Properties

Label 728.2.a.i.1.2
Level $728$
Weight $2$
Character 728.1
Self dual yes
Analytic conductor $5.813$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(1,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: 4.4.64268.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 12x^{2} + 6x + 32 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(-1.72110\) of defining polynomial
Character \(\chi\) \(=\) 728.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.72110 q^{3} +3.13311 q^{5} -1.00000 q^{7} -0.0378271 q^{9} +4.35456 q^{11} -1.00000 q^{13} -5.39238 q^{15} +5.31673 q^{17} -2.49965 q^{19} +1.72110 q^{21} -2.85421 q^{23} +4.81638 q^{25} +5.22839 q^{27} +3.62581 q^{29} -6.17094 q^{31} -7.49461 q^{33} -3.13311 q^{35} +9.79675 q^{37} +1.72110 q^{39} +10.6706 q^{41} -0.449841 q^{43} -0.118516 q^{45} +11.8794 q^{47} +1.00000 q^{49} -9.15061 q^{51} +5.89203 q^{53} +13.6433 q^{55} +4.30214 q^{57} -7.80943 q^{59} -15.3797 q^{61} +0.0378271 q^{63} -3.13311 q^{65} +5.84656 q^{67} +4.91236 q^{69} +11.2914 q^{71} -4.17094 q^{73} -8.28945 q^{75} -4.35456 q^{77} +9.48767 q^{79} -8.88509 q^{81} +14.8415 q^{83} +16.6579 q^{85} -6.24037 q^{87} -5.57601 q^{89} +1.00000 q^{91} +10.6208 q^{93} -7.83168 q^{95} -0.979669 q^{97} -0.164720 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + q^{3} + 2 q^{5} - 4 q^{7} + 13 q^{9} - q^{11} - 4 q^{13} + 10 q^{15} + 16 q^{17} - 10 q^{19} - q^{21} + 7 q^{23} + 14 q^{25} + 13 q^{27} + 4 q^{29} - q^{31} - q^{33} - 2 q^{35} + 5 q^{37} - q^{39}+ \cdots - 48 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −1.72110 −0.993675 −0.496838 0.867843i \(-0.665506\pi\)
−0.496838 + 0.867843i \(0.665506\pi\)
\(4\) 0 0
\(5\) 3.13311 1.40117 0.700585 0.713569i \(-0.252923\pi\)
0.700585 + 0.713569i \(0.252923\pi\)
\(6\) 0 0
\(7\) −1.00000 −0.377964
\(8\) 0 0
\(9\) −0.0378271 −0.0126090
\(10\) 0 0
\(11\) 4.35456 1.31295 0.656474 0.754348i \(-0.272047\pi\)
0.656474 + 0.754348i \(0.272047\pi\)
\(12\) 0 0
\(13\) −1.00000 −0.277350
\(14\) 0 0
\(15\) −5.39238 −1.39231
\(16\) 0 0
\(17\) 5.31673 1.28950 0.644748 0.764395i \(-0.276962\pi\)
0.644748 + 0.764395i \(0.276962\pi\)
\(18\) 0 0
\(19\) −2.49965 −0.573459 −0.286729 0.958012i \(-0.592568\pi\)
−0.286729 + 0.958012i \(0.592568\pi\)
\(20\) 0 0
\(21\) 1.72110 0.375574
\(22\) 0 0
\(23\) −2.85421 −0.595143 −0.297572 0.954700i \(-0.596177\pi\)
−0.297572 + 0.954700i \(0.596177\pi\)
\(24\) 0 0
\(25\) 4.81638 0.963276
\(26\) 0 0
\(27\) 5.22839 1.00620
\(28\) 0 0
\(29\) 3.62581 0.673297 0.336648 0.941630i \(-0.390707\pi\)
0.336648 + 0.941630i \(0.390707\pi\)
\(30\) 0 0
\(31\) −6.17094 −1.10833 −0.554167 0.832406i \(-0.686963\pi\)
−0.554167 + 0.832406i \(0.686963\pi\)
\(32\) 0 0
\(33\) −7.49461 −1.30464
\(34\) 0 0
\(35\) −3.13311 −0.529592
\(36\) 0 0
\(37\) 9.79675 1.61058 0.805288 0.592884i \(-0.202011\pi\)
0.805288 + 0.592884i \(0.202011\pi\)
\(38\) 0 0
\(39\) 1.72110 0.275596
\(40\) 0 0
\(41\) 10.6706 1.66647 0.833233 0.552922i \(-0.186487\pi\)
0.833233 + 0.552922i \(0.186487\pi\)
\(42\) 0 0
\(43\) −0.449841 −0.0686001 −0.0343000 0.999412i \(-0.510920\pi\)
−0.0343000 + 0.999412i \(0.510920\pi\)
\(44\) 0 0
\(45\) −0.118516 −0.0176674
\(46\) 0 0
\(47\) 11.8794 1.73278 0.866391 0.499367i \(-0.166434\pi\)
0.866391 + 0.499367i \(0.166434\pi\)
\(48\) 0 0
\(49\) 1.00000 0.142857
\(50\) 0 0
\(51\) −9.15061 −1.28134
\(52\) 0 0
\(53\) 5.89203 0.809333 0.404667 0.914464i \(-0.367388\pi\)
0.404667 + 0.914464i \(0.367388\pi\)
\(54\) 0 0
\(55\) 13.6433 1.83966
\(56\) 0 0
\(57\) 4.30214 0.569832
\(58\) 0 0
\(59\) −7.80943 −1.01670 −0.508351 0.861150i \(-0.669745\pi\)
−0.508351 + 0.861150i \(0.669745\pi\)
\(60\) 0 0
\(61\) −15.3797 −1.96917 −0.984585 0.174910i \(-0.944037\pi\)
−0.984585 + 0.174910i \(0.944037\pi\)
\(62\) 0 0
\(63\) 0.0378271 0.00476576
\(64\) 0 0
\(65\) −3.13311 −0.388614
\(66\) 0 0
\(67\) 5.84656 0.714271 0.357135 0.934053i \(-0.383753\pi\)
0.357135 + 0.934053i \(0.383753\pi\)
\(68\) 0 0
\(69\) 4.91236 0.591379
\(70\) 0 0
\(71\) 11.2914 1.34004 0.670019 0.742344i \(-0.266286\pi\)
0.670019 + 0.742344i \(0.266286\pi\)
\(72\) 0 0
\(73\) −4.17094 −0.488171 −0.244086 0.969754i \(-0.578488\pi\)
−0.244086 + 0.969754i \(0.578488\pi\)
\(74\) 0 0
\(75\) −8.28945 −0.957184
\(76\) 0 0
\(77\) −4.35456 −0.496248
\(78\) 0 0
\(79\) 9.48767 1.06745 0.533723 0.845659i \(-0.320792\pi\)
0.533723 + 0.845659i \(0.320792\pi\)
\(80\) 0 0
\(81\) −8.88509 −0.987232
\(82\) 0 0
\(83\) 14.8415 1.62907 0.814534 0.580115i \(-0.196992\pi\)
0.814534 + 0.580115i \(0.196992\pi\)
\(84\) 0 0
\(85\) 16.6579 1.80680
\(86\) 0 0
\(87\) −6.24037 −0.669038
\(88\) 0 0
\(89\) −5.57601 −0.591055 −0.295528 0.955334i \(-0.595495\pi\)
−0.295528 + 0.955334i \(0.595495\pi\)
\(90\) 0 0
\(91\) 1.00000 0.104828
\(92\) 0 0
\(93\) 10.6208 1.10132
\(94\) 0 0
\(95\) −7.83168 −0.803513
\(96\) 0 0
\(97\) −0.979669 −0.0994703 −0.0497352 0.998762i \(-0.515838\pi\)
−0.0497352 + 0.998762i \(0.515838\pi\)
\(98\) 0 0
\(99\) −0.164720 −0.0165550
\(100\) 0 0
\(101\) −17.0623 −1.69776 −0.848880 0.528586i \(-0.822722\pi\)
−0.848880 + 0.528586i \(0.822722\pi\)
\(102\) 0 0
\(103\) 3.19127 0.314445 0.157223 0.987563i \(-0.449746\pi\)
0.157223 + 0.987563i \(0.449746\pi\)
\(104\) 0 0
\(105\) 5.39238 0.526243
\(106\) 0 0
\(107\) −4.89968 −0.473670 −0.236835 0.971550i \(-0.576110\pi\)
−0.236835 + 0.971550i \(0.576110\pi\)
\(108\) 0 0
\(109\) −2.12546 −0.203582 −0.101791 0.994806i \(-0.532457\pi\)
−0.101791 + 0.994806i \(0.532457\pi\)
\(110\) 0 0
\(111\) −16.8612 −1.60039
\(112\) 0 0
\(113\) −2.03018 −0.190983 −0.0954916 0.995430i \(-0.530442\pi\)
−0.0954916 + 0.995430i \(0.530442\pi\)
\(114\) 0 0
\(115\) −8.94254 −0.833897
\(116\) 0 0
\(117\) 0.0378271 0.00349711
\(118\) 0 0
\(119\) −5.31673 −0.487384
\(120\) 0 0
\(121\) 7.96217 0.723834
\(122\) 0 0
\(123\) −18.3651 −1.65593
\(124\) 0 0
\(125\) −0.575303 −0.0514567
\(126\) 0 0
\(127\) −9.57027 −0.849224 −0.424612 0.905375i \(-0.639589\pi\)
−0.424612 + 0.905375i \(0.639589\pi\)
\(128\) 0 0
\(129\) 0.774219 0.0681662
\(130\) 0 0
\(131\) −18.7848 −1.64123 −0.820616 0.571479i \(-0.806370\pi\)
−0.820616 + 0.571479i \(0.806370\pi\)
\(132\) 0 0
\(133\) 2.49965 0.216747
\(134\) 0 0
\(135\) 16.3811 1.40986
\(136\) 0 0
\(137\) −2.87384 −0.245528 −0.122764 0.992436i \(-0.539176\pi\)
−0.122764 + 0.992436i \(0.539176\pi\)
\(138\) 0 0
\(139\) 0.125462 0.0106416 0.00532078 0.999986i \(-0.498306\pi\)
0.00532078 + 0.999986i \(0.498306\pi\)
\(140\) 0 0
\(141\) −20.4455 −1.72182
\(142\) 0 0
\(143\) −4.35456 −0.364146
\(144\) 0 0
\(145\) 11.3601 0.943403
\(146\) 0 0
\(147\) −1.72110 −0.141954
\(148\) 0 0
\(149\) −20.8717 −1.70988 −0.854938 0.518730i \(-0.826405\pi\)
−0.854938 + 0.518730i \(0.826405\pi\)
\(150\) 0 0
\(151\) 1.49200 0.121417 0.0607087 0.998156i \(-0.480664\pi\)
0.0607087 + 0.998156i \(0.480664\pi\)
\(152\) 0 0
\(153\) −0.201116 −0.0162593
\(154\) 0 0
\(155\) −19.3342 −1.55296
\(156\) 0 0
\(157\) −10.9727 −0.875719 −0.437859 0.899044i \(-0.644263\pi\)
−0.437859 + 0.899044i \(0.644263\pi\)
\(158\) 0 0
\(159\) −10.1408 −0.804214
\(160\) 0 0
\(161\) 2.85421 0.224943
\(162\) 0 0
\(163\) −14.0503 −1.10050 −0.550252 0.834999i \(-0.685468\pi\)
−0.550252 + 0.834999i \(0.685468\pi\)
\(164\) 0 0
\(165\) −23.4815 −1.82803
\(166\) 0 0
\(167\) −10.9578 −0.847943 −0.423972 0.905676i \(-0.639364\pi\)
−0.423972 + 0.905676i \(0.639364\pi\)
\(168\) 0 0
\(169\) 1.00000 0.0769231
\(170\) 0 0
\(171\) 0.0945544 0.00723076
\(172\) 0 0
\(173\) −12.7589 −0.970043 −0.485021 0.874502i \(-0.661188\pi\)
−0.485021 + 0.874502i \(0.661188\pi\)
\(174\) 0 0
\(175\) −4.81638 −0.364084
\(176\) 0 0
\(177\) 13.4408 1.01027
\(178\) 0 0
\(179\) 6.89274 0.515187 0.257594 0.966253i \(-0.417070\pi\)
0.257594 + 0.966253i \(0.417070\pi\)
\(180\) 0 0
\(181\) −10.9124 −0.811110 −0.405555 0.914071i \(-0.632922\pi\)
−0.405555 + 0.914071i \(0.632922\pi\)
\(182\) 0 0
\(183\) 26.4699 1.95671
\(184\) 0 0
\(185\) 30.6943 2.25669
\(186\) 0 0
\(187\) 23.1520 1.69304
\(188\) 0 0
\(189\) −5.22839 −0.380310
\(190\) 0 0
\(191\) 8.89968 0.643958 0.321979 0.946747i \(-0.395652\pi\)
0.321979 + 0.946747i \(0.395652\pi\)
\(192\) 0 0
\(193\) 2.70912 0.195006 0.0975032 0.995235i \(-0.468914\pi\)
0.0975032 + 0.995235i \(0.468914\pi\)
\(194\) 0 0
\(195\) 5.39238 0.386157
\(196\) 0 0
\(197\) 19.0728 1.35888 0.679441 0.733730i \(-0.262222\pi\)
0.679441 + 0.733730i \(0.262222\pi\)
\(198\) 0 0
\(199\) 17.0251 1.20688 0.603440 0.797408i \(-0.293796\pi\)
0.603440 + 0.797408i \(0.293796\pi\)
\(200\) 0 0
\(201\) −10.0625 −0.709753
\(202\) 0 0
\(203\) −3.62581 −0.254482
\(204\) 0 0
\(205\) 33.4321 2.33500
\(206\) 0 0
\(207\) 0.107966 0.00750418
\(208\) 0 0
\(209\) −10.8849 −0.752922
\(210\) 0 0
\(211\) 16.4245 1.13071 0.565354 0.824849i \(-0.308740\pi\)
0.565354 + 0.824849i \(0.308740\pi\)
\(212\) 0 0
\(213\) −19.4335 −1.33156
\(214\) 0 0
\(215\) −1.40940 −0.0961203
\(216\) 0 0
\(217\) 6.17094 0.418911
\(218\) 0 0
\(219\) 7.17859 0.485084
\(220\) 0 0
\(221\) −5.31673 −0.357642
\(222\) 0 0
\(223\) −10.5128 −0.703990 −0.351995 0.936002i \(-0.614497\pi\)
−0.351995 + 0.936002i \(0.614497\pi\)
\(224\) 0 0
\(225\) −0.182190 −0.0121460
\(226\) 0 0
\(227\) −12.2815 −0.815153 −0.407576 0.913171i \(-0.633626\pi\)
−0.407576 + 0.913171i \(0.633626\pi\)
\(228\) 0 0
\(229\) −4.82403 −0.318781 −0.159390 0.987216i \(-0.550953\pi\)
−0.159390 + 0.987216i \(0.550953\pi\)
\(230\) 0 0
\(231\) 7.49461 0.493109
\(232\) 0 0
\(233\) 23.1808 1.51862 0.759312 0.650727i \(-0.225536\pi\)
0.759312 + 0.650727i \(0.225536\pi\)
\(234\) 0 0
\(235\) 37.2193 2.42792
\(236\) 0 0
\(237\) −16.3292 −1.06069
\(238\) 0 0
\(239\) 4.55781 0.294820 0.147410 0.989075i \(-0.452906\pi\)
0.147410 + 0.989075i \(0.452906\pi\)
\(240\) 0 0
\(241\) −7.59130 −0.488999 −0.244499 0.969649i \(-0.578624\pi\)
−0.244499 + 0.969649i \(0.578624\pi\)
\(242\) 0 0
\(243\) −0.393087 −0.0252165
\(244\) 0 0
\(245\) 3.13311 0.200167
\(246\) 0 0
\(247\) 2.49965 0.159049
\(248\) 0 0
\(249\) −25.5437 −1.61877
\(250\) 0 0
\(251\) −5.10293 −0.322094 −0.161047 0.986947i \(-0.551487\pi\)
−0.161047 + 0.986947i \(0.551487\pi\)
\(252\) 0 0
\(253\) −12.4288 −0.781392
\(254\) 0 0
\(255\) −28.6699 −1.79538
\(256\) 0 0
\(257\) 22.4673 1.40147 0.700737 0.713420i \(-0.252855\pi\)
0.700737 + 0.713420i \(0.252855\pi\)
\(258\) 0 0
\(259\) −9.79675 −0.608740
\(260\) 0 0
\(261\) −0.137154 −0.00848961
\(262\) 0 0
\(263\) −2.81568 −0.173622 −0.0868111 0.996225i \(-0.527668\pi\)
−0.0868111 + 0.996225i \(0.527668\pi\)
\(264\) 0 0
\(265\) 18.4604 1.13401
\(266\) 0 0
\(267\) 9.59684 0.587317
\(268\) 0 0
\(269\) −27.9979 −1.70706 −0.853530 0.521044i \(-0.825543\pi\)
−0.853530 + 0.521044i \(0.825543\pi\)
\(270\) 0 0
\(271\) −14.9229 −0.906503 −0.453251 0.891383i \(-0.649736\pi\)
−0.453251 + 0.891383i \(0.649736\pi\)
\(272\) 0 0
\(273\) −1.72110 −0.104165
\(274\) 0 0
\(275\) 20.9732 1.26473
\(276\) 0 0
\(277\) 9.71536 0.583739 0.291870 0.956458i \(-0.405723\pi\)
0.291870 + 0.956458i \(0.405723\pi\)
\(278\) 0 0
\(279\) 0.233429 0.0139750
\(280\) 0 0
\(281\) 18.5837 1.10861 0.554304 0.832314i \(-0.312985\pi\)
0.554304 + 0.832314i \(0.312985\pi\)
\(282\) 0 0
\(283\) 8.67059 0.515413 0.257706 0.966223i \(-0.417033\pi\)
0.257706 + 0.966223i \(0.417033\pi\)
\(284\) 0 0
\(285\) 13.4791 0.798431
\(286\) 0 0
\(287\) −10.6706 −0.629865
\(288\) 0 0
\(289\) 11.2676 0.662801
\(290\) 0 0
\(291\) 1.68610 0.0988412
\(292\) 0 0
\(293\) 8.46039 0.494261 0.247131 0.968982i \(-0.420512\pi\)
0.247131 + 0.968982i \(0.420512\pi\)
\(294\) 0 0
\(295\) −24.4678 −1.42457
\(296\) 0 0
\(297\) 22.7673 1.32110
\(298\) 0 0
\(299\) 2.85421 0.165063
\(300\) 0 0
\(301\) 0.449841 0.0259284
\(302\) 0 0
\(303\) 29.3658 1.68702
\(304\) 0 0
\(305\) −48.1863 −2.75914
\(306\) 0 0
\(307\) 10.6902 0.610123 0.305061 0.952333i \(-0.401323\pi\)
0.305061 + 0.952333i \(0.401323\pi\)
\(308\) 0 0
\(309\) −5.49248 −0.312456
\(310\) 0 0
\(311\) −17.2157 −0.976213 −0.488107 0.872784i \(-0.662312\pi\)
−0.488107 + 0.872784i \(0.662312\pi\)
\(312\) 0 0
\(313\) −12.2921 −0.694789 −0.347394 0.937719i \(-0.612933\pi\)
−0.347394 + 0.937719i \(0.612933\pi\)
\(314\) 0 0
\(315\) 0.118516 0.00667764
\(316\) 0 0
\(317\) −27.1638 −1.52567 −0.762835 0.646594i \(-0.776193\pi\)
−0.762835 + 0.646594i \(0.776193\pi\)
\(318\) 0 0
\(319\) 15.7888 0.884004
\(320\) 0 0
\(321\) 8.43282 0.470674
\(322\) 0 0
\(323\) −13.2900 −0.739473
\(324\) 0 0
\(325\) −4.81638 −0.267165
\(326\) 0 0
\(327\) 3.65813 0.202295
\(328\) 0 0
\(329\) −11.8794 −0.654930
\(330\) 0 0
\(331\) 17.3936 0.956038 0.478019 0.878349i \(-0.341355\pi\)
0.478019 + 0.878349i \(0.341355\pi\)
\(332\) 0 0
\(333\) −0.370582 −0.0203078
\(334\) 0 0
\(335\) 18.3179 1.00081
\(336\) 0 0
\(337\) −2.03018 −0.110591 −0.0552955 0.998470i \(-0.517610\pi\)
−0.0552955 + 0.998470i \(0.517610\pi\)
\(338\) 0 0
\(339\) 3.49413 0.189775
\(340\) 0 0
\(341\) −26.8717 −1.45518
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 15.3910 0.828623
\(346\) 0 0
\(347\) 10.1499 0.544875 0.272438 0.962173i \(-0.412170\pi\)
0.272438 + 0.962173i \(0.412170\pi\)
\(348\) 0 0
\(349\) 24.3747 1.30475 0.652373 0.757898i \(-0.273774\pi\)
0.652373 + 0.757898i \(0.273774\pi\)
\(350\) 0 0
\(351\) −5.22839 −0.279071
\(352\) 0 0
\(353\) 11.1374 0.592786 0.296393 0.955066i \(-0.404216\pi\)
0.296393 + 0.955066i \(0.404216\pi\)
\(354\) 0 0
\(355\) 35.3771 1.87762
\(356\) 0 0
\(357\) 9.15061 0.484301
\(358\) 0 0
\(359\) 0.859944 0.0453861 0.0226931 0.999742i \(-0.492776\pi\)
0.0226931 + 0.999742i \(0.492776\pi\)
\(360\) 0 0
\(361\) −12.7518 −0.671145
\(362\) 0 0
\(363\) −13.7037 −0.719256
\(364\) 0 0
\(365\) −13.0680 −0.684011
\(366\) 0 0
\(367\) 19.5423 1.02010 0.510050 0.860145i \(-0.329627\pi\)
0.510050 + 0.860145i \(0.329627\pi\)
\(368\) 0 0
\(369\) −0.403637 −0.0210125
\(370\) 0 0
\(371\) −5.89203 −0.305899
\(372\) 0 0
\(373\) −8.44290 −0.437157 −0.218578 0.975819i \(-0.570142\pi\)
−0.218578 + 0.975819i \(0.570142\pi\)
\(374\) 0 0
\(375\) 0.990152 0.0511312
\(376\) 0 0
\(377\) −3.62581 −0.186739
\(378\) 0 0
\(379\) −36.3424 −1.86678 −0.933391 0.358862i \(-0.883165\pi\)
−0.933391 + 0.358862i \(0.883165\pi\)
\(380\) 0 0
\(381\) 16.4714 0.843853
\(382\) 0 0
\(383\) −19.4037 −0.991481 −0.495740 0.868471i \(-0.665103\pi\)
−0.495740 + 0.868471i \(0.665103\pi\)
\(384\) 0 0
\(385\) −13.6433 −0.695327
\(386\) 0 0
\(387\) 0.0170162 0.000864980 0
\(388\) 0 0
\(389\) −24.8757 −1.26125 −0.630625 0.776088i \(-0.717201\pi\)
−0.630625 + 0.776088i \(0.717201\pi\)
\(390\) 0 0
\(391\) −15.1750 −0.767435
\(392\) 0 0
\(393\) 32.3304 1.63085
\(394\) 0 0
\(395\) 29.7259 1.49567
\(396\) 0 0
\(397\) −25.7019 −1.28994 −0.644972 0.764206i \(-0.723131\pi\)
−0.644972 + 0.764206i \(0.723131\pi\)
\(398\) 0 0
\(399\) −4.30214 −0.215376
\(400\) 0 0
\(401\) −6.44149 −0.321673 −0.160836 0.986981i \(-0.551419\pi\)
−0.160836 + 0.986981i \(0.551419\pi\)
\(402\) 0 0
\(403\) 6.17094 0.307396
\(404\) 0 0
\(405\) −27.8380 −1.38328
\(406\) 0 0
\(407\) 42.6605 2.11460
\(408\) 0 0
\(409\) 2.04286 0.101013 0.0505065 0.998724i \(-0.483916\pi\)
0.0505065 + 0.998724i \(0.483916\pi\)
\(410\) 0 0
\(411\) 4.94615 0.243975
\(412\) 0 0
\(413\) 7.80943 0.384277
\(414\) 0 0
\(415\) 46.5001 2.28260
\(416\) 0 0
\(417\) −0.215933 −0.0105743
\(418\) 0 0
\(419\) −3.73639 −0.182535 −0.0912674 0.995826i \(-0.529092\pi\)
−0.0912674 + 0.995826i \(0.529092\pi\)
\(420\) 0 0
\(421\) 39.0383 1.90261 0.951305 0.308250i \(-0.0997434\pi\)
0.951305 + 0.308250i \(0.0997434\pi\)
\(422\) 0 0
\(423\) −0.449361 −0.0218487
\(424\) 0 0
\(425\) 25.6074 1.24214
\(426\) 0 0
\(427\) 15.3797 0.744276
\(428\) 0 0
\(429\) 7.49461 0.361843
\(430\) 0 0
\(431\) −40.7441 −1.96257 −0.981287 0.192549i \(-0.938324\pi\)
−0.981287 + 0.192549i \(0.938324\pi\)
\(432\) 0 0
\(433\) 11.6342 0.559102 0.279551 0.960131i \(-0.409814\pi\)
0.279551 + 0.960131i \(0.409814\pi\)
\(434\) 0 0
\(435\) −19.5518 −0.937436
\(436\) 0 0
\(437\) 7.13451 0.341290
\(438\) 0 0
\(439\) 7.07495 0.337669 0.168835 0.985644i \(-0.446000\pi\)
0.168835 + 0.985644i \(0.446000\pi\)
\(440\) 0 0
\(441\) −0.0378271 −0.00180129
\(442\) 0 0
\(443\) −10.3349 −0.491027 −0.245514 0.969393i \(-0.578957\pi\)
−0.245514 + 0.969393i \(0.578957\pi\)
\(444\) 0 0
\(445\) −17.4702 −0.828169
\(446\) 0 0
\(447\) 35.9222 1.69906
\(448\) 0 0
\(449\) 30.8001 1.45354 0.726772 0.686878i \(-0.241019\pi\)
0.726772 + 0.686878i \(0.241019\pi\)
\(450\) 0 0
\(451\) 46.4657 2.18798
\(452\) 0 0
\(453\) −2.56788 −0.120649
\(454\) 0 0
\(455\) 3.13311 0.146882
\(456\) 0 0
\(457\) −32.0900 −1.50111 −0.750554 0.660809i \(-0.770213\pi\)
−0.750554 + 0.660809i \(0.770213\pi\)
\(458\) 0 0
\(459\) 27.7980 1.29750
\(460\) 0 0
\(461\) 26.4765 1.23313 0.616566 0.787303i \(-0.288523\pi\)
0.616566 + 0.787303i \(0.288523\pi\)
\(462\) 0 0
\(463\) −32.8949 −1.52876 −0.764379 0.644768i \(-0.776954\pi\)
−0.764379 + 0.644768i \(0.776954\pi\)
\(464\) 0 0
\(465\) 33.2761 1.54314
\(466\) 0 0
\(467\) −1.92483 −0.0890703 −0.0445352 0.999008i \(-0.514181\pi\)
−0.0445352 + 0.999008i \(0.514181\pi\)
\(468\) 0 0
\(469\) −5.84656 −0.269969
\(470\) 0 0
\(471\) 18.8851 0.870180
\(472\) 0 0
\(473\) −1.95886 −0.0900684
\(474\) 0 0
\(475\) −12.0393 −0.552399
\(476\) 0 0
\(477\) −0.222878 −0.0102049
\(478\) 0 0
\(479\) −32.6409 −1.49140 −0.745700 0.666282i \(-0.767885\pi\)
−0.745700 + 0.666282i \(0.767885\pi\)
\(480\) 0 0
\(481\) −9.79675 −0.446693
\(482\) 0 0
\(483\) −4.91236 −0.223520
\(484\) 0 0
\(485\) −3.06941 −0.139375
\(486\) 0 0
\(487\) 23.4283 1.06164 0.530819 0.847485i \(-0.321884\pi\)
0.530819 + 0.847485i \(0.321884\pi\)
\(488\) 0 0
\(489\) 24.1819 1.09354
\(490\) 0 0
\(491\) −23.0007 −1.03801 −0.519004 0.854772i \(-0.673697\pi\)
−0.519004 + 0.854772i \(0.673697\pi\)
\(492\) 0 0
\(493\) 19.2775 0.868214
\(494\) 0 0
\(495\) −0.516086 −0.0231964
\(496\) 0 0
\(497\) −11.2914 −0.506487
\(498\) 0 0
\(499\) 14.8971 0.666884 0.333442 0.942771i \(-0.391790\pi\)
0.333442 + 0.942771i \(0.391790\pi\)
\(500\) 0 0
\(501\) 18.8595 0.842580
\(502\) 0 0
\(503\) −19.2516 −0.858388 −0.429194 0.903212i \(-0.641202\pi\)
−0.429194 + 0.903212i \(0.641202\pi\)
\(504\) 0 0
\(505\) −53.4580 −2.37885
\(506\) 0 0
\(507\) −1.72110 −0.0764366
\(508\) 0 0
\(509\) 29.1230 1.29086 0.645428 0.763821i \(-0.276679\pi\)
0.645428 + 0.763821i \(0.276679\pi\)
\(510\) 0 0
\(511\) 4.17094 0.184511
\(512\) 0 0
\(513\) −13.0691 −0.577017
\(514\) 0 0
\(515\) 9.99860 0.440591
\(516\) 0 0
\(517\) 51.7293 2.27505
\(518\) 0 0
\(519\) 21.9593 0.963908
\(520\) 0 0
\(521\) 4.51714 0.197900 0.0989499 0.995092i \(-0.468452\pi\)
0.0989499 + 0.995092i \(0.468452\pi\)
\(522\) 0 0
\(523\) −34.7812 −1.52088 −0.760439 0.649410i \(-0.775016\pi\)
−0.760439 + 0.649410i \(0.775016\pi\)
\(524\) 0 0
\(525\) 8.28945 0.361781
\(526\) 0 0
\(527\) −32.8092 −1.42919
\(528\) 0 0
\(529\) −14.8535 −0.645805
\(530\) 0 0
\(531\) 0.295408 0.0128196
\(532\) 0 0
\(533\) −10.6706 −0.462194
\(534\) 0 0
\(535\) −15.3512 −0.663692
\(536\) 0 0
\(537\) −11.8631 −0.511929
\(538\) 0 0
\(539\) 4.35456 0.187564
\(540\) 0 0
\(541\) −33.1750 −1.42631 −0.713153 0.701008i \(-0.752734\pi\)
−0.713153 + 0.701008i \(0.752734\pi\)
\(542\) 0 0
\(543\) 18.7812 0.805980
\(544\) 0 0
\(545\) −6.65931 −0.285253
\(546\) 0 0
\(547\) 2.08400 0.0891056 0.0445528 0.999007i \(-0.485814\pi\)
0.0445528 + 0.999007i \(0.485814\pi\)
\(548\) 0 0
\(549\) 0.581769 0.0248293
\(550\) 0 0
\(551\) −9.06326 −0.386108
\(552\) 0 0
\(553\) −9.48767 −0.403457
\(554\) 0 0
\(555\) −52.8278 −2.24242
\(556\) 0 0
\(557\) −40.8118 −1.72925 −0.864626 0.502416i \(-0.832445\pi\)
−0.864626 + 0.502416i \(0.832445\pi\)
\(558\) 0 0
\(559\) 0.449841 0.0190262
\(560\) 0 0
\(561\) −39.8468 −1.68234
\(562\) 0 0
\(563\) 8.41966 0.354846 0.177423 0.984135i \(-0.443224\pi\)
0.177423 + 0.984135i \(0.443224\pi\)
\(564\) 0 0
\(565\) −6.36077 −0.267600
\(566\) 0 0
\(567\) 8.88509 0.373139
\(568\) 0 0
\(569\) 28.8542 1.20963 0.604816 0.796366i \(-0.293247\pi\)
0.604816 + 0.796366i \(0.293247\pi\)
\(570\) 0 0
\(571\) 39.1787 1.63958 0.819788 0.572667i \(-0.194091\pi\)
0.819788 + 0.572667i \(0.194091\pi\)
\(572\) 0 0
\(573\) −15.3172 −0.639886
\(574\) 0 0
\(575\) −13.7469 −0.573287
\(576\) 0 0
\(577\) 6.15131 0.256082 0.128041 0.991769i \(-0.459131\pi\)
0.128041 + 0.991769i \(0.459131\pi\)
\(578\) 0 0
\(579\) −4.66265 −0.193773
\(580\) 0 0
\(581\) −14.8415 −0.615730
\(582\) 0 0
\(583\) 25.6572 1.06261
\(584\) 0 0
\(585\) 0.118516 0.00490005
\(586\) 0 0
\(587\) 47.4999 1.96053 0.980265 0.197686i \(-0.0633425\pi\)
0.980265 + 0.197686i \(0.0633425\pi\)
\(588\) 0 0
\(589\) 15.4252 0.635583
\(590\) 0 0
\(591\) −32.8262 −1.35029
\(592\) 0 0
\(593\) 31.6402 1.29931 0.649653 0.760231i \(-0.274914\pi\)
0.649653 + 0.760231i \(0.274914\pi\)
\(594\) 0 0
\(595\) −16.6579 −0.682907
\(596\) 0 0
\(597\) −29.3019 −1.19925
\(598\) 0 0
\(599\) 6.95382 0.284125 0.142063 0.989858i \(-0.454627\pi\)
0.142063 + 0.989858i \(0.454627\pi\)
\(600\) 0 0
\(601\) −12.3825 −0.505094 −0.252547 0.967585i \(-0.581268\pi\)
−0.252547 + 0.967585i \(0.581268\pi\)
\(602\) 0 0
\(603\) −0.221158 −0.00900626
\(604\) 0 0
\(605\) 24.9464 1.01421
\(606\) 0 0
\(607\) 42.3830 1.72027 0.860137 0.510063i \(-0.170378\pi\)
0.860137 + 0.510063i \(0.170378\pi\)
\(608\) 0 0
\(609\) 6.24037 0.252873
\(610\) 0 0
\(611\) −11.8794 −0.480587
\(612\) 0 0
\(613\) 21.3644 0.862900 0.431450 0.902137i \(-0.358002\pi\)
0.431450 + 0.902137i \(0.358002\pi\)
\(614\) 0 0
\(615\) −57.5399 −2.32023
\(616\) 0 0
\(617\) −21.6189 −0.870343 −0.435171 0.900348i \(-0.643312\pi\)
−0.435171 + 0.900348i \(0.643312\pi\)
\(618\) 0 0
\(619\) −40.2256 −1.61680 −0.808401 0.588632i \(-0.799667\pi\)
−0.808401 + 0.588632i \(0.799667\pi\)
\(620\) 0 0
\(621\) −14.9229 −0.598836
\(622\) 0 0
\(623\) 5.57601 0.223398
\(624\) 0 0
\(625\) −25.8844 −1.03538
\(626\) 0 0
\(627\) 18.7339 0.748160
\(628\) 0 0
\(629\) 52.0867 2.07683
\(630\) 0 0
\(631\) −12.2902 −0.489264 −0.244632 0.969616i \(-0.578667\pi\)
−0.244632 + 0.969616i \(0.578667\pi\)
\(632\) 0 0
\(633\) −28.2681 −1.12356
\(634\) 0 0
\(635\) −29.9847 −1.18991
\(636\) 0 0
\(637\) −1.00000 −0.0396214
\(638\) 0 0
\(639\) −0.427119 −0.0168966
\(640\) 0 0
\(641\) 32.4338 1.28106 0.640529 0.767934i \(-0.278715\pi\)
0.640529 + 0.767934i \(0.278715\pi\)
\(642\) 0 0
\(643\) −1.71989 −0.0678258 −0.0339129 0.999425i \(-0.510797\pi\)
−0.0339129 + 0.999425i \(0.510797\pi\)
\(644\) 0 0
\(645\) 2.42571 0.0955124
\(646\) 0 0
\(647\) −5.52259 −0.217116 −0.108558 0.994090i \(-0.534623\pi\)
−0.108558 + 0.994090i \(0.534623\pi\)
\(648\) 0 0
\(649\) −34.0066 −1.33488
\(650\) 0 0
\(651\) −10.6208 −0.416261
\(652\) 0 0
\(653\) −18.2256 −0.713221 −0.356611 0.934253i \(-0.616068\pi\)
−0.356611 + 0.934253i \(0.616068\pi\)
\(654\) 0 0
\(655\) −58.8548 −2.29965
\(656\) 0 0
\(657\) 0.157774 0.00615536
\(658\) 0 0
\(659\) 49.8260 1.94095 0.970473 0.241211i \(-0.0775445\pi\)
0.970473 + 0.241211i \(0.0775445\pi\)
\(660\) 0 0
\(661\) −26.8009 −1.04243 −0.521216 0.853425i \(-0.674522\pi\)
−0.521216 + 0.853425i \(0.674522\pi\)
\(662\) 0 0
\(663\) 9.15061 0.355380
\(664\) 0 0
\(665\) 7.83168 0.303699
\(666\) 0 0
\(667\) −10.3488 −0.400708
\(668\) 0 0
\(669\) 18.0936 0.699538
\(670\) 0 0
\(671\) −66.9718 −2.58542
\(672\) 0 0
\(673\) 16.7800 0.646820 0.323410 0.946259i \(-0.395171\pi\)
0.323410 + 0.946259i \(0.395171\pi\)
\(674\) 0 0
\(675\) 25.1819 0.969253
\(676\) 0 0
\(677\) 39.9241 1.53441 0.767204 0.641403i \(-0.221647\pi\)
0.767204 + 0.641403i \(0.221647\pi\)
\(678\) 0 0
\(679\) 0.979669 0.0375962
\(680\) 0 0
\(681\) 21.1377 0.809997
\(682\) 0 0
\(683\) −29.7862 −1.13974 −0.569869 0.821736i \(-0.693006\pi\)
−0.569869 + 0.821736i \(0.693006\pi\)
\(684\) 0 0
\(685\) −9.00404 −0.344027
\(686\) 0 0
\(687\) 8.30262 0.316765
\(688\) 0 0
\(689\) −5.89203 −0.224469
\(690\) 0 0
\(691\) 29.2074 1.11110 0.555550 0.831483i \(-0.312508\pi\)
0.555550 + 0.831483i \(0.312508\pi\)
\(692\) 0 0
\(693\) 0.164720 0.00625720
\(694\) 0 0
\(695\) 0.393087 0.0149106
\(696\) 0 0
\(697\) 56.7326 2.14890
\(698\) 0 0
\(699\) −39.8964 −1.50902
\(700\) 0 0
\(701\) −20.8927 −0.789108 −0.394554 0.918873i \(-0.629101\pi\)
−0.394554 + 0.918873i \(0.629101\pi\)
\(702\) 0 0
\(703\) −24.4884 −0.923599
\(704\) 0 0
\(705\) −64.0580 −2.41256
\(706\) 0 0
\(707\) 17.0623 0.641693
\(708\) 0 0
\(709\) −35.4281 −1.33053 −0.665265 0.746607i \(-0.731682\pi\)
−0.665265 + 0.746607i \(0.731682\pi\)
\(710\) 0 0
\(711\) −0.358891 −0.0134595
\(712\) 0 0
\(713\) 17.6131 0.659617
\(714\) 0 0
\(715\) −13.6433 −0.510231
\(716\) 0 0
\(717\) −7.84443 −0.292955
\(718\) 0 0
\(719\) 4.19971 0.156623 0.0783114 0.996929i \(-0.475047\pi\)
0.0783114 + 0.996929i \(0.475047\pi\)
\(720\) 0 0
\(721\) −3.19127 −0.118849
\(722\) 0 0
\(723\) 13.0654 0.485906
\(724\) 0 0
\(725\) 17.4633 0.648570
\(726\) 0 0
\(727\) 7.17738 0.266194 0.133097 0.991103i \(-0.457508\pi\)
0.133097 + 0.991103i \(0.457508\pi\)
\(728\) 0 0
\(729\) 27.3318 1.01229
\(730\) 0 0
\(731\) −2.39168 −0.0884596
\(732\) 0 0
\(733\) 1.73158 0.0639574 0.0319787 0.999489i \(-0.489819\pi\)
0.0319787 + 0.999489i \(0.489819\pi\)
\(734\) 0 0
\(735\) −5.39238 −0.198901
\(736\) 0 0
\(737\) 25.4592 0.937801
\(738\) 0 0
\(739\) −28.5933 −1.05182 −0.525910 0.850540i \(-0.676275\pi\)
−0.525910 + 0.850540i \(0.676275\pi\)
\(740\) 0 0
\(741\) −4.30214 −0.158043
\(742\) 0 0
\(743\) −27.5375 −1.01025 −0.505127 0.863045i \(-0.668554\pi\)
−0.505127 + 0.863045i \(0.668554\pi\)
\(744\) 0 0
\(745\) −65.3933 −2.39583
\(746\) 0 0
\(747\) −0.561411 −0.0205410
\(748\) 0 0
\(749\) 4.89968 0.179030
\(750\) 0 0
\(751\) −12.3582 −0.450956 −0.225478 0.974248i \(-0.572394\pi\)
−0.225478 + 0.974248i \(0.572394\pi\)
\(752\) 0 0
\(753\) 8.78264 0.320057
\(754\) 0 0
\(755\) 4.67460 0.170126
\(756\) 0 0
\(757\) 8.21861 0.298711 0.149355 0.988784i \(-0.452280\pi\)
0.149355 + 0.988784i \(0.452280\pi\)
\(758\) 0 0
\(759\) 21.3912 0.776451
\(760\) 0 0
\(761\) 12.8145 0.464524 0.232262 0.972653i \(-0.425387\pi\)
0.232262 + 0.972653i \(0.425387\pi\)
\(762\) 0 0
\(763\) 2.12546 0.0769469
\(764\) 0 0
\(765\) −0.630120 −0.0227820
\(766\) 0 0
\(767\) 7.80943 0.281982
\(768\) 0 0
\(769\) −9.13524 −0.329425 −0.164713 0.986342i \(-0.552670\pi\)
−0.164713 + 0.986342i \(0.552670\pi\)
\(770\) 0 0
\(771\) −38.6685 −1.39261
\(772\) 0 0
\(773\) 42.9347 1.54425 0.772126 0.635469i \(-0.219193\pi\)
0.772126 + 0.635469i \(0.219193\pi\)
\(774\) 0 0
\(775\) −29.7216 −1.06763
\(776\) 0 0
\(777\) 16.8612 0.604890
\(778\) 0 0
\(779\) −26.6727 −0.955649
\(780\) 0 0
\(781\) 49.1689 1.75940
\(782\) 0 0
\(783\) 18.9572 0.677474
\(784\) 0 0
\(785\) −34.3788 −1.22703
\(786\) 0 0
\(787\) 9.97243 0.355479 0.177739 0.984078i \(-0.443122\pi\)
0.177739 + 0.984078i \(0.443122\pi\)
\(788\) 0 0
\(789\) 4.84605 0.172524
\(790\) 0 0
\(791\) 2.03018 0.0721849
\(792\) 0 0
\(793\) 15.3797 0.546149
\(794\) 0 0
\(795\) −31.7721 −1.12684
\(796\) 0 0
\(797\) 36.0635 1.27743 0.638716 0.769442i \(-0.279466\pi\)
0.638716 + 0.769442i \(0.279466\pi\)
\(798\) 0 0
\(799\) 63.1593 2.23442
\(800\) 0 0
\(801\) 0.210924 0.00745263
\(802\) 0 0
\(803\) −18.1626 −0.640944
\(804\) 0 0
\(805\) 8.94254 0.315183
\(806\) 0 0
\(807\) 48.1870 1.69626
\(808\) 0 0
\(809\) −16.0027 −0.562624 −0.281312 0.959616i \(-0.590770\pi\)
−0.281312 + 0.959616i \(0.590770\pi\)
\(810\) 0 0
\(811\) −51.2176 −1.79849 −0.899246 0.437442i \(-0.855884\pi\)
−0.899246 + 0.437442i \(0.855884\pi\)
\(812\) 0 0
\(813\) 25.6838 0.900769
\(814\) 0 0
\(815\) −44.0211 −1.54199
\(816\) 0 0
\(817\) 1.12444 0.0393393
\(818\) 0 0
\(819\) −0.0378271 −0.00132178
\(820\) 0 0
\(821\) −14.4022 −0.502641 −0.251321 0.967904i \(-0.580865\pi\)
−0.251321 + 0.967904i \(0.580865\pi\)
\(822\) 0 0
\(823\) 38.2488 1.33327 0.666635 0.745385i \(-0.267734\pi\)
0.666635 + 0.745385i \(0.267734\pi\)
\(824\) 0 0
\(825\) −36.0969 −1.25673
\(826\) 0 0
\(827\) −38.3529 −1.33366 −0.666831 0.745209i \(-0.732350\pi\)
−0.666831 + 0.745209i \(0.732350\pi\)
\(828\) 0 0
\(829\) −7.65720 −0.265946 −0.132973 0.991120i \(-0.542452\pi\)
−0.132973 + 0.991120i \(0.542452\pi\)
\(830\) 0 0
\(831\) −16.7211 −0.580047
\(832\) 0 0
\(833\) 5.31673 0.184214
\(834\) 0 0
\(835\) −34.3321 −1.18811
\(836\) 0 0
\(837\) −32.2641 −1.11521
\(838\) 0 0
\(839\) −27.5070 −0.949649 −0.474824 0.880081i \(-0.657488\pi\)
−0.474824 + 0.880081i \(0.657488\pi\)
\(840\) 0 0
\(841\) −15.8535 −0.546672
\(842\) 0 0
\(843\) −31.9843 −1.10160
\(844\) 0 0
\(845\) 3.13311 0.107782
\(846\) 0 0
\(847\) −7.96217 −0.273583
\(848\) 0 0
\(849\) −14.9229 −0.512153
\(850\) 0 0
\(851\) −27.9620 −0.958523
\(852\) 0 0
\(853\) −27.0685 −0.926807 −0.463404 0.886147i \(-0.653372\pi\)
−0.463404 + 0.886147i \(0.653372\pi\)
\(854\) 0 0
\(855\) 0.296249 0.0101315
\(856\) 0 0
\(857\) 4.10102 0.140088 0.0700441 0.997544i \(-0.477686\pi\)
0.0700441 + 0.997544i \(0.477686\pi\)
\(858\) 0 0
\(859\) 39.5463 1.34930 0.674651 0.738137i \(-0.264294\pi\)
0.674651 + 0.738137i \(0.264294\pi\)
\(860\) 0 0
\(861\) 18.3651 0.625881
\(862\) 0 0
\(863\) −14.1499 −0.481668 −0.240834 0.970566i \(-0.577421\pi\)
−0.240834 + 0.970566i \(0.577421\pi\)
\(864\) 0 0
\(865\) −39.9751 −1.35919
\(866\) 0 0
\(867\) −19.3927 −0.658610
\(868\) 0 0
\(869\) 41.3146 1.40150
\(870\) 0 0
\(871\) −5.84656 −0.198103
\(872\) 0 0
\(873\) 0.0370580 0.00125422
\(874\) 0 0
\(875\) 0.575303 0.0194488
\(876\) 0 0
\(877\) 12.9363 0.436829 0.218414 0.975856i \(-0.429912\pi\)
0.218414 + 0.975856i \(0.429912\pi\)
\(878\) 0 0
\(879\) −14.5611 −0.491135
\(880\) 0 0
\(881\) 42.5535 1.43367 0.716833 0.697245i \(-0.245591\pi\)
0.716833 + 0.697245i \(0.245591\pi\)
\(882\) 0 0
\(883\) 38.4918 1.29535 0.647676 0.761916i \(-0.275741\pi\)
0.647676 + 0.761916i \(0.275741\pi\)
\(884\) 0 0
\(885\) 42.1115 1.41556
\(886\) 0 0
\(887\) −3.06106 −0.102780 −0.0513902 0.998679i \(-0.516365\pi\)
−0.0513902 + 0.998679i \(0.516365\pi\)
\(888\) 0 0
\(889\) 9.57027 0.320976
\(890\) 0 0
\(891\) −38.6906 −1.29618
\(892\) 0 0
\(893\) −29.6942 −0.993679
\(894\) 0 0
\(895\) 21.5957 0.721865
\(896\) 0 0
\(897\) −4.91236 −0.164019
\(898\) 0 0
\(899\) −22.3747 −0.746237
\(900\) 0 0
\(901\) 31.3264 1.04363
\(902\) 0 0
\(903\) −0.774219 −0.0257644
\(904\) 0 0
\(905\) −34.1896 −1.13650
\(906\) 0 0
\(907\) 24.4752 0.812686 0.406343 0.913721i \(-0.366804\pi\)
0.406343 + 0.913721i \(0.366804\pi\)
\(908\) 0 0
\(909\) 0.645416 0.0214071
\(910\) 0 0
\(911\) 23.1322 0.766404 0.383202 0.923665i \(-0.374821\pi\)
0.383202 + 0.923665i \(0.374821\pi\)
\(912\) 0 0
\(913\) 64.6283 2.13888
\(914\) 0 0
\(915\) 82.9333 2.74169
\(916\) 0 0
\(917\) 18.7848 0.620328
\(918\) 0 0
\(919\) −32.9478 −1.08685 −0.543424 0.839458i \(-0.682873\pi\)
−0.543424 + 0.839458i \(0.682873\pi\)
\(920\) 0 0
\(921\) −18.3989 −0.606264
\(922\) 0 0
\(923\) −11.2914 −0.371660
\(924\) 0 0
\(925\) 47.1849 1.55143
\(926\) 0 0
\(927\) −0.120716 −0.00396485
\(928\) 0 0
\(929\) 34.2816 1.12474 0.562371 0.826885i \(-0.309889\pi\)
0.562371 + 0.826885i \(0.309889\pi\)
\(930\) 0 0
\(931\) −2.49965 −0.0819227
\(932\) 0 0
\(933\) 29.6299 0.970039
\(934\) 0 0
\(935\) 72.5378 2.37224
\(936\) 0 0
\(937\) −47.0855 −1.53822 −0.769108 0.639119i \(-0.779299\pi\)
−0.769108 + 0.639119i \(0.779299\pi\)
\(938\) 0 0
\(939\) 21.1558 0.690394
\(940\) 0 0
\(941\) −5.79194 −0.188812 −0.0944059 0.995534i \(-0.530095\pi\)
−0.0944059 + 0.995534i \(0.530095\pi\)
\(942\) 0 0
\(943\) −30.4561 −0.991786
\(944\) 0 0
\(945\) −16.3811 −0.532878
\(946\) 0 0
\(947\) −9.73378 −0.316305 −0.158153 0.987415i \(-0.550554\pi\)
−0.158153 + 0.987415i \(0.550554\pi\)
\(948\) 0 0
\(949\) 4.17094 0.135394
\(950\) 0 0
\(951\) 46.7515 1.51602
\(952\) 0 0
\(953\) 1.53627 0.0497646 0.0248823 0.999690i \(-0.492079\pi\)
0.0248823 + 0.999690i \(0.492079\pi\)
\(954\) 0 0
\(955\) 27.8837 0.902295
\(956\) 0 0
\(957\) −27.1741 −0.878413
\(958\) 0 0
\(959\) 2.87384 0.0928010
\(960\) 0 0
\(961\) 7.08047 0.228402
\(962\) 0 0
\(963\) 0.185341 0.00597252
\(964\) 0 0
\(965\) 8.48796 0.273237
\(966\) 0 0
\(967\) −18.4965 −0.594808 −0.297404 0.954752i \(-0.596121\pi\)
−0.297404 + 0.954752i \(0.596121\pi\)
\(968\) 0 0
\(969\) 22.8733 0.734796
\(970\) 0 0
\(971\) 40.1506 1.28849 0.644247 0.764818i \(-0.277171\pi\)
0.644247 + 0.764818i \(0.277171\pi\)
\(972\) 0 0
\(973\) −0.125462 −0.00402213
\(974\) 0 0
\(975\) 8.28945 0.265475
\(976\) 0 0
\(977\) 16.3271 0.522349 0.261174 0.965292i \(-0.415890\pi\)
0.261174 + 0.965292i \(0.415890\pi\)
\(978\) 0 0
\(979\) −24.2810 −0.776025
\(980\) 0 0
\(981\) 0.0804000 0.00256698
\(982\) 0 0
\(983\) 36.8946 1.17676 0.588378 0.808586i \(-0.299767\pi\)
0.588378 + 0.808586i \(0.299767\pi\)
\(984\) 0 0
\(985\) 59.7572 1.90402
\(986\) 0 0
\(987\) 20.4455 0.650788
\(988\) 0 0
\(989\) 1.28394 0.0408269
\(990\) 0 0
\(991\) 6.15344 0.195471 0.0977353 0.995212i \(-0.468840\pi\)
0.0977353 + 0.995212i \(0.468840\pi\)
\(992\) 0 0
\(993\) −29.9361 −0.949992
\(994\) 0 0
\(995\) 53.3417 1.69104
\(996\) 0 0
\(997\) −44.7094 −1.41596 −0.707980 0.706232i \(-0.750394\pi\)
−0.707980 + 0.706232i \(0.750394\pi\)
\(998\) 0 0
\(999\) 51.2213 1.62057
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.a.i.1.2 4
3.2 odd 2 6552.2.a.br.1.2 4
4.3 odd 2 1456.2.a.v.1.3 4
7.6 odd 2 5096.2.a.s.1.3 4
8.3 odd 2 5824.2.a.ce.1.2 4
8.5 even 2 5824.2.a.cb.1.3 4
13.12 even 2 9464.2.a.z.1.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.a.i.1.2 4 1.1 even 1 trivial
1456.2.a.v.1.3 4 4.3 odd 2
5096.2.a.s.1.3 4 7.6 odd 2
5824.2.a.cb.1.3 4 8.5 even 2
5824.2.a.ce.1.2 4 8.3 odd 2
6552.2.a.br.1.2 4 3.2 odd 2
9464.2.a.z.1.2 4 13.12 even 2