Properties

Label 728.1.ce.c.237.1
Level 728728
Weight 11
Character 728.237
Analytic conductor 0.3630.363
Analytic rank 00
Dimension 44
Projective image D6D_{6}
CM discriminant -56
Inner twists 88

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(237,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 3, 3, 2]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.237");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 728=23713 728 = 2^{3} \cdot 7 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 728.ce (of order 66, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 0.3633193291970.363319329197
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ6)\Q(\zeta_{6})
Coefficient field: Q(ζ12)\Q(\zeta_{12})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x4x2+1 x^{4} - x^{2} + 1 Copy content Toggle raw display
Coefficient ring: Z[a1,,a13]\Z[a_1, \ldots, a_{13}]
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D6D_{6}
Projective field: Galois closure of 6.0.626971072.1

Embedding invariants

Embedding label 237.1
Root 0.8660250.500000i-0.866025 - 0.500000i of defining polynomial
Character χ\chi == 728.237
Dual form 728.1.ce.c.685.1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == q+(0.500000+0.866025i)q2+(0.8660251.50000i)q3+(0.500000+0.866025i)q4+1.73205q5+(0.8660251.50000i)q6+(0.5000000.866025i)q71.00000q8+(1.00000+1.73205i)q9+(0.866025+1.50000i)q10+1.73205q12+(0.8660250.500000i)q13+1.00000q14+(1.500002.59808i)q15+(0.5000000.866025i)q162.00000q18+(0.866025+1.50000i)q201.73205q21+(0.500000+0.866025i)q23+(0.866025+1.50000i)q24+2.00000q251.00000iq26+1.73205q27+(0.500000+0.866025i)q28+(1.500002.59808i)q30+(0.5000000.866025i)q32+(0.8660251.50000i)q35+(1.000001.73205i)q36+1.73205iq391.73205q40+(0.8660251.50000i)q42+(1.73205+3.00000i)q45+(0.500000+0.866025i)q46+(0.866025+1.50000i)q48+(0.5000000.866025i)q49+(1.00000+1.73205i)q50+(0.8660250.500000i)q52+(0.866025+1.50000i)q54+(0.500000+0.866025i)q56+(0.866025+1.50000i)q59+3.00000q60+(0.866025+1.50000i)q61+(1.00000+1.73205i)q63+1.00000q64+(1.500000.866025i)q65+(0.8660251.50000i)q69+1.73205q70+(0.500000+0.866025i)q71+(1.000001.73205i)q72+(1.732053.00000i)q75+(1.50000+0.866025i)q782.00000q79+(0.8660251.50000i)q80+(0.5000000.866025i)q81+(0.8660251.50000i)q843.46410q90+(0.866025+0.500000i)q911.00000q921.73205q96+(0.5000000.866025i)q98+O(q100)q+(0.500000 + 0.866025i) q^{2} +(-0.866025 - 1.50000i) q^{3} +(-0.500000 + 0.866025i) q^{4} +1.73205 q^{5} +(0.866025 - 1.50000i) q^{6} +(0.500000 - 0.866025i) q^{7} -1.00000 q^{8} +(-1.00000 + 1.73205i) q^{9} +(0.866025 + 1.50000i) q^{10} +1.73205 q^{12} +(-0.866025 - 0.500000i) q^{13} +1.00000 q^{14} +(-1.50000 - 2.59808i) q^{15} +(-0.500000 - 0.866025i) q^{16} -2.00000 q^{18} +(-0.866025 + 1.50000i) q^{20} -1.73205 q^{21} +(0.500000 + 0.866025i) q^{23} +(0.866025 + 1.50000i) q^{24} +2.00000 q^{25} -1.00000i q^{26} +1.73205 q^{27} +(0.500000 + 0.866025i) q^{28} +(1.50000 - 2.59808i) q^{30} +(0.500000 - 0.866025i) q^{32} +(0.866025 - 1.50000i) q^{35} +(-1.00000 - 1.73205i) q^{36} +1.73205i q^{39} -1.73205 q^{40} +(-0.866025 - 1.50000i) q^{42} +(-1.73205 + 3.00000i) q^{45} +(-0.500000 + 0.866025i) q^{46} +(-0.866025 + 1.50000i) q^{48} +(-0.500000 - 0.866025i) q^{49} +(1.00000 + 1.73205i) q^{50} +(0.866025 - 0.500000i) q^{52} +(0.866025 + 1.50000i) q^{54} +(-0.500000 + 0.866025i) q^{56} +(-0.866025 + 1.50000i) q^{59} +3.00000 q^{60} +(-0.866025 + 1.50000i) q^{61} +(1.00000 + 1.73205i) q^{63} +1.00000 q^{64} +(-1.50000 - 0.866025i) q^{65} +(0.866025 - 1.50000i) q^{69} +1.73205 q^{70} +(-0.500000 + 0.866025i) q^{71} +(1.00000 - 1.73205i) q^{72} +(-1.73205 - 3.00000i) q^{75} +(-1.50000 + 0.866025i) q^{78} -2.00000 q^{79} +(-0.866025 - 1.50000i) q^{80} +(-0.500000 - 0.866025i) q^{81} +(0.866025 - 1.50000i) q^{84} -3.46410 q^{90} +(-0.866025 + 0.500000i) q^{91} -1.00000 q^{92} -1.73205 q^{96} +(0.500000 - 0.866025i) q^{98} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q+2q22q4+2q74q84q9+4q146q152q168q18+2q23+8q25+2q28+6q30+2q324q362q462q49+4q502q56++2q98+O(q100) 4 q + 2 q^{2} - 2 q^{4} + 2 q^{7} - 4 q^{8} - 4 q^{9} + 4 q^{14} - 6 q^{15} - 2 q^{16} - 8 q^{18} + 2 q^{23} + 8 q^{25} + 2 q^{28} + 6 q^{30} + 2 q^{32} - 4 q^{36} - 2 q^{46} - 2 q^{49} + 4 q^{50} - 2 q^{56}+ \cdots + 2 q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/728Z)×\left(\mathbb{Z}/728\mathbb{Z}\right)^\times.

nn 183183 365365 521521 561561
χ(n)\chi(n) 11 1-1 1-1 e(13)e\left(\frac{1}{3}\right)

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 0.500000 + 0.866025i 0.500000 + 0.866025i
33 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
44 −0.500000 + 0.866025i −0.500000 + 0.866025i
55 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
66 0.866025 1.50000i 0.866025 1.50000i
77 0.500000 0.866025i 0.500000 0.866025i
88 −1.00000 −1.00000
99 −1.00000 + 1.73205i −1.00000 + 1.73205i
1010 0.866025 + 1.50000i 0.866025 + 1.50000i
1111 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
1212 1.73205 1.73205
1313 −0.866025 0.500000i −0.866025 0.500000i
1414 1.00000 1.00000
1515 −1.50000 2.59808i −1.50000 2.59808i
1616 −0.500000 0.866025i −0.500000 0.866025i
1717 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
1818 −2.00000 −2.00000
1919 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
2020 −0.866025 + 1.50000i −0.866025 + 1.50000i
2121 −1.73205 −1.73205
2222 0 0
2323 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
2424 0.866025 + 1.50000i 0.866025 + 1.50000i
2525 2.00000 2.00000
2626 1.00000i 1.00000i
2727 1.73205 1.73205
2828 0.500000 + 0.866025i 0.500000 + 0.866025i
2929 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3030 1.50000 2.59808i 1.50000 2.59808i
3131 0 0 1.00000 00
−1.00000 π\pi
3232 0.500000 0.866025i 0.500000 0.866025i
3333 0 0
3434 0 0
3535 0.866025 1.50000i 0.866025 1.50000i
3636 −1.00000 1.73205i −1.00000 1.73205i
3737 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
3838 0 0
3939 1.73205i 1.73205i
4040 −1.73205 −1.73205
4141 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
4242 −0.866025 1.50000i −0.866025 1.50000i
4343 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
4444 0 0
4545 −1.73205 + 3.00000i −1.73205 + 3.00000i
4646 −0.500000 + 0.866025i −0.500000 + 0.866025i
4747 0 0 1.00000 00
−1.00000 π\pi
4848 −0.866025 + 1.50000i −0.866025 + 1.50000i
4949 −0.500000 0.866025i −0.500000 0.866025i
5050 1.00000 + 1.73205i 1.00000 + 1.73205i
5151 0 0
5252 0.866025 0.500000i 0.866025 0.500000i
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0.866025 + 1.50000i 0.866025 + 1.50000i
5555 0 0
5656 −0.500000 + 0.866025i −0.500000 + 0.866025i
5757 0 0
5858 0 0
5959 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6060 3.00000 3.00000
6161 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
6262 0 0
6363 1.00000 + 1.73205i 1.00000 + 1.73205i
6464 1.00000 1.00000
6565 −1.50000 0.866025i −1.50000 0.866025i
6666 0 0
6767 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
6868 0 0
6969 0.866025 1.50000i 0.866025 1.50000i
7070 1.73205 1.73205
7171 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
7272 1.00000 1.73205i 1.00000 1.73205i
7373 0 0 1.00000 00
−1.00000 π\pi
7474 0 0
7575 −1.73205 3.00000i −1.73205 3.00000i
7676 0 0
7777 0 0
7878 −1.50000 + 0.866025i −1.50000 + 0.866025i
7979 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
8080 −0.866025 1.50000i −0.866025 1.50000i
8181 −0.500000 0.866025i −0.500000 0.866025i
8282 0 0
8383 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
8484 0.866025 1.50000i 0.866025 1.50000i
8585 0 0
8686 0 0
8787 0 0
8888 0 0
8989 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
9090 −3.46410 −3.46410
9191 −0.866025 + 0.500000i −0.866025 + 0.500000i
9292 −1.00000 −1.00000
9393 0 0
9494 0 0
9595 0 0
9696 −1.73205 −1.73205
9797 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
9898 0.500000 0.866025i 0.500000 0.866025i
9999 0 0
100100 −1.00000 + 1.73205i −1.00000 + 1.73205i
101101 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 0.866025 + 0.500000i 0.866025 + 0.500000i
105105 −3.00000 −3.00000
106106 0 0
107107 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
108108 −0.866025 + 1.50000i −0.866025 + 1.50000i
109109 0 0 1.00000 00
−1.00000 π\pi
110110 0 0
111111 0 0
112112 −1.00000 −1.00000
113113 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
114114 0 0
115115 0.866025 + 1.50000i 0.866025 + 1.50000i
116116 0 0
117117 1.73205 1.00000i 1.73205 1.00000i
118118 −1.73205 −1.73205
119119 0 0
120120 1.50000 + 2.59808i 1.50000 + 2.59808i
121121 −0.500000 + 0.866025i −0.500000 + 0.866025i
122122 −1.73205 −1.73205
123123 0 0
124124 0 0
125125 1.73205 1.73205
126126 −1.00000 + 1.73205i −1.00000 + 1.73205i
127127 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
128128 0.500000 + 0.866025i 0.500000 + 0.866025i
129129 0 0
130130 1.73205i 1.73205i
131131 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
132132 0 0
133133 0 0
134134 0 0
135135 3.00000 3.00000
136136 0 0
137137 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
138138 1.73205 1.73205
139139 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
140140 0.866025 + 1.50000i 0.866025 + 1.50000i
141141 0 0
142142 −1.00000 −1.00000
143143 0 0
144144 2.00000 2.00000
145145 0 0
146146 0 0
147147 −0.866025 + 1.50000i −0.866025 + 1.50000i
148148 0 0
149149 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
150150 1.73205 3.00000i 1.73205 3.00000i
151151 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
152152 0 0
153153 0 0
154154 0 0
155155 0 0
156156 −1.50000 0.866025i −1.50000 0.866025i
157157 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
158158 −1.00000 1.73205i −1.00000 1.73205i
159159 0 0
160160 0.866025 1.50000i 0.866025 1.50000i
161161 1.00000 1.00000
162162 0.500000 0.866025i 0.500000 0.866025i
163163 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
164164 0 0
165165 0 0
166166 0 0
167167 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
168168 1.73205 1.73205
169169 0.500000 + 0.866025i 0.500000 + 0.866025i
170170 0 0
171171 0 0
172172 0 0
173173 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
174174 0 0
175175 1.00000 1.73205i 1.00000 1.73205i
176176 0 0
177177 3.00000 3.00000
178178 0 0
179179 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
180180 −1.73205 3.00000i −1.73205 3.00000i
181181 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
182182 −0.866025 0.500000i −0.866025 0.500000i
183183 3.00000 3.00000
184184 −0.500000 0.866025i −0.500000 0.866025i
185185 0 0
186186 0 0
187187 0 0
188188 0 0
189189 0.866025 1.50000i 0.866025 1.50000i
190190 0 0
191191 1.00000 1.73205i 1.00000 1.73205i 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 0.866025i 0.333333π-0.333333\pi
192192 −0.866025 1.50000i −0.866025 1.50000i
193193 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
194194 0 0
195195 3.00000i 3.00000i
196196 1.00000 1.00000
197197 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
198198 0 0
199199 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
200200 −2.00000 −2.00000
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 −2.00000 −2.00000
208208 1.00000i 1.00000i
209209 0 0
210210 −1.50000 2.59808i −1.50000 2.59808i
211211 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
212212 0 0
213213 1.73205 1.73205
214214 0 0
215215 0 0
216216 −1.73205 −1.73205
217217 0 0
218218 0 0
219219 0 0
220220 0 0
221221 0 0
222222 0 0
223223 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
224224 −0.500000 0.866025i −0.500000 0.866025i
225225 −2.00000 + 3.46410i −2.00000 + 3.46410i
226226 2.00000 2.00000
227227 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
228228 0 0
229229 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
230230 −0.866025 + 1.50000i −0.866025 + 1.50000i
231231 0 0
232232 0 0
233233 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
234234 1.73205 + 1.00000i 1.73205 + 1.00000i
235235 0 0
236236 −0.866025 1.50000i −0.866025 1.50000i
237237 1.73205 + 3.00000i 1.73205 + 3.00000i
238238 0 0
239239 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
240240 −1.50000 + 2.59808i −1.50000 + 2.59808i
241241 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
242242 −1.00000 −1.00000
243243 0 0
244244 −0.866025 1.50000i −0.866025 1.50000i
245245 −0.866025 1.50000i −0.866025 1.50000i
246246 0 0
247247 0 0
248248 0 0
249249 0 0
250250 0.866025 + 1.50000i 0.866025 + 1.50000i
251251 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
252252 −2.00000 −2.00000
253253 0 0
254254 −0.500000 + 0.866025i −0.500000 + 0.866025i
255255 0 0
256256 −0.500000 + 0.866025i −0.500000 + 0.866025i
257257 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
258258 0 0
259259 0 0
260260 1.50000 0.866025i 1.50000 0.866025i
261261 0 0
262262 0.866025 + 1.50000i 0.866025 + 1.50000i
263263 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
270270 1.50000 + 2.59808i 1.50000 + 2.59808i
271271 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
272272 0 0
273273 1.50000 + 0.866025i 1.50000 + 0.866025i
274274 1.00000 1.00000
275275 0 0
276276 0.866025 + 1.50000i 0.866025 + 1.50000i
277277 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
278278 0 0
279279 0 0
280280 −0.866025 + 1.50000i −0.866025 + 1.50000i
281281 2.00000 2.00000 1.00000 00
1.00000 00
282282 0 0
283283 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
284284 −0.500000 0.866025i −0.500000 0.866025i
285285 0 0
286286 0 0
287287 0 0
288288 1.00000 + 1.73205i 1.00000 + 1.73205i
289289 −0.500000 0.866025i −0.500000 0.866025i
290290 0 0
291291 0 0
292292 0 0
293293 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
294294 −1.73205 −1.73205
295295 −1.50000 + 2.59808i −1.50000 + 2.59808i
296296 0 0
297297 0 0
298298 0 0
299299 1.00000i 1.00000i
300300 3.46410 3.46410
301301 0 0
302302 −0.500000 0.866025i −0.500000 0.866025i
303303 0 0
304304 0 0
305305 −1.50000 + 2.59808i −1.50000 + 2.59808i
306306 0 0
307307 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
308308 0 0
309309 0 0
310310 0 0
311311 0 0 1.00000 00
−1.00000 π\pi
312312 1.73205i 1.73205i
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 1.73205 + 3.00000i 1.73205 + 3.00000i
316316 1.00000 1.73205i 1.00000 1.73205i
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 1.73205 1.73205
321321 0 0
322322 0.500000 + 0.866025i 0.500000 + 0.866025i
323323 0 0
324324 1.00000 1.00000
325325 −1.73205 1.00000i −1.73205 1.00000i
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
332332 0 0
333333 0 0
334334 0 0
335335 0 0
336336 0.866025 + 1.50000i 0.866025 + 1.50000i
337337 −2.00000 −2.00000 −1.00000 π\pi
−1.00000 π\pi
338338 −0.500000 + 0.866025i −0.500000 + 0.866025i
339339 −3.46410 −3.46410
340340 0 0
341341 0 0
342342 0 0
343343 −1.00000 −1.00000
344344 0 0
345345 1.50000 2.59808i 1.50000 2.59808i
346346 −1.73205 −1.73205
347347 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
348348 0 0
349349 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
350350 2.00000 2.00000
351351 −1.50000 0.866025i −1.50000 0.866025i
352352 0 0
353353 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
354354 1.50000 + 2.59808i 1.50000 + 2.59808i
355355 −0.866025 + 1.50000i −0.866025 + 1.50000i
356356 0 0
357357 0 0
358358 0 0
359359 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
360360 1.73205 3.00000i 1.73205 3.00000i
361361 0.500000 + 0.866025i 0.500000 + 0.866025i
362362 −0.866025 1.50000i −0.866025 1.50000i
363363 1.73205 1.73205
364364 1.00000i 1.00000i
365365 0 0
366366 1.50000 + 2.59808i 1.50000 + 2.59808i
367367 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
368368 0.500000 0.866025i 0.500000 0.866025i
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
374374 0 0
375375 −1.50000 2.59808i −1.50000 2.59808i
376376 0 0
377377 0 0
378378 1.73205 1.73205
379379 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
380380 0 0
381381 0.866025 1.50000i 0.866025 1.50000i
382382 2.00000 2.00000
383383 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
384384 0.866025 1.50000i 0.866025 1.50000i
385385 0 0
386386 0.500000 0.866025i 0.500000 0.866025i
387387 0 0
388388 0 0
389389 0 0 1.00000 00
−1.00000 π\pi
390390 −2.59808 + 1.50000i −2.59808 + 1.50000i
391391 0 0
392392 0.500000 + 0.866025i 0.500000 + 0.866025i
393393 −1.50000 2.59808i −1.50000 2.59808i
394394 0 0
395395 −3.46410 −3.46410
396396 0 0
397397 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
398398 0 0
399399 0 0
400400 −1.00000 1.73205i −1.00000 1.73205i
401401 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
402402 0 0
403403 0 0
404404 0 0
405405 −0.866025 1.50000i −0.866025 1.50000i
406406 0 0
407407 0 0
408408 0 0
409409 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
410410 0 0
411411 −1.73205 −1.73205
412412 0 0
413413 0.866025 + 1.50000i 0.866025 + 1.50000i
414414 −1.00000 1.73205i −1.00000 1.73205i
415415 0 0
416416 −0.866025 + 0.500000i −0.866025 + 0.500000i
417417 0 0
418418 0 0
419419 0 0 0.866025 0.500000i 0.166667π-0.166667\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
420420 1.50000 2.59808i 1.50000 2.59808i
421421 0 0 1.00000 00
−1.00000 π\pi
422422 0 0
423423 0 0
424424 0 0
425425 0 0
426426 0.866025 + 1.50000i 0.866025 + 1.50000i
427427 0.866025 + 1.50000i 0.866025 + 1.50000i
428428 0 0
429429 0 0
430430 0 0
431431 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
432432 −0.866025 1.50000i −0.866025 1.50000i
433433 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
434434 0 0
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
440440 0 0
441441 2.00000 2.00000
442442 0 0
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 0 0
446446 0 0
447447 0 0
448448 0.500000 0.866025i 0.500000 0.866025i
449449 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
450450 −4.00000 −4.00000
451451 0 0
452452 1.00000 + 1.73205i 1.00000 + 1.73205i
453453 0.866025 + 1.50000i 0.866025 + 1.50000i
454454 1.73205 1.73205
455455 −1.50000 + 0.866025i −1.50000 + 0.866025i
456456 0 0
457457 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
458458 0 0
459459 0 0
460460 −1.73205 −1.73205
461461 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
462462 0 0
463463 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
464464 0 0
465465 0 0
466466 −0.500000 0.866025i −0.500000 0.866025i
467467 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
468468 2.00000i 2.00000i
469469 0 0
470470 0 0
471471 0 0
472472 0.866025 1.50000i 0.866025 1.50000i
473473 0 0
474474 −1.73205 + 3.00000i −1.73205 + 3.00000i
475475 0 0
476476 0 0
477477 0 0
478478 −0.500000 0.866025i −0.500000 0.866025i
479479 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
480480 −3.00000 −3.00000
481481 0 0
482482 0 0
483483 −0.866025 1.50000i −0.866025 1.50000i
484484 −0.500000 0.866025i −0.500000 0.866025i
485485 0 0
486486 0 0
487487 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
488488 0.866025 1.50000i 0.866025 1.50000i
489489 0 0
490490 0.866025 1.50000i 0.866025 1.50000i
491491 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
492492 0 0
493493 0 0
494494 0 0
495495 0 0
496496 0 0
497497 0.500000 + 0.866025i 0.500000 + 0.866025i
498498 0 0
499499 0 0 1.00000 00
−1.00000 π\pi
500500 −0.866025 + 1.50000i −0.866025 + 1.50000i
501501 0 0
502502 1.73205 1.73205
503503 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
504504 −1.00000 1.73205i −1.00000 1.73205i
505505 0 0
506506 0 0
507507 0.866025 1.50000i 0.866025 1.50000i
508508 −1.00000 −1.00000
509509 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
510510 0 0
511511 0 0
512512 −1.00000 −1.00000
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 3.00000 3.00000
520520 1.50000 + 0.866025i 1.50000 + 0.866025i
521521 0 0 1.00000 00
−1.00000 π\pi
522522 0 0
523523 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
524524 −0.866025 + 1.50000i −0.866025 + 1.50000i
525525 −3.46410 −3.46410
526526 0.500000 0.866025i 0.500000 0.866025i
527527 0 0
528528 0 0
529529 0 0
530530 0 0
531531 −1.73205 3.00000i −1.73205 3.00000i
532532 0 0
533533 0 0
534534 0 0
535535 0 0
536536 0 0
537537 0 0
538538 1.73205 1.73205
539539 0 0
540540 −1.50000 + 2.59808i −1.50000 + 2.59808i
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 1.50000 + 2.59808i 1.50000 + 2.59808i
544544 0 0
545545 0 0
546546 1.73205i 1.73205i
547547 0 0 1.00000 00
−1.00000 π\pi
548548 0.500000 + 0.866025i 0.500000 + 0.866025i
549549 −1.73205 3.00000i −1.73205 3.00000i
550550 0 0
551551 0 0
552552 −0.866025 + 1.50000i −0.866025 + 1.50000i
553553 −1.00000 + 1.73205i −1.00000 + 1.73205i
554554 0 0
555555 0 0
556556 0 0
557557 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
558558 0 0
559559 0 0
560560 −1.73205 −1.73205
561561 0 0
562562 1.00000 + 1.73205i 1.00000 + 1.73205i
563563 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
564564 0 0
565565 1.73205 3.00000i 1.73205 3.00000i
566566 −0.866025 + 1.50000i −0.866025 + 1.50000i
567567 −1.00000 −1.00000
568568 0.500000 0.866025i 0.500000 0.866025i
569569 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 0 0
573573 −3.46410 −3.46410
574574 0 0
575575 1.00000 + 1.73205i 1.00000 + 1.73205i
576576 −1.00000 + 1.73205i −1.00000 + 1.73205i
577577 0 0 1.00000 00
−1.00000 π\pi
578578 0.500000 0.866025i 0.500000 0.866025i
579579 −0.866025 + 1.50000i −0.866025 + 1.50000i
580580 0 0
581581 0 0
582582 0 0
583583 0 0
584584 0 0
585585 3.00000 1.73205i 3.00000 1.73205i
586586 0 0
587587 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
588588 −0.866025 1.50000i −0.866025 1.50000i
589589 0 0
590590 −3.00000 −3.00000
591591 0 0
592592 0 0
593593 0 0 1.00000 00
−1.00000 π\pi
594594 0 0
595595 0 0
596596 0 0
597597 0 0
598598 0.866025 0.500000i 0.866025 0.500000i
599599 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
600600 1.73205 + 3.00000i 1.73205 + 3.00000i
601601 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
602602 0 0
603603 0 0
604604 0.500000 0.866025i 0.500000 0.866025i
605605 −0.866025 + 1.50000i −0.866025 + 1.50000i
606606 0 0
607607 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
608608 0 0
609609 0 0
610610 −3.00000 −3.00000
611611 0 0
612612 0 0
613613 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
614614 0.866025 + 1.50000i 0.866025 + 1.50000i
615615 0 0
616616 0 0
617617 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
618618 0 0
619619 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
620620 0 0
621621 0.866025 + 1.50000i 0.866025 + 1.50000i
622622 0 0
623623 0 0
624624 1.50000 0.866025i 1.50000 0.866025i
625625 1.00000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 −1.73205 + 3.00000i −1.73205 + 3.00000i
631631 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
632632 2.00000 2.00000
633633 0 0
634634 0 0
635635 0.866025 + 1.50000i 0.866025 + 1.50000i
636636 0 0
637637 1.00000i 1.00000i
638638 0 0
639639 −1.00000 1.73205i −1.00000 1.73205i
640640 0.866025 + 1.50000i 0.866025 + 1.50000i
641641 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
642642 0 0
643643 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
644644 −0.500000 + 0.866025i −0.500000 + 0.866025i
645645 0 0
646646 0 0
647647 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
648648 0.500000 + 0.866025i 0.500000 + 0.866025i
649649 0 0
650650 2.00000i 2.00000i
651651 0 0
652652 0 0
653653 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
654654 0 0
655655 3.00000 3.00000
656656 0 0
657657 0 0
658658 0 0
659659 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
660660 0 0
661661 0.866025 + 1.50000i 0.866025 + 1.50000i 0.866025 + 0.500000i 0.166667π0.166667\pi
1.00000i 0.5π0.5\pi
662662 0 0
663663 0 0
664664 0 0
665665 0 0
666666 0 0
667667 0 0
668668 0 0
669669 0 0
670670 0 0
671671 0 0
672672 −0.866025 + 1.50000i −0.866025 + 1.50000i
673673 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
674674 −1.00000 1.73205i −1.00000 1.73205i
675675 3.46410 3.46410
676676 −1.00000 −1.00000
677677 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
678678 −1.73205 3.00000i −1.73205 3.00000i
679679 0 0
680680 0 0
681681 −3.00000 −3.00000
682682 0 0
683683 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
684684 0 0
685685 0.866025 1.50000i 0.866025 1.50000i
686686 −0.500000 0.866025i −0.500000 0.866025i
687687 0 0
688688 0 0
689689 0 0
690690 3.00000 3.00000
691691 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
692692 −0.866025 1.50000i −0.866025 1.50000i
693693 0 0
694694 0 0
695695 0 0
696696 0 0
697697 0 0
698698 0.866025 1.50000i 0.866025 1.50000i
699699 0.866025 + 1.50000i 0.866025 + 1.50000i
700700 1.00000 + 1.73205i 1.00000 + 1.73205i
701701 0 0 1.00000 00
−1.00000 π\pi
702702 1.73205i 1.73205i
703703 0 0
704704 0 0
705705 0 0
706706 0 0
707707 0 0
708708 −1.50000 + 2.59808i −1.50000 + 2.59808i
709709 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
710710 −1.73205 −1.73205
711711 2.00000 3.46410i 2.00000 3.46410i
712712 0 0
713713 0 0
714714 0 0
715715 0 0
716716 0 0
717717 0.866025 + 1.50000i 0.866025 + 1.50000i
718718 −0.500000 0.866025i −0.500000 0.866025i
719719 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
720720 3.46410 3.46410
721721 0 0
722722 −0.500000 + 0.866025i −0.500000 + 0.866025i
723723 0 0
724724 0.866025 1.50000i 0.866025 1.50000i
725725 0 0
726726 0.866025 + 1.50000i 0.866025 + 1.50000i
727727 0 0 1.00000 00
−1.00000 π\pi
728728 0.866025 0.500000i 0.866025 0.500000i
729729 −1.00000 −1.00000
730730 0 0
731731 0 0
732732 −1.50000 + 2.59808i −1.50000 + 2.59808i
733733 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
734734 0 0
735735 −1.50000 + 2.59808i −1.50000 + 2.59808i
736736 1.00000 1.00000
737737 0 0
738738 0 0
739739 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
740740 0 0
741741 0 0
742742 0 0
743743 −1.00000 1.73205i −1.00000 1.73205i −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 0.866025i 0.666667π-0.666667\pi
744744 0 0
745745 0 0
746746 0 0
747747 0 0
748748 0 0
749749 0 0
750750 1.50000 2.59808i 1.50000 2.59808i
751751 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
752752 0 0
753753 −3.00000 −3.00000
754754 0 0
755755 −1.73205 −1.73205
756756 0.866025 + 1.50000i 0.866025 + 1.50000i
757757 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
758758 0 0
759759 0 0
760760 0 0
761761 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
762762 1.73205 1.73205
763763 0 0
764764 1.00000 + 1.73205i 1.00000 + 1.73205i
765765 0 0
766766 0 0
767767 1.50000 0.866025i 1.50000 0.866025i
768768 1.73205 1.73205
769769 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
770770 0 0
771771 0 0
772772 1.00000 1.00000
773773 0 0 −0.866025 0.500000i 0.833333π-0.833333\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
774774 0 0
775775 0 0
776776 0 0
777777 0 0
778778 0 0
779779 0 0
780780 −2.59808 1.50000i −2.59808 1.50000i
781781 0 0
782782 0 0
783783 0 0
784784 −0.500000 + 0.866025i −0.500000 + 0.866025i
785785 0 0
786786 1.50000 2.59808i 1.50000 2.59808i
787787 0.866025 1.50000i 0.866025 1.50000i 1.00000i 0.5π-0.5\pi
0.866025 0.500000i 0.166667π-0.166667\pi
788788 0 0
789789 −0.866025 + 1.50000i −0.866025 + 1.50000i
790790 −1.73205 3.00000i −1.73205 3.00000i
791791 −1.00000 1.73205i −1.00000 1.73205i
792792 0 0
793793 1.50000 0.866025i 1.50000 0.866025i
794794 1.73205 1.73205
795795 0 0
796796 0 0
797797 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
798798 0 0
799799 0 0
800800 1.00000 1.73205i 1.00000 1.73205i
801801 0 0
802802 −1.00000 + 1.73205i −1.00000 + 1.73205i
803803 0 0
804804 0 0
805805 1.73205 1.73205
806806 0 0
807807 −3.00000 −3.00000
808808 0 0
809809 1.00000 + 1.73205i 1.00000 + 1.73205i 0.500000 + 0.866025i 0.333333π0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
810810 0.866025 1.50000i 0.866025 1.50000i
811811 −1.73205 −1.73205 −0.866025 0.500000i 0.833333π-0.833333\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 2.00000i 2.00000i
820820 0 0
821821 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
822822 −0.866025 1.50000i −0.866025 1.50000i
823823 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
824824 0 0
825825 0 0
826826 −0.866025 + 1.50000i −0.866025 + 1.50000i
827827 0 0 1.00000 00
−1.00000 π\pi
828828 1.00000 1.73205i 1.00000 1.73205i
829829 −0.866025 1.50000i −0.866025 1.50000i −0.866025 0.500000i 0.833333π-0.833333\pi
1.00000i 0.5π-0.5\pi
830830 0 0
831831 0 0
832832 −0.866025 0.500000i −0.866025 0.500000i
833833 0 0
834834 0 0
835835 0 0
836836 0 0
837837 0 0
838838 0 0
839839 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
840840 3.00000 3.00000
841841 −0.500000 + 0.866025i −0.500000 + 0.866025i
842842 0 0
843843 −1.73205 3.00000i −1.73205 3.00000i
844844 0 0
845845 0.866025 + 1.50000i 0.866025 + 1.50000i
846846 0 0
847847 0.500000 + 0.866025i 0.500000 + 0.866025i
848848 0 0
849849 1.50000 2.59808i 1.50000 2.59808i
850850 0 0
851851 0 0
852852 −0.866025 + 1.50000i −0.866025 + 1.50000i
853853 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
854854 −0.866025 + 1.50000i −0.866025 + 1.50000i
855855 0 0
856856 0 0
857857 0 0 1.00000 00
−1.00000 π\pi
858858 0 0
859859 0 0 1.00000i 0.5π-0.5\pi
1.00000i 0.5π0.5\pi
860860 0 0
861861 0 0
862862 −0.500000 + 0.866025i −0.500000 + 0.866025i
863863 1.00000 1.00000 0.500000 0.866025i 0.333333π-0.333333\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
864864 0.866025 1.50000i 0.866025 1.50000i
865865 −1.50000 + 2.59808i −1.50000 + 2.59808i
866866 0 0
867867 −0.866025 + 1.50000i −0.866025 + 1.50000i
868868 0 0
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 0.866025 1.50000i 0.866025 1.50000i
876876 0 0
877877 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
878878 0 0
879879 0 0
880880 0 0
881881 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
882882 1.00000 + 1.73205i 1.00000 + 1.73205i
883883 0 0 1.00000 00
−1.00000 π\pi
884884 0 0
885885 5.19615 5.19615
886886 0 0
887887 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
888888 0 0
889889 1.00000 1.00000
890890 0 0
891891 0 0
892892 0 0
893893 0 0
894894 0 0
895895 0 0
896896 1.00000 1.00000
897897 −1.50000 + 0.866025i −1.50000 + 0.866025i
898898 1.00000 1.00000
899899 0 0
900900 −2.00000 3.46410i −2.00000 3.46410i
901901 0 0
902902 0 0
903903 0 0
904904 −1.00000 + 1.73205i −1.00000 + 1.73205i
905905 −3.00000 −3.00000
906906 −0.866025 + 1.50000i −0.866025 + 1.50000i
907907 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
908908 0.866025 + 1.50000i 0.866025 + 1.50000i
909909 0 0
910910 −1.50000 0.866025i −1.50000 0.866025i
911911 −1.00000 −1.00000 −0.500000 0.866025i 0.666667π-0.666667\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
912912 0 0
913913 0 0
914914 0.500000 0.866025i 0.500000 0.866025i
915915 5.19615 5.19615
916916 0 0
917917 0.866025 1.50000i 0.866025 1.50000i
918918 0 0
919919 −0.500000 + 0.866025i −0.500000 + 0.866025i 0.500000 + 0.866025i 0.333333π0.333333\pi
−1.00000 π\pi
920920 −0.866025 1.50000i −0.866025 1.50000i
921921 −1.50000 2.59808i −1.50000 2.59808i
922922 1.73205 1.73205
923923 0.866025 0.500000i 0.866025 0.500000i
924924 0 0
925925 0 0
926926 0.500000 + 0.866025i 0.500000 + 0.866025i
927927 0 0
928928 0 0
929929 0 0 0.500000 0.866025i 0.333333π-0.333333\pi
−0.500000 + 0.866025i 0.666667π0.666667\pi
930930 0 0
931931 0 0
932932 0.500000 0.866025i 0.500000 0.866025i
933933 0 0
934934 −0.866025 1.50000i −0.866025 1.50000i
935935 0 0
936936 −1.73205 + 1.00000i −1.73205 + 1.00000i
937937 0 0 1.00000 00
−1.00000 π\pi
938938 0 0
939939 0 0
940940 0 0
941941 1.73205 1.73205 0.866025 0.500000i 0.166667π-0.166667\pi
0.866025 + 0.500000i 0.166667π0.166667\pi
942942 0 0
943943 0 0
944944 1.73205 1.73205
945945 1.50000 2.59808i 1.50000 2.59808i
946946 0 0
947947 0 0 −0.500000 0.866025i 0.666667π-0.666667\pi
0.500000 + 0.866025i 0.333333π0.333333\pi
948948 −3.46410 −3.46410
949949 0 0
950950 0 0
951951 0 0
952952 0 0
953953 0.500000 0.866025i 0.500000 0.866025i −0.500000 0.866025i 0.666667π-0.666667\pi
1.00000 00
954954 0 0
955955 1.73205 3.00000i 1.73205 3.00000i
956956 0.500000 0.866025i 0.500000 0.866025i
957957 0 0
958958 0 0
959959 −0.500000 0.866025i −0.500000 0.866025i
960960 −1.50000 2.59808i −1.50000 2.59808i
961961 1.00000 1.00000
962962 0 0
963963 0 0
964964 0 0
965965 −0.866025 1.50000i −0.866025 1.50000i
966966 0.866025 1.50000i 0.866025 1.50000i
967967 2.00000 2.00000 1.00000 00
1.00000 00
968968 0.500000 0.866025i 0.500000 0.866025i
969969 0 0
970970 0 0
971971 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
972972 0 0
973973 0 0
974974 1.00000 1.00000
975975 3.46410i 3.46410i
976976 1.73205 1.73205
977977 0.500000 + 0.866025i 0.500000 + 0.866025i 1.00000 00
−0.500000 + 0.866025i 0.666667π0.666667\pi
978978 0 0
979979 0 0
980980 1.73205 1.73205
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 0 0
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 0 0
991991 −0.500000 0.866025i −0.500000 0.866025i 0.500000 0.866025i 0.333333π-0.333333\pi
−1.00000 π\pi
992992 0 0
993993 0 0
994994 −0.500000 + 0.866025i −0.500000 + 0.866025i
995995 0 0
996996 0 0
997997 −0.866025 + 1.50000i −0.866025 + 1.50000i 1.00000i 0.5π0.5\pi
−0.866025 + 0.500000i 0.833333π0.833333\pi
998998 0 0
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.1.ce.c.237.1 4
4.3 odd 2 2912.1.cu.c.1329.2 4
7.6 odd 2 inner 728.1.ce.c.237.2 yes 4
8.3 odd 2 2912.1.cu.c.1329.1 4
8.5 even 2 inner 728.1.ce.c.237.2 yes 4
13.9 even 3 inner 728.1.ce.c.685.1 yes 4
28.27 even 2 2912.1.cu.c.1329.1 4
52.35 odd 6 2912.1.cu.c.1777.2 4
56.13 odd 2 CM 728.1.ce.c.237.1 4
56.27 even 2 2912.1.cu.c.1329.2 4
91.48 odd 6 inner 728.1.ce.c.685.2 yes 4
104.35 odd 6 2912.1.cu.c.1777.1 4
104.61 even 6 inner 728.1.ce.c.685.2 yes 4
364.139 even 6 2912.1.cu.c.1777.1 4
728.139 even 6 2912.1.cu.c.1777.2 4
728.685 odd 6 inner 728.1.ce.c.685.1 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.1.ce.c.237.1 4 1.1 even 1 trivial
728.1.ce.c.237.1 4 56.13 odd 2 CM
728.1.ce.c.237.2 yes 4 7.6 odd 2 inner
728.1.ce.c.237.2 yes 4 8.5 even 2 inner
728.1.ce.c.685.1 yes 4 13.9 even 3 inner
728.1.ce.c.685.1 yes 4 728.685 odd 6 inner
728.1.ce.c.685.2 yes 4 91.48 odd 6 inner
728.1.ce.c.685.2 yes 4 104.61 even 6 inner
2912.1.cu.c.1329.1 4 8.3 odd 2
2912.1.cu.c.1329.1 4 28.27 even 2
2912.1.cu.c.1329.2 4 4.3 odd 2
2912.1.cu.c.1329.2 4 56.27 even 2
2912.1.cu.c.1777.1 4 104.35 odd 6
2912.1.cu.c.1777.1 4 364.139 even 6
2912.1.cu.c.1777.2 4 52.35 odd 6
2912.1.cu.c.1777.2 4 728.139 even 6