Properties

Label 728.2.cy.a
Level $728$
Weight $2$
Character orbit 728.cy
Analytic conductor $5.813$
Analytic rank $0$
Dimension $24$
CM discriminant -104
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(467,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 5, 3]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.467");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.cy (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(24\)
Relative dimension: \(12\) over \(\Q(\zeta_{6})\)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{6}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 24 q - 24 q^{4} + 36 q^{9} - 48 q^{16} + 60 q^{25} - 24 q^{30} - 72 q^{35} - 144 q^{36} + 96 q^{42} + 60 q^{51} + 192 q^{64} - 108 q^{81}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
467.1 −0.707107 + 1.22474i −2.87940 + 1.66242i −1.00000 1.73205i 3.16808 + 1.82909i 4.70203i −1.53961 + 2.15165i 2.82843 4.02728 6.97545i −4.48035 + 2.58673i
467.2 −0.707107 + 1.22474i −2.41774 + 1.39588i −1.00000 1.73205i −2.74412 1.58432i 3.94816i 0.710858 + 2.54847i 2.82843 2.39698 4.15170i 3.88077 2.24056i
467.3 −0.707107 + 1.22474i −0.329276 + 0.190107i −1.00000 1.73205i −0.994871 0.574389i 0.537705i 1.85161 1.88985i 2.82843 −1.42772 + 2.47288i 1.40696 0.812308i
467.4 −0.707107 + 1.22474i 0.710443 0.410175i −1.00000 1.73205i −3.51340 2.02846i 1.16015i −1.09357 2.40917i 2.82843 −1.16351 + 2.01526i 4.96870 2.86868i
467.5 −0.707107 + 1.22474i 2.16895 1.25225i −1.00000 1.73205i 0.345317 + 0.199369i 3.54188i 2.63319 + 0.257522i 2.82843 1.63624 2.83404i −0.488352 + 0.281950i
467.6 −0.707107 + 1.22474i 2.74702 1.58599i −1.00000 1.73205i 3.73899 + 2.15871i 4.48586i −2.56247 0.658612i 2.82843 3.53074 6.11541i −5.28773 + 3.05287i
467.7 0.707107 1.22474i −2.87940 + 1.66242i −1.00000 1.73205i −3.16808 1.82909i 4.70203i 1.53961 2.15165i −2.82843 4.02728 6.97545i −4.48035 + 2.58673i
467.8 0.707107 1.22474i −2.41774 + 1.39588i −1.00000 1.73205i 2.74412 + 1.58432i 3.94816i −0.710858 2.54847i −2.82843 2.39698 4.15170i 3.88077 2.24056i
467.9 0.707107 1.22474i −0.329276 + 0.190107i −1.00000 1.73205i 0.994871 + 0.574389i 0.537705i −1.85161 + 1.88985i −2.82843 −1.42772 + 2.47288i 1.40696 0.812308i
467.10 0.707107 1.22474i 0.710443 0.410175i −1.00000 1.73205i 3.51340 + 2.02846i 1.16015i 1.09357 + 2.40917i −2.82843 −1.16351 + 2.01526i 4.96870 2.86868i
467.11 0.707107 1.22474i 2.16895 1.25225i −1.00000 1.73205i −0.345317 0.199369i 3.54188i −2.63319 0.257522i −2.82843 1.63624 2.83404i −0.488352 + 0.281950i
467.12 0.707107 1.22474i 2.74702 1.58599i −1.00000 1.73205i −3.73899 2.15871i 4.48586i 2.56247 + 0.658612i −2.82843 3.53074 6.11541i −5.28773 + 3.05287i
675.1 −0.707107 1.22474i −2.87940 1.66242i −1.00000 + 1.73205i 3.16808 1.82909i 4.70203i −1.53961 2.15165i 2.82843 4.02728 + 6.97545i −4.48035 2.58673i
675.2 −0.707107 1.22474i −2.41774 1.39588i −1.00000 + 1.73205i −2.74412 + 1.58432i 3.94816i 0.710858 2.54847i 2.82843 2.39698 + 4.15170i 3.88077 + 2.24056i
675.3 −0.707107 1.22474i −0.329276 0.190107i −1.00000 + 1.73205i −0.994871 + 0.574389i 0.537705i 1.85161 + 1.88985i 2.82843 −1.42772 2.47288i 1.40696 + 0.812308i
675.4 −0.707107 1.22474i 0.710443 + 0.410175i −1.00000 + 1.73205i −3.51340 + 2.02846i 1.16015i −1.09357 + 2.40917i 2.82843 −1.16351 2.01526i 4.96870 + 2.86868i
675.5 −0.707107 1.22474i 2.16895 + 1.25225i −1.00000 + 1.73205i 0.345317 0.199369i 3.54188i 2.63319 0.257522i 2.82843 1.63624 + 2.83404i −0.488352 0.281950i
675.6 −0.707107 1.22474i 2.74702 + 1.58599i −1.00000 + 1.73205i 3.73899 2.15871i 4.48586i −2.56247 + 0.658612i 2.82843 3.53074 + 6.11541i −5.28773 3.05287i
675.7 0.707107 + 1.22474i −2.87940 1.66242i −1.00000 + 1.73205i −3.16808 + 1.82909i 4.70203i 1.53961 + 2.15165i −2.82843 4.02728 + 6.97545i −4.48035 2.58673i
675.8 0.707107 + 1.22474i −2.41774 1.39588i −1.00000 + 1.73205i 2.74412 1.58432i 3.94816i −0.710858 + 2.54847i −2.82843 2.39698 + 4.15170i 3.88077 + 2.24056i
See all 24 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 467.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
104.h odd 2 1 CM by \(\Q(\sqrt{-26}) \)
7.d odd 6 1 inner
8.d odd 2 1 inner
13.b even 2 1 inner
56.m even 6 1 inner
91.s odd 6 1 inner
728.cy even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.2.cy.a 24
7.d odd 6 1 inner 728.2.cy.a 24
8.d odd 2 1 inner 728.2.cy.a 24
13.b even 2 1 inner 728.2.cy.a 24
56.m even 6 1 inner 728.2.cy.a 24
91.s odd 6 1 inner 728.2.cy.a 24
104.h odd 2 1 CM 728.2.cy.a 24
728.cy even 6 1 inner 728.2.cy.a 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.cy.a 24 1.a even 1 1 trivial
728.2.cy.a 24 7.d odd 6 1 inner
728.2.cy.a 24 8.d odd 2 1 inner
728.2.cy.a 24 13.b even 2 1 inner
728.2.cy.a 24 56.m even 6 1 inner
728.2.cy.a 24 91.s odd 6 1 inner
728.2.cy.a 24 104.h odd 2 1 CM
728.2.cy.a 24 728.cy even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{12} - 18 T_{3}^{10} + 243 T_{3}^{8} - 54 T_{3}^{7} - 1400 T_{3}^{6} + 486 T_{3}^{5} + 6039 T_{3}^{4} + \cdots + 529 \) acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\). Copy content Toggle raw display