Properties

Label 728.1.l.a
Level $728$
Weight $1$
Character orbit 728.l
Self dual yes
Analytic conductor $0.363$
Analytic rank $0$
Dimension $1$
Projective image $D_{3}$
CM discriminant -728
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,1,Mod(181,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1, 1, 1]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.181");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 728.l (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.363319329197\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{3}\)
Projective field: Galois closure of 3.1.728.1
Artin image: $D_6$
Artin field: Galois closure of 6.2.6889792.2
Stark unit: Root of $x^{6} - 15x^{5} + 68x^{4} - 121x^{3} + 68x^{2} - 15x + 1$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{11} - q^{12} + q^{13} + q^{14} + q^{16} + q^{21} - q^{22} - q^{23} + q^{24} + q^{25} - q^{26} + q^{27} - q^{28} + q^{31} - q^{32}+ \cdots - q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(0\) \(1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
181.1
0
−1.00000 −1.00000 1.00000 0 1.00000 −1.00000 −1.00000 0 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
728.l odd 2 1 CM by \(\Q(\sqrt{-182}) \)

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.1.l.a 1
4.b odd 2 1 2912.1.l.d 1
7.b odd 2 1 728.1.l.b yes 1
8.b even 2 1 728.1.l.d yes 1
8.d odd 2 1 2912.1.l.b 1
13.b even 2 1 728.1.l.c yes 1
28.d even 2 1 2912.1.l.a 1
52.b odd 2 1 2912.1.l.c 1
56.e even 2 1 2912.1.l.c 1
56.h odd 2 1 728.1.l.c yes 1
91.b odd 2 1 728.1.l.d yes 1
104.e even 2 1 728.1.l.b yes 1
104.h odd 2 1 2912.1.l.a 1
364.h even 2 1 2912.1.l.b 1
728.b even 2 1 2912.1.l.d 1
728.l odd 2 1 CM 728.1.l.a 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.1.l.a 1 1.a even 1 1 trivial
728.1.l.a 1 728.l odd 2 1 CM
728.1.l.b yes 1 7.b odd 2 1
728.1.l.b yes 1 104.e even 2 1
728.1.l.c yes 1 13.b even 2 1
728.1.l.c yes 1 56.h odd 2 1
728.1.l.d yes 1 8.b even 2 1
728.1.l.d yes 1 91.b odd 2 1
2912.1.l.a 1 28.d even 2 1
2912.1.l.a 1 104.h odd 2 1
2912.1.l.b 1 8.d odd 2 1
2912.1.l.b 1 364.h even 2 1
2912.1.l.c 1 52.b odd 2 1
2912.1.l.c 1 56.e even 2 1
2912.1.l.d 1 4.b odd 2 1
2912.1.l.d 1 728.b even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{1}^{\mathrm{new}}(728, [\chi])\):

\( T_{3} + 1 \) Copy content Toggle raw display
\( T_{11} - 1 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 1 \) Copy content Toggle raw display
$3$ \( T + 1 \) Copy content Toggle raw display
$5$ \( T \) Copy content Toggle raw display
$7$ \( T + 1 \) Copy content Toggle raw display
$11$ \( T - 1 \) Copy content Toggle raw display
$13$ \( T - 1 \) Copy content Toggle raw display
$17$ \( T \) Copy content Toggle raw display
$19$ \( T \) Copy content Toggle raw display
$23$ \( T + 1 \) Copy content Toggle raw display
$29$ \( T \) Copy content Toggle raw display
$31$ \( T - 1 \) Copy content Toggle raw display
$37$ \( T - 1 \) Copy content Toggle raw display
$41$ \( T - 1 \) Copy content Toggle raw display
$43$ \( T \) Copy content Toggle raw display
$47$ \( T - 1 \) Copy content Toggle raw display
$53$ \( T \) Copy content Toggle raw display
$59$ \( T \) Copy content Toggle raw display
$61$ \( T + 1 \) Copy content Toggle raw display
$67$ \( T - 1 \) Copy content Toggle raw display
$71$ \( T \) Copy content Toggle raw display
$73$ \( T - 1 \) Copy content Toggle raw display
$79$ \( T + 1 \) Copy content Toggle raw display
$83$ \( T \) Copy content Toggle raw display
$89$ \( T + 2 \) Copy content Toggle raw display
$97$ \( T - 1 \) Copy content Toggle raw display
show more
show less