Properties

Label 728.1.ce.b.237.1
Level 728728
Weight 11
Character 728.237
Analytic conductor 0.3630.363
Analytic rank 00
Dimension 22
Projective image D3D_{3}
CM discriminant -56
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(237,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.237");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 728=23713 728 = 2^{3} \cdot 7 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 728.ce (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3633193291970.363319329197
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ6)\Q(\zeta_{6})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x+1 x^{2} - x + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.9464.1
Artin image: C3×S3C_3\times S_3
Artin field: Galois closure of 6.0.29679104.2

Embedding invariants

Embedding label 237.1
Root 0.5000000.866025i0.500000 - 0.866025i of defining polynomial
Character χ\chi == 728.237
Dual form 728.1.ce.b.685.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.5000000.866025i)q2+(0.500000+0.866025i)q3+(0.500000+0.866025i)q41.00000q5+(0.5000000.866025i)q6+(0.500000+0.866025i)q7+1.00000q8+(0.500000+0.866025i)q101.00000q12+(0.500000+0.866025i)q13+1.00000q14+(0.5000000.866025i)q15+(0.5000000.866025i)q16+(1.00000+1.73205i)q19+(0.5000000.866025i)q201.00000q21+(0.500000+0.866025i)q23+(0.500000+0.866025i)q24+1.00000q26+1.00000q27+(0.5000000.866025i)q28+(0.500000+0.866025i)q30+(0.500000+0.866025i)q32+(0.5000000.866025i)q35+2.00000q381.00000q391.00000q40+(0.500000+0.866025i)q42+(0.5000000.866025i)q46+(0.5000000.866025i)q48+(0.5000000.866025i)q49+(0.5000000.866025i)q52+(0.5000000.866025i)q54+(0.500000+0.866025i)q562.00000q57+(0.5000000.866025i)q59+1.00000q60+(0.5000000.866025i)q61+1.00000q64+(0.5000000.866025i)q65+(0.500000+0.866025i)q691.00000q70+(0.5000000.866025i)q71+(1.000001.73205i)q76+(0.500000+0.866025i)q78+2.00000q79+(0.500000+0.866025i)q80+(0.500000+0.866025i)q81+2.00000q83+(0.5000000.866025i)q84+(0.5000000.866025i)q911.00000q92+(1.000001.73205i)q951.00000q96+(0.500000+0.866025i)q98+O(q100)q+(-0.500000 - 0.866025i) q^{2} +(0.500000 + 0.866025i) q^{3} +(-0.500000 + 0.866025i) q^{4} -1.00000 q^{5} +(0.500000 - 0.866025i) q^{6} +(-0.500000 + 0.866025i) q^{7} +1.00000 q^{8} +(0.500000 + 0.866025i) q^{10} -1.00000 q^{12} +(-0.500000 + 0.866025i) q^{13} +1.00000 q^{14} +(-0.500000 - 0.866025i) q^{15} +(-0.500000 - 0.866025i) q^{16} +(-1.00000 + 1.73205i) q^{19} +(0.500000 - 0.866025i) q^{20} -1.00000 q^{21} +(0.500000 + 0.866025i) q^{23} +(0.500000 + 0.866025i) q^{24} +1.00000 q^{26} +1.00000 q^{27} +(-0.500000 - 0.866025i) q^{28} +(-0.500000 + 0.866025i) q^{30} +(-0.500000 + 0.866025i) q^{32} +(0.500000 - 0.866025i) q^{35} +2.00000 q^{38} -1.00000 q^{39} -1.00000 q^{40} +(0.500000 + 0.866025i) q^{42} +(0.500000 - 0.866025i) q^{46} +(0.500000 - 0.866025i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(-0.500000 - 0.866025i) q^{52} +(-0.500000 - 0.866025i) q^{54} +(-0.500000 + 0.866025i) q^{56} -2.00000 q^{57} +(0.500000 - 0.866025i) q^{59} +1.00000 q^{60} +(0.500000 - 0.866025i) q^{61} +1.00000 q^{64} +(0.500000 - 0.866025i) q^{65} +(-0.500000 + 0.866025i) q^{69} -1.00000 q^{70} +(0.500000 - 0.866025i) q^{71} +(-1.00000 - 1.73205i) q^{76} +(0.500000 + 0.866025i) q^{78} +2.00000 q^{79} +(0.500000 + 0.866025i) q^{80} +(0.500000 + 0.866025i) q^{81} +2.00000 q^{83} +(0.500000 - 0.866025i) q^{84} +(-0.500000 - 0.866025i) q^{91} -1.00000 q^{92} +(1.00000 - 1.73205i) q^{95} -1.00000 q^{96} +(-0.500000 + 0.866025i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2qq2+q3q42q5+q6q7+2q8+q102q12q13+2q14q15q162q19+q202q21+q23+q24+2q26+2q27+q98+O(q100) 2 q - q^{2} + q^{3} - q^{4} - 2 q^{5} + q^{6} - q^{7} + 2 q^{8} + q^{10} - 2 q^{12} - q^{13} + 2 q^{14} - q^{15} - q^{16} - 2 q^{19} + q^{20} - 2 q^{21} + q^{23} + q^{24} + 2 q^{26} + 2 q^{27}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/728Z)×\left(\mathbb{Z}/728\mathbb{Z}\right)^\times.

nn 183183 365365 521521 561561
χ(n)\chi(n) 11 1-1 1-1 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −0.500000 0.866025i −0.500000 0.866025i
33 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
44 −0.500000 + 0.866025i −0.500000 + 0.866025i
55 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
66 0.500000 0.866025i 0.500000 0.866025i
77 −0.500000 + 0.866025i −0.500000 + 0.866025i
88 1.00000 1.00000
99 0 0
1010 0.500000 + 0.866025i 0.500000 + 0.866025i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 −1.00000 −1.00000
1313 −0.500000 + 0.866025i −0.500000 + 0.866025i
1414 1.00000 1.00000
1515 −0.500000 0.866025i −0.500000 0.866025i
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 0 0
1919 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
2020 0.500000 0.866025i 0.500000 0.866025i
2121 −1.00000 −1.00000
2222 0 0
2323 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
2424 0.500000 + 0.866025i 0.500000 + 0.866025i
2525 0 0
2626 1.00000 1.00000
2727 1.00000 1.00000
2828 −0.500000 0.866025i −0.500000 0.866025i
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 −0.500000 + 0.866025i −0.500000 + 0.866025i
3131 0 0 1.00000 00
−1.00000 π\pi
3232 −0.500000 + 0.866025i −0.500000 + 0.866025i
3333 0 0
3434 0 0
3535 0.500000 0.866025i 0.500000 0.866025i
3636 0 0
3737 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3838 2.00000 2.00000
3939 −1.00000 −1.00000
4040 −1.00000 −1.00000
4141 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4242 0.500000 + 0.866025i 0.500000 + 0.866025i
4343 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 0 0
4646 0.500000 0.866025i 0.500000 0.866025i
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0.500000 0.866025i 0.500000 0.866025i
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 0 0
5151 0 0
5252 −0.500000 0.866025i −0.500000 0.866025i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 −0.500000 0.866025i −0.500000 0.866025i
5555 0 0
5656 −0.500000 + 0.866025i −0.500000 + 0.866025i
5757 −2.00000 −2.00000
5858 0 0
5959 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
6060 1.00000 1.00000
6161 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
6262 0 0
6363 0 0
6464 1.00000 1.00000
6565 0.500000 0.866025i 0.500000 0.866025i
6666 0 0
6767 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 0 0
6969 −0.500000 + 0.866025i −0.500000 + 0.866025i
7070 −1.00000 −1.00000
7171 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
7272 0 0
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 0 0
7676 −1.00000 1.73205i −1.00000 1.73205i
7777 0 0
7878 0.500000 + 0.866025i 0.500000 + 0.866025i
7979 2.00000 2.00000 1.00000 00
1.00000 00
8080 0.500000 + 0.866025i 0.500000 + 0.866025i
8181 0.500000 + 0.866025i 0.500000 + 0.866025i
8282 0 0
8383 2.00000 2.00000 1.00000 00
1.00000 00
8484 0.500000 0.866025i 0.500000 0.866025i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 0 0
9191 −0.500000 0.866025i −0.500000 0.866025i
9292 −1.00000 −1.00000
9393 0 0
9494 0 0
9595 1.00000 1.73205i 1.00000 1.73205i
9696 −1.00000 −1.00000
9797 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 −0.500000 + 0.866025i −0.500000 + 0.866025i
9999 0 0
100100 0 0
101101 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 −0.500000 + 0.866025i −0.500000 + 0.866025i
105105 1.00000 1.00000
106106 0 0
107107 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 −0.500000 + 0.866025i −0.500000 + 0.866025i
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 1.00000 1.00000
113113 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
114114 1.00000 + 1.73205i 1.00000 + 1.73205i
115115 −0.500000 0.866025i −0.500000 0.866025i
116116 0 0
117117 0 0
118118 −1.00000 −1.00000
119119 0 0
120120 −0.500000 0.866025i −0.500000 0.866025i
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 −1.00000 −1.00000
123123 0 0
124124 0 0
125125 1.00000 1.00000
126126 0 0
127127 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
128128 −0.500000 0.866025i −0.500000 0.866025i
129129 0 0
130130 −1.00000 −1.00000
131131 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
132132 0 0
133133 −1.00000 1.73205i −1.00000 1.73205i
134134 0 0
135135 −1.00000 −1.00000
136136 0 0
137137 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
138138 1.00000 1.00000
139139 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
140140 0.500000 + 0.866025i 0.500000 + 0.866025i
141141 0 0
142142 −1.00000 −1.00000
143143 0 0
144144 0 0
145145 0 0
146146 0 0
147147 0.500000 0.866025i 0.500000 0.866025i
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 0 0
151151 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 −1.00000 + 1.73205i −1.00000 + 1.73205i
153153 0 0
154154 0 0
155155 0 0
156156 0.500000 0.866025i 0.500000 0.866025i
157157 2.00000 2.00000 1.00000 00
1.00000 00
158158 −1.00000 1.73205i −1.00000 1.73205i
159159 0 0
160160 0.500000 0.866025i 0.500000 0.866025i
161161 −1.00000 −1.00000
162162 0.500000 0.866025i 0.500000 0.866025i
163163 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
164164 0 0
165165 0 0
166166 −1.00000 1.73205i −1.00000 1.73205i
167167 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 −1.00000 −1.00000
169169 −0.500000 0.866025i −0.500000 0.866025i
170170 0 0
171171 0 0
172172 0 0
173173 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
174174 0 0
175175 0 0
176176 0 0
177177 1.00000 1.00000
178178 0 0
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 0 0
181181 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
182182 −0.500000 + 0.866025i −0.500000 + 0.866025i
183183 1.00000 1.00000
184184 0.500000 + 0.866025i 0.500000 + 0.866025i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 −0.500000 + 0.866025i −0.500000 + 0.866025i
190190 −2.00000 −2.00000
191191 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
192192 0.500000 + 0.866025i 0.500000 + 0.866025i
193193 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
194194 0 0
195195 1.00000 1.00000
196196 1.00000 1.00000
197197 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
198198 0 0
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 0 0
201201 0 0
202202 −1.00000 + 1.73205i −1.00000 + 1.73205i
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 1.00000 1.00000
209209 0 0
210210 −0.500000 0.866025i −0.500000 0.866025i
211211 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0 0
213213 1.00000 1.00000
214214 0 0
215215 0 0
216216 1.00000 1.00000
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
224224 −0.500000 0.866025i −0.500000 0.866025i
225225 0 0
226226 2.00000 2.00000
227227 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
228228 1.00000 1.73205i 1.00000 1.73205i
229229 2.00000 2.00000 1.00000 00
1.00000 00
230230 −0.500000 + 0.866025i −0.500000 + 0.866025i
231231 0 0
232232 0 0
233233 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 0 0
235235 0 0
236236 0.500000 + 0.866025i 0.500000 + 0.866025i
237237 1.00000 + 1.73205i 1.00000 + 1.73205i
238238 0 0
239239 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 −0.500000 + 0.866025i −0.500000 + 0.866025i
241241 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 1.00000 1.00000
243243 0 0
244244 0.500000 + 0.866025i 0.500000 + 0.866025i
245245 0.500000 + 0.866025i 0.500000 + 0.866025i
246246 0 0
247247 −1.00000 1.73205i −1.00000 1.73205i
248248 0 0
249249 1.00000 + 1.73205i 1.00000 + 1.73205i
250250 −0.500000 0.866025i −0.500000 0.866025i
251251 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
252252 0 0
253253 0 0
254254 0.500000 0.866025i 0.500000 0.866025i
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 0 0
259259 0 0
260260 0.500000 + 0.866025i 0.500000 + 0.866025i
261261 0 0
262262 0.500000 + 0.866025i 0.500000 + 0.866025i
263263 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
264264 0 0
265265 0 0
266266 −1.00000 + 1.73205i −1.00000 + 1.73205i
267267 0 0
268268 0 0
269269 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
270270 0.500000 + 0.866025i 0.500000 + 0.866025i
271271 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 0 0
273273 0.500000 0.866025i 0.500000 0.866025i
274274 −1.00000 −1.00000
275275 0 0
276276 −0.500000 0.866025i −0.500000 0.866025i
277277 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 2.00000 2.00000
279279 0 0
280280 0.500000 0.866025i 0.500000 0.866025i
281281 2.00000 2.00000 1.00000 00
1.00000 00
282282 0 0
283283 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
284284 0.500000 + 0.866025i 0.500000 + 0.866025i
285285 2.00000 2.00000
286286 0 0
287287 0 0
288288 0 0
289289 −0.500000 0.866025i −0.500000 0.866025i
290290 0 0
291291 0 0
292292 0 0
293293 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
294294 −1.00000 −1.00000
295295 −0.500000 + 0.866025i −0.500000 + 0.866025i
296296 0 0
297297 0 0
298298 0 0
299299 −1.00000 −1.00000
300300 0 0
301301 0 0
302302 0.500000 + 0.866025i 0.500000 + 0.866025i
303303 1.00000 1.73205i 1.00000 1.73205i
304304 2.00000 2.00000
305305 −0.500000 + 0.866025i −0.500000 + 0.866025i
306306 0 0
307307 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 −1.00000 −1.00000
313313 0 0 1.00000 00
−1.00000 π\pi
314314 −1.00000 1.73205i −1.00000 1.73205i
315315 0 0
316316 −1.00000 + 1.73205i −1.00000 + 1.73205i
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 −1.00000 −1.00000
321321 0 0
322322 0.500000 + 0.866025i 0.500000 + 0.866025i
323323 0 0
324324 −1.00000 −1.00000
325325 0 0
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 −1.00000 + 1.73205i −1.00000 + 1.73205i
333333 0 0
334334 0 0
335335 0 0
336336 0.500000 + 0.866025i 0.500000 + 0.866025i
337337 2.00000 2.00000 1.00000 00
1.00000 00
338338 −0.500000 + 0.866025i −0.500000 + 0.866025i
339339 −2.00000 −2.00000
340340 0 0
341341 0 0
342342 0 0
343343 1.00000 1.00000
344344 0 0
345345 0.500000 0.866025i 0.500000 0.866025i
346346 −1.00000 −1.00000
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
350350 0 0
351351 −0.500000 + 0.866025i −0.500000 + 0.866025i
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 −0.500000 0.866025i −0.500000 0.866025i
355355 −0.500000 + 0.866025i −0.500000 + 0.866025i
356356 0 0
357357 0 0
358358 0 0
359359 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 0 0
361361 −1.50000 2.59808i −1.50000 2.59808i
362362 0.500000 + 0.866025i 0.500000 + 0.866025i
363363 −1.00000 −1.00000
364364 1.00000 1.00000
365365 0 0
366366 −0.500000 0.866025i −0.500000 0.866025i
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0.500000 0.866025i 0.500000 0.866025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 0.500000 + 0.866025i 0.500000 + 0.866025i
376376 0 0
377377 0 0
378378 1.00000 1.00000
379379 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
380380 1.00000 + 1.73205i 1.00000 + 1.73205i
381381 −0.500000 + 0.866025i −0.500000 + 0.866025i
382382 2.00000 2.00000
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0.500000 0.866025i 0.500000 0.866025i
385385 0 0
386386 0.500000 0.866025i 0.500000 0.866025i
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 −0.500000 0.866025i −0.500000 0.866025i
391391 0 0
392392 −0.500000 0.866025i −0.500000 0.866025i
393393 −0.500000 0.866025i −0.500000 0.866025i
394394 0 0
395395 −2.00000 −2.00000
396396 0 0
397397 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
398398 0 0
399399 1.00000 1.73205i 1.00000 1.73205i
400400 0 0
401401 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
402402 0 0
403403 0 0
404404 2.00000 2.00000
405405 −0.500000 0.866025i −0.500000 0.866025i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 1.00000 1.00000
412412 0 0
413413 0.500000 + 0.866025i 0.500000 + 0.866025i
414414 0 0
415415 −2.00000 −2.00000
416416 −0.500000 0.866025i −0.500000 0.866025i
417417 −2.00000 −2.00000
418418 0 0
419419 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
420420 −0.500000 + 0.866025i −0.500000 + 0.866025i
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 −0.500000 0.866025i −0.500000 0.866025i
427427 0.500000 + 0.866025i 0.500000 + 0.866025i
428428 0 0
429429 0 0
430430 0 0
431431 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
432432 −0.500000 0.866025i −0.500000 0.866025i
433433 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
434434 0 0
435435 0 0
436436 0 0
437437 −2.00000 −2.00000
438438 0 0
439439 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
440440 0 0
441441 0 0
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 −0.500000 + 0.866025i −0.500000 + 0.866025i
449449 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
450450 0 0
451451 0 0
452452 −1.00000 1.73205i −1.00000 1.73205i
453453 −0.500000 0.866025i −0.500000 0.866025i
454454 −1.00000 −1.00000
455455 0.500000 + 0.866025i 0.500000 + 0.866025i
456456 −2.00000 −2.00000
457457 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
458458 −1.00000 1.73205i −1.00000 1.73205i
459459 0 0
460460 1.00000 1.00000
461461 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
462462 0 0
463463 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
464464 0 0
465465 0 0
466466 0.500000 + 0.866025i 0.500000 + 0.866025i
467467 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
468468 0 0
469469 0 0
470470 0 0
471471 1.00000 + 1.73205i 1.00000 + 1.73205i
472472 0.500000 0.866025i 0.500000 0.866025i
473473 0 0
474474 1.00000 1.73205i 1.00000 1.73205i
475475 0 0
476476 0 0
477477 0 0
478478 0.500000 + 0.866025i 0.500000 + 0.866025i
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 1.00000 1.00000
481481 0 0
482482 0 0
483483 −0.500000 0.866025i −0.500000 0.866025i
484484 −0.500000 0.866025i −0.500000 0.866025i
485485 0 0
486486 0 0
487487 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
488488 0.500000 0.866025i 0.500000 0.866025i
489489 0 0
490490 0.500000 0.866025i 0.500000 0.866025i
491491 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0 0
494494 −1.00000 + 1.73205i −1.00000 + 1.73205i
495495 0 0
496496 0 0
497497 0.500000 + 0.866025i 0.500000 + 0.866025i
498498 1.00000 1.73205i 1.00000 1.73205i
499499 0 0 1.00000 00
−1.00000 π\pi
500500 −0.500000 + 0.866025i −0.500000 + 0.866025i
501501 0 0
502502 −1.00000 −1.00000
503503 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
504504 0 0
505505 1.00000 + 1.73205i 1.00000 + 1.73205i
506506 0 0
507507 0.500000 0.866025i 0.500000 0.866025i
508508 −1.00000 −1.00000
509509 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
510510 0 0
511511 0 0
512512 1.00000 1.00000
513513 −1.00000 + 1.73205i −1.00000 + 1.73205i
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 1.00000 1.00000
520520 0.500000 0.866025i 0.500000 0.866025i
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
524524 0.500000 0.866025i 0.500000 0.866025i
525525 0 0
526526 0.500000 0.866025i 0.500000 0.866025i
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 0 0
532532 2.00000 2.00000
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 −1.00000 −1.00000
539539 0 0
540540 0.500000 0.866025i 0.500000 0.866025i
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 −0.500000 0.866025i −0.500000 0.866025i
544544 0 0
545545 0 0
546546 −1.00000 −1.00000
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0.500000 + 0.866025i 0.500000 + 0.866025i
549549 0 0
550550 0 0
551551 0 0
552552 −0.500000 + 0.866025i −0.500000 + 0.866025i
553553 −1.00000 + 1.73205i −1.00000 + 1.73205i
554554 0 0
555555 0 0
556556 −1.00000 1.73205i −1.00000 1.73205i
557557 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 0 0
559559 0 0
560560 −1.00000 −1.00000
561561 0 0
562562 −1.00000 1.73205i −1.00000 1.73205i
563563 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
564564 0 0
565565 1.00000 1.73205i 1.00000 1.73205i
566566 0.500000 0.866025i 0.500000 0.866025i
567567 −1.00000 −1.00000
568568 0.500000 0.866025i 0.500000 0.866025i
569569 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
570570 −1.00000 1.73205i −1.00000 1.73205i
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 −2.00000 −2.00000
574574 0 0
575575 0 0
576576 0 0
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −0.500000 + 0.866025i −0.500000 + 0.866025i
579579 −0.500000 + 0.866025i −0.500000 + 0.866025i
580580 0 0
581581 −1.00000 + 1.73205i −1.00000 + 1.73205i
582582 0 0
583583 0 0
584584 0 0
585585 0 0
586586 2.00000 2.00000
587587 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
588588 0.500000 + 0.866025i 0.500000 + 0.866025i
589589 0 0
590590 1.00000 1.00000
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0.500000 + 0.866025i 0.500000 + 0.866025i
599599 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
600600 0 0
601601 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
602602 0 0
603603 0 0
604604 0.500000 0.866025i 0.500000 0.866025i
605605 0.500000 0.866025i 0.500000 0.866025i
606606 −2.00000 −2.00000
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 −1.00000 1.73205i −1.00000 1.73205i
609609 0 0
610610 1.00000 1.00000
611611 0 0
612612 0 0
613613 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0.500000 + 0.866025i 0.500000 + 0.866025i
615615 0 0
616616 0 0
617617 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
618618 0 0
619619 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
620620 0 0
621621 0.500000 + 0.866025i 0.500000 + 0.866025i
622622 0 0
623623 0 0
624624 0.500000 + 0.866025i 0.500000 + 0.866025i
625625 −1.00000 −1.00000
626626 0 0
627627 0 0
628628 −1.00000 + 1.73205i −1.00000 + 1.73205i
629629 0 0
630630 0 0
631631 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
632632 2.00000 2.00000
633633 0 0
634634 0 0
635635 −0.500000 0.866025i −0.500000 0.866025i
636636 0 0
637637 1.00000 1.00000
638638 0 0
639639 0 0
640640 0.500000 + 0.866025i 0.500000 + 0.866025i
641641 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
642642 0 0
643643 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
644644 0.500000 0.866025i 0.500000 0.866025i
645645 0 0
646646 0 0
647647 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
648648 0.500000 + 0.866025i 0.500000 + 0.866025i
649649 0 0
650650 0 0
651651 0 0
652652 0 0
653653 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 1.00000 1.00000
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
662662 0 0
663663 0 0
664664 2.00000 2.00000
665665 1.00000 + 1.73205i 1.00000 + 1.73205i
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 0.500000 0.866025i 0.500000 0.866025i
673673 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
674674 −1.00000 1.73205i −1.00000 1.73205i
675675 0 0
676676 1.00000 1.00000
677677 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
678678 1.00000 + 1.73205i 1.00000 + 1.73205i
679679 0 0
680680 0 0
681681 1.00000 1.00000
682682 0 0
683683 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 −0.500000 + 0.866025i −0.500000 + 0.866025i
686686 −0.500000 0.866025i −0.500000 0.866025i
687687 1.00000 + 1.73205i 1.00000 + 1.73205i
688688 0 0
689689 0 0
690690 −1.00000 −1.00000
691691 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
692692 0.500000 + 0.866025i 0.500000 + 0.866025i
693693 0 0
694694 0 0
695695 1.00000 1.73205i 1.00000 1.73205i
696696 0 0
697697 0 0
698698 0.500000 0.866025i 0.500000 0.866025i
699699 −0.500000 0.866025i −0.500000 0.866025i
700700 0 0
701701 0 0 1.00000 00
−1.00000 π\pi
702702 1.00000 1.00000
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 2.00000 2.00000
708708 −0.500000 + 0.866025i −0.500000 + 0.866025i
709709 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 1.00000 1.00000
711711 0 0
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 −0.500000 0.866025i −0.500000 0.866025i
718718 0.500000 + 0.866025i 0.500000 + 0.866025i
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 0 0
721721 0 0
722722 −1.50000 + 2.59808i −1.50000 + 2.59808i
723723 0 0
724724 0.500000 0.866025i 0.500000 0.866025i
725725 0 0
726726 0.500000 + 0.866025i 0.500000 + 0.866025i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 −0.500000 0.866025i −0.500000 0.866025i
729729 1.00000 1.00000
730730 0 0
731731 0 0
732732 −0.500000 + 0.866025i −0.500000 + 0.866025i
733733 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
734734 0 0
735735 −0.500000 + 0.866025i −0.500000 + 0.866025i
736736 −1.00000 −1.00000
737737 0 0
738738 0 0
739739 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 0 0
741741 1.00000 1.73205i 1.00000 1.73205i
742742 0 0
743743 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 0.500000 0.866025i 0.500000 0.866025i
751751 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 1.00000 1.00000
754754 0 0
755755 1.00000 1.00000
756756 −0.500000 0.866025i −0.500000 0.866025i
757757 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 0 0
759759 0 0
760760 1.00000 1.73205i 1.00000 1.73205i
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 1.00000 1.00000
763763 0 0
764764 −1.00000 1.73205i −1.00000 1.73205i
765765 0 0
766766 0 0
767767 0.500000 + 0.866025i 0.500000 + 0.866025i
768768 −1.00000 −1.00000
769769 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 0 0
771771 0 0
772772 −1.00000 −1.00000
773773 −1.00000 + 1.73205i −1.00000 + 1.73205i −0.500000 + 0.866025i 0.666667π0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 −0.500000 + 0.866025i −0.500000 + 0.866025i
781781 0 0
782782 0 0
783783 0 0
784784 −0.500000 + 0.866025i −0.500000 + 0.866025i
785785 −2.00000 −2.00000
786786 −0.500000 + 0.866025i −0.500000 + 0.866025i
787787 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
788788 0 0
789789 −0.500000 + 0.866025i −0.500000 + 0.866025i
790790 1.00000 + 1.73205i 1.00000 + 1.73205i
791791 −1.00000 1.73205i −1.00000 1.73205i
792792 0 0
793793 0.500000 + 0.866025i 0.500000 + 0.866025i
794794 −1.00000 −1.00000
795795 0 0
796796 0 0
797797 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
798798 −2.00000 −2.00000
799799 0 0
800800 0 0
801801 0 0
802802 −1.00000 + 1.73205i −1.00000 + 1.73205i
803803 0 0
804804 0 0
805805 1.00000 1.00000
806806 0 0
807807 1.00000 1.00000
808808 −1.00000 1.73205i −1.00000 1.73205i
809809 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
810810 −0.500000 + 0.866025i −0.500000 + 0.866025i
811811 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 0 0
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 −0.500000 0.866025i −0.500000 0.866025i
823823 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
824824 0 0
825825 0 0
826826 0.500000 0.866025i 0.500000 0.866025i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 0 0
829829 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
830830 1.00000 + 1.73205i 1.00000 + 1.73205i
831831 0 0
832832 −0.500000 + 0.866025i −0.500000 + 0.866025i
833833 0 0
834834 1.00000 + 1.73205i 1.00000 + 1.73205i
835835 0 0
836836 0 0
837837 0 0
838838 −1.00000 + 1.73205i −1.00000 + 1.73205i
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 1.00000 1.00000
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0 0
843843 1.00000 + 1.73205i 1.00000 + 1.73205i
844844 0 0
845845 0.500000 + 0.866025i 0.500000 + 0.866025i
846846 0 0
847847 −0.500000 0.866025i −0.500000 0.866025i
848848 0 0
849849 −0.500000 + 0.866025i −0.500000 + 0.866025i
850850 0 0
851851 0 0
852852 −0.500000 + 0.866025i −0.500000 + 0.866025i
853853 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
854854 0.500000 0.866025i 0.500000 0.866025i
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 2.00000 2.00000 1.00000 00
1.00000 00
860860 0 0
861861 0 0
862862 0.500000 0.866025i 0.500000 0.866025i
863863 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
864864 −0.500000 + 0.866025i −0.500000 + 0.866025i
865865 −0.500000 + 0.866025i −0.500000 + 0.866025i
866866 0 0
867867 0.500000 0.866025i 0.500000 0.866025i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 1.00000 + 1.73205i 1.00000 + 1.73205i
875875 −0.500000 + 0.866025i −0.500000 + 0.866025i
876876 0 0
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 −2.00000 −2.00000
880880 0 0
881881 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
882882 0 0
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 −1.00000 −1.00000
886886 0 0
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 0 0
889889 −1.00000 −1.00000
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 1.00000 1.00000
897897 −0.500000 0.866025i −0.500000 0.866025i
898898 −1.00000 −1.00000
899899 0 0
900900 0 0
901901 0 0
902902 0 0
903903 0 0
904904 −1.00000 + 1.73205i −1.00000 + 1.73205i
905905 1.00000 1.00000
906906 −0.500000 + 0.866025i −0.500000 + 0.866025i
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0.500000 + 0.866025i 0.500000 + 0.866025i
909909 0 0
910910 0.500000 0.866025i 0.500000 0.866025i
911911 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 1.00000 + 1.73205i 1.00000 + 1.73205i
913913 0 0
914914 0.500000 0.866025i 0.500000 0.866025i
915915 −1.00000 −1.00000
916916 −1.00000 + 1.73205i −1.00000 + 1.73205i
917917 0.500000 0.866025i 0.500000 0.866025i
918918 0 0
919919 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
920920 −0.500000 0.866025i −0.500000 0.866025i
921921 −0.500000 0.866025i −0.500000 0.866025i
922922 −1.00000 −1.00000
923923 0.500000 + 0.866025i 0.500000 + 0.866025i
924924 0 0
925925 0 0
926926 0.500000 + 0.866025i 0.500000 + 0.866025i
927927 0 0
928928 0 0
929929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 0 0
931931 2.00000 2.00000
932932 0.500000 0.866025i 0.500000 0.866025i
933933 0 0
934934 0.500000 + 0.866025i 0.500000 + 0.866025i
935935 0 0
936936 0 0
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
942942 1.00000 1.73205i 1.00000 1.73205i
943943 0 0
944944 −1.00000 −1.00000
945945 0.500000 0.866025i 0.500000 0.866025i
946946 0 0
947947 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 −2.00000 −2.00000
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
954954 0 0
955955 1.00000 1.73205i 1.00000 1.73205i
956956 0.500000 0.866025i 0.500000 0.866025i
957957 0 0
958958 0 0
959959 0.500000 + 0.866025i 0.500000 + 0.866025i
960960 −0.500000 0.866025i −0.500000 0.866025i
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 −0.500000 0.866025i −0.500000 0.866025i
966966 −0.500000 + 0.866025i −0.500000 + 0.866025i
967967 2.00000 2.00000 1.00000 00
1.00000 00
968968 −0.500000 + 0.866025i −0.500000 + 0.866025i
969969 0 0
970970 0 0
971971 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
972972 0 0
973973 −1.00000 1.73205i −1.00000 1.73205i
974974 −1.00000 −1.00000
975975 0 0
976976 −1.00000 −1.00000
977977 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0 0
980980 −1.00000 −1.00000
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 2.00000 2.00000
989989 0 0
990990 0 0
991991 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
992992 0 0
993993 0 0
994994 0.500000 0.866025i 0.500000 0.866025i
995995 0 0
996996 −2.00000 −2.00000
997997 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.1.ce.b.237.1 yes 2
4.3 odd 2 2912.1.cu.a.1329.1 2
7.6 odd 2 728.1.ce.a.237.1 2
8.3 odd 2 2912.1.cu.b.1329.1 2
8.5 even 2 728.1.ce.a.237.1 2
13.9 even 3 inner 728.1.ce.b.685.1 yes 2
28.27 even 2 2912.1.cu.b.1329.1 2
52.35 odd 6 2912.1.cu.a.1777.1 2
56.13 odd 2 CM 728.1.ce.b.237.1 yes 2
56.27 even 2 2912.1.cu.a.1329.1 2
91.48 odd 6 728.1.ce.a.685.1 yes 2
104.35 odd 6 2912.1.cu.b.1777.1 2
104.61 even 6 728.1.ce.a.685.1 yes 2
364.139 even 6 2912.1.cu.b.1777.1 2
728.139 even 6 2912.1.cu.a.1777.1 2
728.685 odd 6 inner 728.1.ce.b.685.1 yes 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.ce.a.237.1 2 7.6 odd 2
728.1.ce.a.237.1 2 8.5 even 2
728.1.ce.a.685.1 yes 2 91.48 odd 6
728.1.ce.a.685.1 yes 2 104.61 even 6
728.1.ce.b.237.1 yes 2 1.1 even 1 trivial
728.1.ce.b.237.1 yes 2 56.13 odd 2 CM
728.1.ce.b.685.1 yes 2 13.9 even 3 inner
728.1.ce.b.685.1 yes 2 728.685 odd 6 inner
2912.1.cu.a.1329.1 2 4.3 odd 2
2912.1.cu.a.1329.1 2 56.27 even 2
2912.1.cu.a.1777.1 2 52.35 odd 6
2912.1.cu.a.1777.1 2 728.139 even 6
2912.1.cu.b.1329.1 2 8.3 odd 2
2912.1.cu.b.1329.1 2 28.27 even 2
2912.1.cu.b.1777.1 2 104.35 odd 6
2912.1.cu.b.1777.1 2 364.139 even 6