(1.22474 - 0.707107i) q^{19} +(-1.67303 + 0.965926i) q^{20} +0.517638i q^{21} +(-0.500000 + 0.866025i) q^{23} +(0.448288 + 0.258819i) q^{24} -2.73205 q^{25} +(0.707107 + 0.707107i) q^{26} -0.896575 q^{27} +(0.866025 + 0.500000i) q^{28} +(0.500000 + 0.866025i) q^{30} +(0.866025 - 0.500000i) q^{32} +(0.965926 + 1.67303i) q^{35} +(-0.366025 + 0.633975i) q^{36} -1.41421 q^{38} +(0.366025 - 0.366025i) q^{39} +1.93185 q^{40} +(0.258819 - 0.448288i) q^{42} +(-1.22474 + 0.707107i) q^{45} +(0.866025 - 0.500000i) q^{46} +(-0.258819 - 0.448288i) q^{48} +(0.500000 - 0.866025i) q^{49} +(2.36603 + 1.36603i) q^{50} +(-0.258819 - 0.965926i) q^{52} +(0.776457 + 0.448288i) q^{54} +(-0.500000 - 0.866025i) q^{56} +0.732051i q^{57} +(1.67303 - 0.965926i) q^{59} -1.00000i q^{60} +(0.258819 + 0.448288i) q^{61} +(0.633975 + 0.366025i) q^{63} -1.00000 q^{64} +(0.500000 - 1.86603i) q^{65} +(-0.258819 - 0.448288i) q^{69} -1.93185i q^{70} +(-0.866025 + 0.500000i) q^{71} +(0.633975 - 0.366025i) q^{72} +(0.707107 - 1.22474i) q^{75} +(1.22474 + 0.707107i) q^{76} +(-0.500000 + 0.133975i) q^{78} +(-1.67303 - 0.965926i) q^{80} +(-0.133975 + 0.232051i) q^{81} -1.41421i q^{83} +(-0.448288 + 0.258819i) q^{84} +1.41421 q^{90} +(-0.965926 + 0.258819i) q^{91} -1.00000 q^{92} +(1.36603 + 2.36603i) q^{95} +0.517638i q^{96} +(-0.866025 + 0.500000i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} - 4 q^{9} - 8 q^{14} - 4 q^{16} - 4 q^{23} - 8 q^{25} + 4 q^{30} + 4 q^{36} - 4 q^{39} + 4 q^{49} + 12 q^{50} - 4 q^{56} + 12 q^{63} - 8 q^{64} + 4 q^{65} + 12 q^{72} - 4 q^{78} - 8 q^{81}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 0.500000i −0.866025 0.500000i
\(3\) −0.258819 + 0.448288i −0.258819 + 0.448288i −0.965926 0.258819i \(-0.916667\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(4\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(5\) 1.93185i 1.93185i 0.258819 + 0.965926i \(0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(6\) 0.448288 0.258819i 0.448288 0.258819i
\(7\) 0.866025 0.500000i 0.866025 0.500000i
\(8\) 1.00000i 1.00000i
\(9\) 0.366025 + 0.633975i 0.366025 + 0.633975i
\(10\) 0.965926 1.67303i 0.965926 1.67303i
\(11\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(12\) −0.517638 −0.517638
\(13\) −0.965926 0.258819i −0.965926 0.258819i
\(14\) −1.00000 −1.00000
\(15\) −0.866025 0.500000i −0.866025 0.500000i
\(16\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(17\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(18\) 0.732051i 0.732051i
\(19\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(20\) −1.67303 + 0.965926i −1.67303 + 0.965926i
\(21\) 0.517638i 0.517638i
\(22\) 0 0
\(23\) −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i \(0.333333\pi\)
−1.00000 \(\pi\)
\(24\) 0.448288 + 0.258819i 0.448288 + 0.258819i
\(25\) −2.73205 −2.73205
\(26\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(27\) −0.896575 −0.896575
\(28\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0.866025 0.500000i 0.866025 0.500000i
\(33\) 0 0
\(34\) 0 0
\(35\) 0.965926 + 1.67303i 0.965926 + 1.67303i
\(36\) −0.366025 + 0.633975i −0.366025 + 0.633975i
\(37\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(38\) −1.41421 −1.41421
\(39\) 0.366025 0.366025i 0.366025 0.366025i
\(40\) 1.93185 1.93185
\(41\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(42\) 0.258819 0.448288i 0.258819 0.448288i
\(43\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(44\) 0 0
\(45\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(46\) 0.866025 0.500000i 0.866025 0.500000i
\(47\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(48\) −0.258819 0.448288i −0.258819 0.448288i
\(49\) 0.500000 0.866025i 0.500000 0.866025i
\(50\) 2.36603 + 1.36603i 2.36603 + 1.36603i
\(51\) 0 0
\(52\) −0.258819 0.965926i −0.258819 0.965926i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 0.776457 + 0.448288i 0.776457 + 0.448288i
\(55\) 0 0
\(56\) −0.500000 0.866025i −0.500000 0.866025i
\(57\) 0.732051i 0.732051i
\(58\) 0 0
\(59\) 1.67303 0.965926i 1.67303 0.965926i 0.707107 0.707107i \(-0.250000\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(60\) 1.00000i 1.00000i
\(61\) 0.258819 + 0.448288i 0.258819 + 0.448288i 0.965926 0.258819i \(-0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(62\) 0 0
\(63\) 0.633975 + 0.366025i 0.633975 + 0.366025i
\(64\) −1.00000 −1.00000
\(65\) 0.500000 1.86603i 0.500000 1.86603i
\(66\) 0 0
\(67\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(68\) 0 0
\(69\) −0.258819 0.448288i −0.258819 0.448288i
\(70\) 1.93185i 1.93185i
\(71\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(72\) 0.633975 0.366025i 0.633975 0.366025i
\(73\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(74\) 0 0
\(75\) 0.707107 1.22474i 0.707107 1.22474i
\(76\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(77\) 0 0
\(78\) −0.500000 + 0.133975i −0.500000 + 0.133975i
\(79\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(80\) −1.67303 0.965926i −1.67303 0.965926i
\(81\) −0.133975 + 0.232051i −0.133975 + 0.232051i
\(82\) 0 0
\(83\) 1.41421i 1.41421i −0.707107 0.707107i \(-0.750000\pi\)
0.707107 0.707107i \(-0.250000\pi\)
\(84\) −0.448288 + 0.258819i −0.448288 + 0.258819i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(90\) 1.41421 1.41421
\(91\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(92\) −1.00000 −1.00000
\(93\) 0 0
\(94\) 0 0
\(95\) 1.36603 + 2.36603i 1.36603 + 2.36603i
\(96\) 0.517638i 0.517638i
\(97\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(98\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(99\) 0 0
\(100\) −1.36603 2.36603i −1.36603 2.36603i
\(101\) −0.707107 + 1.22474i −0.707107 + 1.22474i 0.258819 + 0.965926i \(0.416667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(105\) −1.00000 −1.00000
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −0.448288 0.776457i −0.448288 0.776457i
\(109\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.00000i 1.00000i
\(113\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(114\) 0.366025 0.633975i 0.366025 0.633975i
\(115\) −1.67303 0.965926i −1.67303 0.965926i
\(116\) 0 0
\(117\) −0.189469 0.707107i −0.189469 0.707107i
\(118\) −1.93185 −1.93185
\(119\) 0 0
\(120\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(121\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(122\) 0.517638i 0.517638i
\(123\) 0 0
\(124\) 0 0
\(125\) 3.34607i 3.34607i
\(126\) −0.366025 0.633975i −0.366025 0.633975i
\(127\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(128\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(129\) 0 0
\(130\) −1.36603 + 1.36603i −1.36603 + 1.36603i
\(131\) −0.517638 −0.517638 −0.258819 0.965926i \(-0.583333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(132\) 0 0
\(133\) 0.707107 1.22474i 0.707107 1.22474i
\(134\) 0 0
\(135\) 1.73205i 1.73205i
\(136\) 0 0
\(137\) 1.50000 0.866025i 1.50000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
1.00000 \(0\)
\(138\) 0.517638i 0.517638i
\(139\) −0.707107 1.22474i −0.707107 1.22474i −0.965926 0.258819i \(-0.916667\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(140\) −0.965926 + 1.67303i −0.965926 + 1.67303i
\(141\) 0 0
\(142\) 1.00000 1.00000
\(143\) 0 0
\(144\) −0.732051 −0.732051
\(145\) 0 0
\(146\) 0 0
\(147\) 0.258819 + 0.448288i 0.258819 + 0.448288i
\(148\) 0 0
\(149\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(150\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(151\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(152\) −0.707107 1.22474i −0.707107 1.22474i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 0.500000 + 0.133975i 0.500000 + 0.133975i
\(157\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(158\) 0 0
\(159\) 0 0
\(160\) 0.965926 + 1.67303i 0.965926 + 1.67303i
\(161\) 1.00000i 1.00000i
\(162\) 0.232051 0.133975i 0.232051 0.133975i
\(163\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(167\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(168\) 0.517638 0.517638
\(169\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(170\) 0 0
\(171\) 0.896575 + 0.517638i 0.896575 + 0.517638i
\(172\) 0 0
\(173\) −0.258819 0.448288i −0.258819 0.448288i 0.707107 0.707107i \(-0.250000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(174\) 0 0
\(175\) −2.36603 + 1.36603i −2.36603 + 1.36603i
\(176\) 0 0
\(177\) 1.00000i 1.00000i
\(178\) 0 0
\(179\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(180\) −1.22474 0.707107i −1.22474 0.707107i
\(181\) 1.93185 1.93185 0.965926 0.258819i \(-0.0833333\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(182\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(183\) −0.267949 −0.267949
\(184\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −0.776457 + 0.448288i −0.776457 + 0.448288i
\(190\) 2.73205i 2.73205i
\(191\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(192\) 0.258819 0.448288i 0.258819 0.448288i
\(193\) 0.866025 + 0.500000i 0.866025 + 0.500000i 0.866025 0.500000i \(-0.166667\pi\)
1.00000i \(0.5\pi\)
\(194\) 0 0
\(195\) 0.707107 + 0.707107i 0.707107 + 0.707107i
\(196\) 1.00000 1.00000
\(197\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(198\) 0 0
\(199\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(200\) 2.73205i 2.73205i
\(201\) 0 0
\(202\) 1.22474 0.707107i 1.22474 0.707107i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.732051 −0.732051
\(208\) 0.707107 0.707107i 0.707107 0.707107i
\(209\) 0 0
\(210\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 0.517638i 0.517638i
\(214\) 0 0
\(215\) 0 0
\(216\) 0.896575i 0.896575i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(224\) 0.500000 0.866025i 0.500000 0.866025i
\(225\) −1.00000 1.73205i −1.00000 1.73205i
\(226\) 0 0
\(227\) −0.448288 + 0.258819i −0.448288 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(228\) −0.633975 + 0.366025i −0.633975 + 0.366025i
\(229\) 1.41421i 1.41421i 0.707107 + 0.707107i \(0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(230\) 0.965926 + 1.67303i 0.965926 + 1.67303i
\(231\) 0 0
\(232\) 0 0
\(233\) −1.00000 −1.00000 −0.500000 0.866025i \(-0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(234\) −0.189469 + 0.707107i −0.189469 + 0.707107i
\(235\) 0 0
\(236\) 1.67303 + 0.965926i 1.67303 + 0.965926i
\(237\) 0 0
\(238\) 0 0
\(239\) 1.73205i 1.73205i −0.500000 0.866025i \(-0.666667\pi\)
0.500000 0.866025i \(-0.333333\pi\)
\(240\) 0.866025 0.500000i 0.866025 0.500000i
\(241\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(242\) 1.00000i 1.00000i
\(243\) −0.517638 0.896575i −0.517638 0.896575i
\(244\) −0.258819 + 0.448288i −0.258819 + 0.448288i
\(245\) 1.67303 + 0.965926i 1.67303 + 0.965926i
\(246\) 0 0
\(247\) −1.36603 + 0.366025i −1.36603 + 0.366025i
\(248\) 0 0
\(249\) 0.633975 + 0.366025i 0.633975 + 0.366025i
\(250\) −1.67303 + 2.89778i −1.67303 + 2.89778i
\(251\) 0.965926 + 1.67303i 0.965926 + 1.67303i 0.707107 + 0.707107i \(0.250000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(252\) 0.732051i 0.732051i
\(253\) 0 0
\(254\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(255\) 0 0
\(256\) −0.500000 0.866025i −0.500000 0.866025i
\(257\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 1.86603 0.500000i 1.86603 0.500000i
\(261\) 0 0
\(262\) 0.448288 + 0.258819i 0.448288 + 0.258819i
\(263\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(267\) 0 0
\(268\) 0 0
\(269\) −0.965926 1.67303i −0.965926 1.67303i −0.707107 0.707107i \(-0.750000\pi\)
−0.258819 0.965926i \(-0.583333\pi\)
\(270\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(271\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(272\) 0 0
\(273\) 0.133975 0.500000i 0.133975 0.500000i
\(274\) −1.73205 −1.73205
\(275\) 0 0
\(276\) 0.258819 0.448288i 0.258819 0.448288i
\(277\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(278\) 1.41421i 1.41421i
\(279\) 0 0
\(280\) 1.67303 0.965926i 1.67303 0.965926i
\(281\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(282\) 0 0
\(283\) −0.965926 + 1.67303i −0.965926 + 1.67303i −0.258819 + 0.965926i \(0.583333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(284\) −0.866025 0.500000i −0.866025 0.500000i
\(285\) −1.41421 −1.41421
\(286\) 0 0
\(287\) 0 0
\(288\) 0.633975 + 0.366025i 0.633975 + 0.366025i
\(289\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(294\) 0.517638i 0.517638i
\(295\) 1.86603 + 3.23205i 1.86603 + 3.23205i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 0.707107 0.707107i 0.707107 0.707107i
\(300\) 1.41421 1.41421
\(301\) 0 0
\(302\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(303\) −0.366025 0.633975i −0.366025 0.633975i
\(304\) 1.41421i 1.41421i
\(305\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(306\) 0 0
\(307\) 1.93185i 1.93185i 0.258819 + 0.965926i \(0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) −0.366025 0.366025i −0.366025 0.366025i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −1.22474 0.707107i −1.22474 0.707107i
\(315\) −0.707107 + 1.22474i −0.707107 + 1.22474i
\(316\) 0 0
\(317\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 1.93185i 1.93185i
\(321\) 0 0
\(322\) 0.500000 0.866025i 0.500000 0.866025i
\(323\) 0 0
\(324\) −0.267949 −0.267949
\(325\) 2.63896 + 0.707107i 2.63896 + 0.707107i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(332\) 1.22474 0.707107i 1.22474 0.707107i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −0.448288 0.258819i −0.448288 0.258819i
\(337\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(338\) −0.500000 0.866025i −0.500000 0.866025i
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) −0.517638 0.896575i −0.517638 0.896575i
\(343\) 1.00000i 1.00000i
\(344\) 0 0
\(345\) 0.866025 0.500000i 0.866025 0.500000i
\(346\) 0.517638i 0.517638i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) −1.67303 0.965926i −1.67303 0.965926i −0.965926 0.258819i \(-0.916667\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(350\) 2.73205 2.73205
\(351\) 0.866025 + 0.232051i 0.866025 + 0.232051i
\(352\) 0 0
\(353\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(354\) 0.500000 0.866025i 0.500000 0.866025i
\(355\) −0.965926 1.67303i −0.965926 1.67303i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 1.73205i 1.73205i 0.500000 + 0.866025i \(0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(360\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(361\) 0.500000 0.866025i 0.500000 0.866025i
\(362\) −1.67303 0.965926i −1.67303 0.965926i
\(363\) −0.517638 −0.517638
\(364\) −0.707107 0.707107i −0.707107 0.707107i
\(365\) 0 0
\(366\) 0.232051 + 0.133975i 0.232051 + 0.133975i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −0.500000 0.866025i −0.500000 0.866025i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(376\) 0 0
\(377\) 0 0
\(378\) 0.896575 0.896575
\(379\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(380\) −1.36603 + 2.36603i −1.36603 + 2.36603i
\(381\) 0.258819 + 0.448288i 0.258819 + 0.448288i
\(382\) 0 0
\(383\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(384\) −0.448288 + 0.258819i −0.448288 + 0.258819i
\(385\) 0 0
\(386\) −0.500000 0.866025i −0.500000 0.866025i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(390\) −0.258819 0.965926i −0.258819 0.965926i
\(391\) 0 0
\(392\) −0.866025 0.500000i −0.866025 0.500000i
\(393\) 0.133975 0.232051i 0.133975 0.232051i
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −0.448288 + 0.258819i −0.448288 + 0.258819i −0.707107 0.707107i \(-0.750000\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(398\) 0 0
\(399\) 0.366025 + 0.633975i 0.366025 + 0.633975i
\(400\) 1.36603 2.36603i 1.36603 2.36603i
\(401\) −1.73205 1.00000i −1.73205 1.00000i −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 0.500000i \(-0.833333\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −1.41421 −1.41421
\(405\) −0.448288 0.258819i −0.448288 0.258819i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(410\) 0 0
\(411\) 0.896575i 0.896575i
\(412\) 0 0
\(413\) 0.965926 1.67303i 0.965926 1.67303i
\(414\) 0.633975 + 0.366025i 0.633975 + 0.366025i
\(415\) 2.73205 2.73205
\(416\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(417\) 0.732051 0.732051
\(418\) 0 0
\(419\) 0.707107 1.22474i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(420\) −0.500000 0.866025i −0.500000 0.866025i
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −0.258819 + 0.448288i −0.258819 + 0.448288i
\(427\) 0.448288 + 0.258819i 0.448288 + 0.258819i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(432\) 0.448288 0.776457i 0.448288 0.776457i
\(433\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 1.41421i 1.41421i
\(438\) 0 0
\(439\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(440\) 0 0
\(441\) 0.732051 0.732051
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(449\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(450\) 2.00000i 2.00000i
\(451\) 0 0
\(452\) 0 0
\(453\) 0.776457 + 0.448288i 0.776457 + 0.448288i
\(454\) 0.517638 0.517638
\(455\) −0.500000 1.86603i −0.500000 1.86603i
\(456\) 0.732051 0.732051
\(457\) −0.866025 0.500000i −0.866025 0.500000i 1.00000i \(-0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(458\) 0.707107 1.22474i 0.707107 1.22474i
\(459\) 0 0
\(460\) 1.93185i 1.93185i
\(461\) 0.448288 0.258819i 0.448288 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(462\) 0 0
\(463\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(467\) −1.93185 −1.93185 −0.965926 0.258819i \(-0.916667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(468\) 0.517638 0.517638i 0.517638 0.517638i
\(469\) 0 0
\(470\) 0 0
\(471\) −0.366025 + 0.633975i −0.366025 + 0.633975i
\(472\) −0.965926 1.67303i −0.965926 1.67303i
\(473\) 0 0
\(474\) 0 0
\(475\) −3.34607 + 1.93185i −3.34607 + 1.93185i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.866025 + 1.50000i −0.866025 + 1.50000i
\(479\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(480\) −1.00000 −1.00000
\(481\) 0 0
\(482\) 0 0
\(483\) −0.448288 0.258819i −0.448288 0.258819i
\(484\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 1.03528i 1.03528i
\(487\) −1.50000 + 0.866025i −1.50000 + 0.866025i −0.500000 + 0.866025i \(0.666667\pi\)
−1.00000 \(\pi\)
\(488\) 0.448288 0.258819i 0.448288 0.258819i
\(489\) 0 0
\(490\) −0.965926 1.67303i −0.965926 1.67303i
\(491\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 1.36603 + 0.366025i 1.36603 + 0.366025i
\(495\) 0 0
\(496\) 0 0
\(497\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(498\) −0.366025 0.633975i −0.366025 0.633975i
\(499\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(500\) 2.89778 1.67303i 2.89778 1.67303i
\(501\) 0 0
\(502\) 1.93185i 1.93185i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 0.366025 0.633975i 0.366025 0.633975i
\(505\) −2.36603 1.36603i −2.36603 1.36603i
\(506\) 0 0
\(507\) −0.448288 + 0.258819i −0.448288 + 0.258819i
\(508\) 1.00000 1.00000
\(509\) 0.448288 + 0.258819i 0.448288 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 1.00000i 1.00000i
\(513\) −1.09808 + 0.633975i −1.09808 + 0.633975i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 0.267949 0.267949
\(520\) −1.86603 0.500000i −1.86603 0.500000i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 0.258819 0.448288i 0.258819 0.448288i −0.707107 0.707107i \(-0.750000\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(524\) −0.258819 0.448288i −0.258819 0.448288i
\(525\) 1.41421i 1.41421i
\(526\) −1.50000 + 0.866025i −1.50000 + 0.866025i
\(527\) 0 0
\(528\) 0 0
\(529\) 0 0
\(530\) 0 0
\(531\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(532\) 1.41421 1.41421
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 1.93185i 1.93185i
\(539\) 0 0
\(540\) 1.50000 0.866025i 1.50000 0.866025i
\(541\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(542\) 0 0
\(543\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(544\) 0 0
\(545\) 0 0
\(546\) −0.366025 + 0.366025i −0.366025 + 0.366025i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) 1.50000 + 0.866025i 1.50000 + 0.866025i
\(549\) −0.189469 + 0.328169i −0.189469 + 0.328169i
\(550\) 0 0
\(551\) 0 0
\(552\) −0.448288 + 0.258819i −0.448288 + 0.258819i
\(553\) 0 0
\(554\) 0 0
\(555\) 0 0
\(556\) 0.707107 1.22474i 0.707107 1.22474i
\(557\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −1.93185 −1.93185
\(561\) 0 0
\(562\) 0 0
\(563\) 0.707107 + 1.22474i 0.707107 + 1.22474i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 1.67303 0.965926i 1.67303 0.965926i
\(567\) 0.267949i 0.267949i
\(568\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(569\) 0.866025 1.50000i 0.866025 1.50000i 1.00000i \(-0.5\pi\)
0.866025 0.500000i \(-0.166667\pi\)
\(570\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(571\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) 1.36603 2.36603i 1.36603 2.36603i
\(576\) −0.366025 0.633975i −0.366025 0.633975i
\(577\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(578\) 0.866025 0.500000i 0.866025 0.500000i
\(579\) −0.448288 + 0.258819i −0.448288 + 0.258819i
\(580\) 0 0
\(581\) −0.707107 1.22474i −0.707107 1.22474i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 1.36603 0.366025i 1.36603 0.366025i
\(586\) −1.41421 −1.41421
\(587\) −0.448288 0.258819i −0.448288 0.258819i 0.258819 0.965926i \(-0.416667\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(588\) −0.258819 + 0.448288i −0.258819 + 0.448288i
\(589\) 0 0
\(590\) 3.73205i 3.73205i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −0.965926 + 0.258819i −0.965926 + 0.258819i
\(599\) −1.73205 −1.73205 −0.866025 0.500000i \(-0.833333\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(600\) −1.22474 0.707107i −1.22474 0.707107i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 1.50000 0.866025i 1.50000 0.866025i
\(605\) −1.67303 + 0.965926i −1.67303 + 0.965926i
\(606\) 0.732051i 0.732051i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 0.707107 1.22474i 0.707107 1.22474i
\(609\) 0 0
\(610\) 1.00000 1.00000
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(614\) 0.965926 1.67303i 0.965926 1.67303i
\(615\) 0 0
\(616\) 0 0
\(617\) 0.866025 0.500000i 0.866025 0.500000i 1.00000i \(-0.5\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(618\) 0 0
\(619\) 1.93185i 1.93185i −0.258819 0.965926i \(-0.583333\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(620\) 0 0
\(621\) 0.448288 0.776457i 0.448288 0.776457i
\(622\) 0 0
\(623\) 0 0
\(624\) 0.133975 + 0.500000i 0.133975 + 0.500000i
\(625\) 3.73205 3.73205
\(626\) 0 0
\(627\) 0 0
\(628\) 0.707107 + 1.22474i 0.707107 + 1.22474i
\(629\) 0 0
\(630\) 1.22474 0.707107i 1.22474 0.707107i
\(631\) −0.866025 + 0.500000i −0.866025 + 0.500000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(0.5\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) 0 0
\(635\) 1.67303 + 0.965926i 1.67303 + 0.965926i
\(636\) 0 0
\(637\) −0.707107 + 0.707107i −0.707107 + 0.707107i
\(638\) 0 0
\(639\) −0.633975 0.366025i −0.633975 0.366025i
\(640\) −0.965926 + 1.67303i −0.965926 + 1.67303i
\(641\) 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(642\) 0 0
\(643\) −1.67303 + 0.965926i −1.67303 + 0.965926i −0.707107 + 0.707107i \(0.750000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(644\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(648\) 0.232051 + 0.133975i 0.232051 + 0.133975i
\(649\) 0 0
\(650\) −1.93185 1.93185i −1.93185 1.93185i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) 1.00000i 1.00000i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) 0.448288 + 0.258819i 0.448288 + 0.258819i 0.707107 0.707107i \(-0.250000\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) −1.41421 −1.41421
\(665\) 2.36603 + 1.36603i 2.36603 + 1.36603i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0.258819 + 0.448288i 0.258819 + 0.448288i
\(673\) −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i \(0.666667\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(674\) 0 0
\(675\) 2.44949 2.44949
\(676\) 1.00000i 1.00000i
\(677\) −1.93185 −1.93185 −0.965926 0.258819i \(-0.916667\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0.267949i 0.267949i
\(682\) 0 0
\(683\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(684\) 1.03528i 1.03528i
\(685\) 1.67303 + 2.89778i 1.67303 + 2.89778i
\(686\) −0.500000 + 0.866025i −0.500000 + 0.866025i
\(687\) −0.633975 0.366025i −0.633975 0.366025i
\(688\) 0 0
\(689\) 0 0
\(690\) −1.00000 −1.00000
\(691\) −1.67303 0.965926i −1.67303 0.965926i −0.965926 0.258819i \(-0.916667\pi\)
−0.707107 0.707107i \(-0.750000\pi\)
\(692\) 0.258819 0.448288i 0.258819 0.448288i
\(693\) 0 0
\(694\) 0 0
\(695\) 2.36603 1.36603i 2.36603 1.36603i
\(696\) 0 0
\(697\) 0 0
\(698\) 0.965926 + 1.67303i 0.965926 + 1.67303i
\(699\) 0.258819 0.448288i 0.258819 0.448288i
\(700\) −2.36603 1.36603i −2.36603 1.36603i
\(701\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(702\) −0.633975 0.633975i −0.633975 0.633975i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 1.41421i 1.41421i
\(708\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(709\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(710\) 1.93185i 1.93185i
\(711\) 0 0
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 0.776457 + 0.448288i 0.776457 + 0.448288i
\(718\) 0.866025 1.50000i 0.866025 1.50000i
\(719\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(720\) 1.41421i 1.41421i
\(721\) 0 0
\(722\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(723\) 0 0
\(724\) 0.965926 + 1.67303i 0.965926 + 1.67303i
\(725\) 0 0
\(726\) 0.448288 + 0.258819i 0.448288 + 0.258819i
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0.258819 + 0.965926i 0.258819 + 0.965926i
\(729\) 0.267949 0.267949
\(730\) 0 0
\(731\) 0 0
\(732\) −0.133975 0.232051i −0.133975 0.232051i
\(733\) 0.517638i 0.517638i −0.965926 0.258819i \(-0.916667\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(734\) 0 0
\(735\) −0.866025 + 0.500000i −0.866025 + 0.500000i
\(736\) 1.00000i 1.00000i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(740\) 0 0
\(741\) 0.189469 0.707107i 0.189469 0.707107i
\(742\) 0 0
\(743\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 0.896575 0.517638i 0.896575 0.517638i
\(748\) 0 0
\(749\) 0 0
\(750\) −0.866025 1.50000i −0.866025 1.50000i
\(751\) 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
1.00000 \(0\)
\(752\) 0 0
\(753\) −1.00000 −1.00000
\(754\) 0 0
\(755\) 3.34607 3.34607
\(756\) −0.776457 0.448288i −0.776457 0.448288i
\(757\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) 2.36603 1.36603i 2.36603 1.36603i
\(761\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(762\) 0.517638i 0.517638i
\(763\) 0 0
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −1.86603 + 0.500000i −1.86603 + 0.500000i
\(768\) 0.517638 0.517638
\(769\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 1.00000i 1.00000i
\(773\) 1.22474 0.707107i 1.22474 0.707107i 0.258819 0.965926i \(-0.416667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −0.258819 + 0.965926i −0.258819 + 0.965926i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(785\) 2.73205i 2.73205i
\(786\) −0.232051 + 0.133975i −0.232051 + 0.133975i
\(787\) 0.448288 0.258819i 0.448288 0.258819i −0.258819 0.965926i \(-0.583333\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(788\) 0 0
\(789\) 0.448288 + 0.776457i 0.448288 + 0.776457i
\(790\) 0 0
\(791\) 0 0
\(792\) 0 0
\(793\) −0.133975 0.500000i −0.133975 0.500000i
\(794\) 0.517638 0.517638
\(795\) 0 0
\(796\) 0 0
\(797\) 0.258819 + 0.448288i 0.258819 + 0.448288i 0.965926 0.258819i \(-0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(798\) 0.732051i 0.732051i
\(799\) 0 0
\(800\) −2.36603 + 1.36603i −2.36603 + 1.36603i
\(801\) 0 0
\(802\) 1.00000 + 1.73205i 1.00000 + 1.73205i
\(803\) 0 0
\(804\) 0 0
\(805\) −1.93185 −1.93185
\(806\) 0 0
\(807\) 1.00000 1.00000
\(808\) 1.22474 + 0.707107i 1.22474 + 0.707107i
\(809\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(810\) 0.258819 + 0.448288i 0.258819 + 0.448288i
\(811\) 0.517638i 0.517638i 0.965926 + 0.258819i \(0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −0.517638 0.517638i −0.517638 0.517638i
\(820\) 0 0
\(821\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(822\) 0.448288 0.776457i 0.448288 0.776457i
\(823\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −1.67303 + 0.965926i −1.67303 + 0.965926i
\(827\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(828\) −0.366025 0.633975i −0.366025 0.633975i
\(829\) 0.258819 0.448288i 0.258819 0.448288i −0.707107 0.707107i \(-0.750000\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(830\) −2.36603 1.36603i −2.36603 1.36603i
\(831\) 0 0
\(832\) 0.965926 + 0.258819i 0.965926 + 0.258819i
\(833\) 0 0
\(834\) −0.633975 0.366025i −0.633975 0.366025i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(839\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(840\) 1.00000i 1.00000i
\(841\) −0.500000 0.866025i −0.500000 0.866025i
\(842\) 0 0
\(843\) 0 0
\(844\) 0 0
\(845\) −0.965926 + 1.67303i −0.965926 + 1.67303i
\(846\) 0 0
\(847\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(848\) 0 0
\(849\) −0.500000 0.866025i −0.500000 0.866025i
\(850\) 0 0
\(851\) 0 0
\(852\) 0.448288 0.258819i 0.448288 0.258819i
\(853\) 1.93185i 1.93185i 0.258819 + 0.965926i \(0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(854\) −0.258819 0.448288i −0.258819 0.448288i
\(855\) −1.00000 + 1.73205i −1.00000 + 1.73205i
\(856\) 0 0
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 1.41421 1.41421 0.707107 0.707107i \(-0.250000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 0.866025 + 1.50000i 0.866025 + 1.50000i
\(863\) 1.00000i 1.00000i 0.866025 + 0.500000i \(0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(864\) −0.776457 + 0.448288i −0.776457 + 0.448288i
\(865\) 0.866025 0.500000i 0.866025 0.500000i
\(866\) 0 0
\(867\) −0.258819 0.448288i −0.258819 0.448288i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 0.707107 1.22474i 0.707107 1.22474i
\(875\) −1.67303 2.89778i −1.67303 2.89778i
\(876\) 0 0
\(877\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(878\) 0 0
\(879\) 0.732051i 0.732051i
\(880\) 0 0
\(881\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(882\) −0.633975 0.366025i −0.633975 0.366025i
\(883\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(884\) 0 0
\(885\) −1.93185 −1.93185
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 1.00000i 1.00000i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 1.00000
\(897\) 0.133975 + 0.500000i 0.133975 + 0.500000i
\(898\) 1.73205 1.73205
\(899\) 0 0
\(900\) 1.00000 1.73205i 1.00000 1.73205i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 0 0
\(905\) 3.73205i 3.73205i
\(906\) −0.448288 0.776457i −0.448288 0.776457i
\(907\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(908\) −0.448288 0.258819i −0.448288 0.258819i
\(909\) −1.03528 −1.03528
\(910\) −0.500000 + 1.86603i −0.500000 + 1.86603i
\(911\) 1.00000 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(912\) −0.633975 0.366025i −0.633975 0.366025i
\(913\) 0 0
\(914\) 0.500000 + 0.866025i 0.500000 + 0.866025i
\(915\) 0.517638i 0.517638i
\(916\) −1.22474 + 0.707107i −1.22474 + 0.707107i
\(917\) −0.448288 + 0.258819i −0.448288 + 0.258819i
\(918\) 0 0
\(919\) −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i \(-0.833333\pi\)
1.00000i \(-0.5\pi\)
\(920\) −0.965926 + 1.67303i −0.965926 + 1.67303i
\(921\) −0.866025 0.500000i −0.866025 0.500000i
\(922\) −0.517638 −0.517638
\(923\) 0.965926 0.258819i 0.965926 0.258819i
\(924\) 0 0
\(925\) 0 0
\(926\) 0.500000 0.866025i 0.500000 0.866025i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(930\) 0 0
\(931\) 1.41421i 1.41421i
\(932\) −0.500000 0.866025i −0.500000 0.866025i
\(933\) 0 0
\(934\) 1.67303 + 0.965926i 1.67303 + 0.965926i
\(935\) 0 0
\(936\) −0.707107 + 0.189469i −0.707107 + 0.189469i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 1.93185i 1.93185i −0.258819 0.965926i \(-0.583333\pi\)
0.258819 0.965926i \(-0.416667\pi\)
\(942\) 0.633975 0.366025i 0.633975 0.366025i
\(943\) 0 0
\(944\) 1.93185i 1.93185i
\(945\) −0.866025 1.50000i −0.866025 1.50000i
\(946\) 0 0
\(947\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 3.86370 3.86370
\(951\) 0 0
\(952\) 0 0
\(953\) −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i \(-0.333333\pi\)
−1.00000 \(\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 1.50000 0.866025i 1.50000 0.866025i
\(957\) 0 0
\(958\) 0 0
\(959\) 0.866025 1.50000i 0.866025 1.50000i
\(960\) 0.866025 + 0.500000i 0.866025 + 0.500000i
\(961\) −1.00000 −1.00000
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −0.965926 + 1.67303i −0.965926 + 1.67303i
\(966\) 0.258819 + 0.448288i 0.258819 + 0.448288i
\(967\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(968\) 0.866025 0.500000i 0.866025 0.500000i
\(969\) 0 0
\(970\) 0 0
\(971\) 0.258819 + 0.448288i 0.258819 + 0.448288i 0.965926 0.258819i \(-0.0833333\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(972\) 0.517638 0.896575i 0.517638 0.896575i
\(973\) −1.22474 0.707107i −1.22474 0.707107i
\(974\) 1.73205 1.73205
\(975\) −1.00000 + 1.00000i −1.00000 + 1.00000i
\(976\) −0.517638 −0.517638
\(977\) −1.50000 0.866025i −1.50000 0.866025i −0.500000 0.866025i \(-0.666667\pi\)
−1.00000 \(\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 1.93185i 1.93185i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −1.00000 1.00000i −1.00000 1.00000i
\(989\) 0 0
\(990\) 0 0
\(991\) −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i \(0.5\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.866025 0.500000i 0.866025 0.500000i
\(995\) 0 0
\(996\) 0.732051i 0.732051i
\(997\) −0.258819 0.448288i −0.258819 0.448288i 0.707107 0.707107i \(-0.250000\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.1.bl.a.69.1 8
4.3 odd 2 2912.1.cb.a.433.3 8
7.6 odd 2 inner 728.1.bl.a.69.2 yes 8
8.3 odd 2 2912.1.cb.a.433.2 8
8.5 even 2 inner 728.1.bl.a.69.2 yes 8
13.10 even 6 inner 728.1.bl.a.517.1 yes 8
28.27 even 2 2912.1.cb.a.433.2 8
52.23 odd 6 2912.1.cb.a.881.3 8
56.13 odd 2 CM 728.1.bl.a.69.1 8
56.27 even 2 2912.1.cb.a.433.3 8
91.62 odd 6 inner 728.1.bl.a.517.2 yes 8
104.75 odd 6 2912.1.cb.a.881.2 8
104.101 even 6 inner 728.1.bl.a.517.2 yes 8
364.335 even 6 2912.1.cb.a.881.2 8
728.517 odd 6 inner 728.1.bl.a.517.1 yes 8
728.699 even 6 2912.1.cb.a.881.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.bl.a.69.1 8 1.1 even 1 trivial
728.1.bl.a.69.1 8 56.13 odd 2 CM
728.1.bl.a.69.2 yes 8 7.6 odd 2 inner
728.1.bl.a.69.2 yes 8 8.5 even 2 inner
728.1.bl.a.517.1 yes 8 13.10 even 6 inner
728.1.bl.a.517.1 yes 8 728.517 odd 6 inner
728.1.bl.a.517.2 yes 8 91.62 odd 6 inner
728.1.bl.a.517.2 yes 8 104.101 even 6 inner
2912.1.cb.a.433.2 8 8.3 odd 2
2912.1.cb.a.433.2 8 28.27 even 2
2912.1.cb.a.433.3 8 4.3 odd 2
2912.1.cb.a.433.3 8 56.27 even 2
2912.1.cb.a.881.2 8 104.75 odd 6
2912.1.cb.a.881.2 8 364.335 even 6
2912.1.cb.a.881.3 8 52.23 odd 6
2912.1.cb.a.881.3 8 728.699 even 6