Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [728,2,Mod(467,728)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(728, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 5, 3]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("728.467");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.cy (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.81310926715\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
467.1 | −0.707107 | + | 1.22474i | −2.87940 | + | 1.66242i | −1.00000 | − | 1.73205i | 3.16808 | + | 1.82909i | − | 4.70203i | −1.53961 | + | 2.15165i | 2.82843 | 4.02728 | − | 6.97545i | −4.48035 | + | 2.58673i | |||
467.2 | −0.707107 | + | 1.22474i | −2.41774 | + | 1.39588i | −1.00000 | − | 1.73205i | −2.74412 | − | 1.58432i | − | 3.94816i | 0.710858 | + | 2.54847i | 2.82843 | 2.39698 | − | 4.15170i | 3.88077 | − | 2.24056i | |||
467.3 | −0.707107 | + | 1.22474i | −0.329276 | + | 0.190107i | −1.00000 | − | 1.73205i | −0.994871 | − | 0.574389i | − | 0.537705i | 1.85161 | − | 1.88985i | 2.82843 | −1.42772 | + | 2.47288i | 1.40696 | − | 0.812308i | |||
467.4 | −0.707107 | + | 1.22474i | 0.710443 | − | 0.410175i | −1.00000 | − | 1.73205i | −3.51340 | − | 2.02846i | 1.16015i | −1.09357 | − | 2.40917i | 2.82843 | −1.16351 | + | 2.01526i | 4.96870 | − | 2.86868i | ||||
467.5 | −0.707107 | + | 1.22474i | 2.16895 | − | 1.25225i | −1.00000 | − | 1.73205i | 0.345317 | + | 0.199369i | 3.54188i | 2.63319 | + | 0.257522i | 2.82843 | 1.63624 | − | 2.83404i | −0.488352 | + | 0.281950i | ||||
467.6 | −0.707107 | + | 1.22474i | 2.74702 | − | 1.58599i | −1.00000 | − | 1.73205i | 3.73899 | + | 2.15871i | 4.48586i | −2.56247 | − | 0.658612i | 2.82843 | 3.53074 | − | 6.11541i | −5.28773 | + | 3.05287i | ||||
467.7 | 0.707107 | − | 1.22474i | −2.87940 | + | 1.66242i | −1.00000 | − | 1.73205i | −3.16808 | − | 1.82909i | 4.70203i | 1.53961 | − | 2.15165i | −2.82843 | 4.02728 | − | 6.97545i | −4.48035 | + | 2.58673i | ||||
467.8 | 0.707107 | − | 1.22474i | −2.41774 | + | 1.39588i | −1.00000 | − | 1.73205i | 2.74412 | + | 1.58432i | 3.94816i | −0.710858 | − | 2.54847i | −2.82843 | 2.39698 | − | 4.15170i | 3.88077 | − | 2.24056i | ||||
467.9 | 0.707107 | − | 1.22474i | −0.329276 | + | 0.190107i | −1.00000 | − | 1.73205i | 0.994871 | + | 0.574389i | 0.537705i | −1.85161 | + | 1.88985i | −2.82843 | −1.42772 | + | 2.47288i | 1.40696 | − | 0.812308i | ||||
467.10 | 0.707107 | − | 1.22474i | 0.710443 | − | 0.410175i | −1.00000 | − | 1.73205i | 3.51340 | + | 2.02846i | − | 1.16015i | 1.09357 | + | 2.40917i | −2.82843 | −1.16351 | + | 2.01526i | 4.96870 | − | 2.86868i | |||
467.11 | 0.707107 | − | 1.22474i | 2.16895 | − | 1.25225i | −1.00000 | − | 1.73205i | −0.345317 | − | 0.199369i | − | 3.54188i | −2.63319 | − | 0.257522i | −2.82843 | 1.63624 | − | 2.83404i | −0.488352 | + | 0.281950i | |||
467.12 | 0.707107 | − | 1.22474i | 2.74702 | − | 1.58599i | −1.00000 | − | 1.73205i | −3.73899 | − | 2.15871i | − | 4.48586i | 2.56247 | + | 0.658612i | −2.82843 | 3.53074 | − | 6.11541i | −5.28773 | + | 3.05287i | |||
675.1 | −0.707107 | − | 1.22474i | −2.87940 | − | 1.66242i | −1.00000 | + | 1.73205i | 3.16808 | − | 1.82909i | 4.70203i | −1.53961 | − | 2.15165i | 2.82843 | 4.02728 | + | 6.97545i | −4.48035 | − | 2.58673i | ||||
675.2 | −0.707107 | − | 1.22474i | −2.41774 | − | 1.39588i | −1.00000 | + | 1.73205i | −2.74412 | + | 1.58432i | 3.94816i | 0.710858 | − | 2.54847i | 2.82843 | 2.39698 | + | 4.15170i | 3.88077 | + | 2.24056i | ||||
675.3 | −0.707107 | − | 1.22474i | −0.329276 | − | 0.190107i | −1.00000 | + | 1.73205i | −0.994871 | + | 0.574389i | 0.537705i | 1.85161 | + | 1.88985i | 2.82843 | −1.42772 | − | 2.47288i | 1.40696 | + | 0.812308i | ||||
675.4 | −0.707107 | − | 1.22474i | 0.710443 | + | 0.410175i | −1.00000 | + | 1.73205i | −3.51340 | + | 2.02846i | − | 1.16015i | −1.09357 | + | 2.40917i | 2.82843 | −1.16351 | − | 2.01526i | 4.96870 | + | 2.86868i | |||
675.5 | −0.707107 | − | 1.22474i | 2.16895 | + | 1.25225i | −1.00000 | + | 1.73205i | 0.345317 | − | 0.199369i | − | 3.54188i | 2.63319 | − | 0.257522i | 2.82843 | 1.63624 | + | 2.83404i | −0.488352 | − | 0.281950i | |||
675.6 | −0.707107 | − | 1.22474i | 2.74702 | + | 1.58599i | −1.00000 | + | 1.73205i | 3.73899 | − | 2.15871i | − | 4.48586i | −2.56247 | + | 0.658612i | 2.82843 | 3.53074 | + | 6.11541i | −5.28773 | − | 3.05287i | |||
675.7 | 0.707107 | + | 1.22474i | −2.87940 | − | 1.66242i | −1.00000 | + | 1.73205i | −3.16808 | + | 1.82909i | − | 4.70203i | 1.53961 | + | 2.15165i | −2.82843 | 4.02728 | + | 6.97545i | −4.48035 | − | 2.58673i | |||
675.8 | 0.707107 | + | 1.22474i | −2.41774 | − | 1.39588i | −1.00000 | + | 1.73205i | 2.74412 | − | 1.58432i | − | 3.94816i | −0.710858 | + | 2.54847i | −2.82843 | 2.39698 | + | 4.15170i | 3.88077 | + | 2.24056i | |||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
104.h | odd | 2 | 1 | CM by \(\Q(\sqrt{-26}) \) |
7.d | odd | 6 | 1 | inner |
8.d | odd | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
56.m | even | 6 | 1 | inner |
91.s | odd | 6 | 1 | inner |
728.cy | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 728.2.cy.a | ✓ | 24 |
7.d | odd | 6 | 1 | inner | 728.2.cy.a | ✓ | 24 |
8.d | odd | 2 | 1 | inner | 728.2.cy.a | ✓ | 24 |
13.b | even | 2 | 1 | inner | 728.2.cy.a | ✓ | 24 |
56.m | even | 6 | 1 | inner | 728.2.cy.a | ✓ | 24 |
91.s | odd | 6 | 1 | inner | 728.2.cy.a | ✓ | 24 |
104.h | odd | 2 | 1 | CM | 728.2.cy.a | ✓ | 24 |
728.cy | even | 6 | 1 | inner | 728.2.cy.a | ✓ | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.cy.a | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
728.2.cy.a | ✓ | 24 | 7.d | odd | 6 | 1 | inner |
728.2.cy.a | ✓ | 24 | 8.d | odd | 2 | 1 | inner |
728.2.cy.a | ✓ | 24 | 13.b | even | 2 | 1 | inner |
728.2.cy.a | ✓ | 24 | 56.m | even | 6 | 1 | inner |
728.2.cy.a | ✓ | 24 | 91.s | odd | 6 | 1 | inner |
728.2.cy.a | ✓ | 24 | 104.h | odd | 2 | 1 | CM |
728.2.cy.a | ✓ | 24 | 728.cy | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 18 T_{3}^{10} + 243 T_{3}^{8} - 54 T_{3}^{7} - 1400 T_{3}^{6} + 486 T_{3}^{5} + 6039 T_{3}^{4} + \cdots + 529 \) acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\).