Properties

Label 728.1.l.a
Level 728728
Weight 11
Character orbit 728.l
Self dual yes
Analytic conductor 0.3630.363
Analytic rank 00
Dimension 11
Projective image D3D_{3}
CM discriminant -728
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(181,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.181");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: N N == 728=23713 728 = 2^{3} \cdot 7 \cdot 13
Weight: k k == 1 1
Character orbit: [χ][\chi] == 728.l (of order 22, degree 11, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 0.3633193291970.363319329197
Analytic rank: 00
Dimension: 11
Coefficient field: Q\mathbb{Q}
Coefficient ring: Z\mathbb{Z}
Coefficient ring index: 1 1
Twist minimal: yes
Projective image: D3D_{3}
Projective field: Galois closure of 3.1.728.1
Artin image: D6D_6
Artin field: Galois closure of 6.2.6889792.2
Stark unit: Root of x615x5+68x4121x3+68x215x+1x^{6} - 15x^{5} + 68x^{4} - 121x^{3} + 68x^{2} - 15x + 1

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
f(q)f(q) == qq2q3+q4+q6q7q8+q11q12+q13+q14+q16+q21q22q23+q24+q25q26+q27q28+q31q32+q98+O(q100) q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{11} - q^{12} + q^{13} + q^{14} + q^{16} + q^{21} - q^{22} - q^{23} + q^{24} + q^{25} - q^{26} + q^{27} - q^{28} + q^{31} - q^{32}+ \cdots - q^{98}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/728Z)×\left(\mathbb{Z}/728\mathbb{Z}\right)^\times.

nn 183183 365365 521521 561561
χ(n)\chi(n) 11 1-1 1-1 1-1

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
181.1
0
−1.00000 −1.00000 1.00000 0 1.00000 −1.00000 −1.00000 0 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
728.l odd 2 1 CM by Q(182)\Q(\sqrt{-182})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.1.l.a 1
4.b odd 2 1 2912.1.l.d 1
7.b odd 2 1 728.1.l.b yes 1
8.b even 2 1 728.1.l.d yes 1
8.d odd 2 1 2912.1.l.b 1
13.b even 2 1 728.1.l.c yes 1
28.d even 2 1 2912.1.l.a 1
52.b odd 2 1 2912.1.l.c 1
56.e even 2 1 2912.1.l.c 1
56.h odd 2 1 728.1.l.c yes 1
91.b odd 2 1 728.1.l.d yes 1
104.e even 2 1 728.1.l.b yes 1
104.h odd 2 1 2912.1.l.a 1
364.h even 2 1 2912.1.l.b 1
728.b even 2 1 2912.1.l.d 1
728.l odd 2 1 CM 728.1.l.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.1.l.a 1 1.a even 1 1 trivial
728.1.l.a 1 728.l odd 2 1 CM
728.1.l.b yes 1 7.b odd 2 1
728.1.l.b yes 1 104.e even 2 1
728.1.l.c yes 1 13.b even 2 1
728.1.l.c yes 1 56.h odd 2 1
728.1.l.d yes 1 8.b even 2 1
728.1.l.d yes 1 91.b odd 2 1
2912.1.l.a 1 28.d even 2 1
2912.1.l.a 1 104.h odd 2 1
2912.1.l.b 1 8.d odd 2 1
2912.1.l.b 1 364.h even 2 1
2912.1.l.c 1 52.b odd 2 1
2912.1.l.c 1 56.e even 2 1
2912.1.l.d 1 4.b odd 2 1
2912.1.l.d 1 728.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S1new(728,[χ])S_{1}^{\mathrm{new}}(728, [\chi]):

T3+1 T_{3} + 1 Copy content Toggle raw display
T111 T_{11} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T+1 T + 1 Copy content Toggle raw display
33 T+1 T + 1 Copy content Toggle raw display
55 T T Copy content Toggle raw display
77 T+1 T + 1 Copy content Toggle raw display
1111 T1 T - 1 Copy content Toggle raw display
1313 T1 T - 1 Copy content Toggle raw display
1717 T T Copy content Toggle raw display
1919 T T Copy content Toggle raw display
2323 T+1 T + 1 Copy content Toggle raw display
2929 T T Copy content Toggle raw display
3131 T1 T - 1 Copy content Toggle raw display
3737 T1 T - 1 Copy content Toggle raw display
4141 T1 T - 1 Copy content Toggle raw display
4343 T T Copy content Toggle raw display
4747 T1 T - 1 Copy content Toggle raw display
5353 T T Copy content Toggle raw display
5959 T T Copy content Toggle raw display
6161 T+1 T + 1 Copy content Toggle raw display
6767 T1 T - 1 Copy content Toggle raw display
7171 T T Copy content Toggle raw display
7373 T1 T - 1 Copy content Toggle raw display
7979 T+1 T + 1 Copy content Toggle raw display
8383 T T Copy content Toggle raw display
8989 T+2 T + 2 Copy content Toggle raw display
9797 T1 T - 1 Copy content Toggle raw display
show more
show less