Properties

Label 728.2.ds.a.293.4
Level $728$
Weight $2$
Character 728.293
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(293,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 293.4
Root \(-0.197958 + 1.72070i\) of defining polynomial
Character \(\chi\) \(=\) 728.293
Dual form 728.2.ds.a.405.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 + 0.366025i) q^{2} +(1.58915 - 2.75249i) q^{3} +(1.73205 - 1.00000i) q^{4} +(2.54117 + 2.54117i) q^{5} +(-1.16334 + 4.34164i) q^{6} +(2.55560 + 0.684771i) q^{7} +(-2.00000 + 2.00000i) q^{8} +(-3.55080 - 6.15016i) q^{9} +(-4.40143 - 2.54117i) q^{10} -6.35660i q^{12} +(-2.47602 + 2.62094i) q^{13} -3.74166 q^{14} +(11.0328 - 2.95624i) q^{15} +(2.00000 - 3.46410i) q^{16} +(7.10159 + 7.10159i) q^{18} +(2.16840 - 8.09257i) q^{19} +(6.94259 + 1.86026i) q^{20} +(5.94606 - 5.94606i) q^{21} +(3.01441 + 1.74037i) q^{23} +(2.32668 + 8.68328i) q^{24} +7.91505i q^{25} +(2.42298 - 4.48655i) q^{26} -13.0361 q^{27} +(5.11120 - 1.36954i) q^{28} +(-13.9891 + 8.07659i) q^{30} +(-1.46410 + 5.46410i) q^{32} +(4.75409 + 8.23432i) q^{35} +(-12.3003 - 7.10159i) q^{36} +11.8483i q^{38} +(3.27933 + 10.9803i) q^{39} -10.1647 q^{40} +(-5.94606 + 10.2989i) q^{42} +(6.60541 - 24.6517i) q^{45} +(-4.75478 - 1.27404i) q^{46} +(-6.35660 - 11.0100i) q^{48} +(6.06218 + 3.50000i) q^{49} +(-2.89711 - 10.8122i) q^{50} +(-1.66766 + 7.01562i) q^{52} +(17.8076 - 4.77154i) q^{54} +(-6.48074 + 3.74166i) q^{56} +(-18.8288 - 18.8288i) q^{57} +(14.4778 + 3.87931i) q^{59} +(16.1532 - 16.1532i) q^{60} +(-4.96731 - 8.60363i) q^{61} +(-4.86296 - 18.1488i) q^{63} -8.00000i q^{64} +(-12.9522 + 0.368255i) q^{65} +(9.58070 - 5.53142i) q^{69} +(-9.50817 - 9.50817i) q^{70} +(-4.29022 + 16.0113i) q^{71} +(19.4019 + 5.19873i) q^{72} +(21.7861 + 12.5782i) q^{75} +(-4.33679 - 16.1851i) q^{76} +(-8.49871 - 13.7990i) q^{78} -15.7417 q^{79} +(13.8852 - 3.72052i) q^{80} +(-10.0639 + 17.4312i) q^{81} +(-5.83132 - 5.83132i) q^{83} +(4.35281 - 16.2449i) q^{84} +36.0926i q^{90} +(-8.12246 + 5.00256i) q^{91} +6.96148 q^{92} +(26.0748 - 15.0543i) q^{95} +(12.7132 + 12.7132i) q^{96} +(-9.56218 - 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 32 q^{8} - 32 q^{9} + 40 q^{15} + 32 q^{16} + 64 q^{18} - 96 q^{30} + 32 q^{32} - 48 q^{36} + 8 q^{39} + 24 q^{46} + 136 q^{50} - 72 q^{57} - 32 q^{60} - 112 q^{63} - 16 q^{65} + 16 q^{71}+ \cdots - 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{11}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 + 0.366025i −0.965926 + 0.258819i
\(3\) 1.58915 2.75249i 0.917496 1.58915i 0.114291 0.993447i \(-0.463540\pi\)
0.803205 0.595703i \(-0.203126\pi\)
\(4\) 1.73205 1.00000i 0.866025 0.500000i
\(5\) 2.54117 + 2.54117i 1.13644 + 1.13644i 0.989083 + 0.147361i \(0.0470779\pi\)
0.147361 + 0.989083i \(0.452922\pi\)
\(6\) −1.16334 + 4.34164i −0.474931 + 1.77247i
\(7\) 2.55560 + 0.684771i 0.965926 + 0.258819i
\(8\) −2.00000 + 2.00000i −0.707107 + 0.707107i
\(9\) −3.55080 6.15016i −1.18360 2.05005i
\(10\) −4.40143 2.54117i −1.39185 0.803587i
\(11\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(12\) 6.35660i 1.83499i
\(13\) −2.47602 + 2.62094i −0.686725 + 0.726917i
\(14\) −3.74166 −1.00000
\(15\) 11.0328 2.95624i 2.84866 0.763297i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 7.10159 + 7.10159i 1.67386 + 1.67386i
\(19\) 2.16840 8.09257i 0.497464 1.85656i −0.0183009 0.999833i \(-0.505826\pi\)
0.515765 0.856730i \(-0.327508\pi\)
\(20\) 6.94259 + 1.86026i 1.55241 + 0.415967i
\(21\) 5.94606 5.94606i 1.29754 1.29754i
\(22\) 0 0
\(23\) 3.01441 + 1.74037i 0.628548 + 0.362892i 0.780189 0.625543i \(-0.215123\pi\)
−0.151642 + 0.988436i \(0.548456\pi\)
\(24\) 2.32668 + 8.68328i 0.474931 + 1.77247i
\(25\) 7.91505i 1.58301i
\(26\) 2.42298 4.48655i 0.475185 0.879886i
\(27\) −13.0361 −2.50880
\(28\) 5.11120 1.36954i 0.965926 0.258819i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −13.9891 + 8.07659i −2.55404 + 1.47458i
\(31\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(32\) −1.46410 + 5.46410i −0.258819 + 0.965926i
\(33\) 0 0
\(34\) 0 0
\(35\) 4.75409 + 8.23432i 0.803587 + 1.39185i
\(36\) −12.3003 7.10159i −2.05005 1.18360i
\(37\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(38\) 11.8483i 1.92205i
\(39\) 3.27933 + 10.9803i 0.525113 + 1.75825i
\(40\) −10.1647 −1.60717
\(41\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(42\) −5.94606 + 10.2989i −0.917496 + 1.58915i
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) 6.60541 24.6517i 0.984677 3.67486i
\(46\) −4.75478 1.27404i −0.701054 0.187847i
\(47\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(48\) −6.35660 11.0100i −0.917496 1.58915i
\(49\) 6.06218 + 3.50000i 0.866025 + 0.500000i
\(50\) −2.89711 10.8122i −0.409713 1.52907i
\(51\) 0 0
\(52\) −1.66766 + 7.01562i −0.231263 + 0.972891i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 17.8076 4.77154i 2.42331 0.649324i
\(55\) 0 0
\(56\) −6.48074 + 3.74166i −0.866025 + 0.500000i
\(57\) −18.8288 18.8288i −2.49393 2.49393i
\(58\) 0 0
\(59\) 14.4778 + 3.87931i 1.88485 + 0.505044i 0.999170 + 0.0407464i \(0.0129736\pi\)
0.885679 + 0.464297i \(0.153693\pi\)
\(60\) 16.1532 16.1532i 2.08537 2.08537i
\(61\) −4.96731 8.60363i −0.635999 1.10158i −0.986303 0.164946i \(-0.947255\pi\)
0.350304 0.936636i \(-0.386078\pi\)
\(62\) 0 0
\(63\) −4.86296 18.1488i −0.612676 2.28654i
\(64\) 8.00000i 1.00000i
\(65\) −12.9522 + 0.368255i −1.60653 + 0.0456764i
\(66\) 0 0
\(67\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(68\) 0 0
\(69\) 9.58070 5.53142i 1.15338 0.665905i
\(70\) −9.50817 9.50817i −1.13644 1.13644i
\(71\) −4.29022 + 16.0113i −0.509156 + 1.90020i −0.0804327 + 0.996760i \(0.525630\pi\)
−0.428723 + 0.903436i \(0.641036\pi\)
\(72\) 19.4019 + 5.19873i 2.28654 + 0.612676i
\(73\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(74\) 0 0
\(75\) 21.7861 + 12.5782i 2.51564 + 1.45241i
\(76\) −4.33679 16.1851i −0.497464 1.85656i
\(77\) 0 0
\(78\) −8.49871 13.7990i −0.962290 1.56243i
\(79\) −15.7417 −1.77107 −0.885537 0.464568i \(-0.846210\pi\)
−0.885537 + 0.464568i \(0.846210\pi\)
\(80\) 13.8852 3.72052i 1.55241 0.415967i
\(81\) −10.0639 + 17.4312i −1.11821 + 1.93680i
\(82\) 0 0
\(83\) −5.83132 5.83132i −0.640071 0.640071i 0.310502 0.950573i \(-0.399503\pi\)
−0.950573 + 0.310502i \(0.899503\pi\)
\(84\) 4.35281 16.2449i 0.474931 1.77247i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(90\) 36.0926i 3.80450i
\(91\) −8.12246 + 5.00256i −0.851465 + 0.524411i
\(92\) 6.96148 0.725785
\(93\) 0 0
\(94\) 0 0
\(95\) 26.0748 15.0543i 2.67522 1.54454i
\(96\) 12.7132 + 12.7132i 1.29754 + 1.29754i
\(97\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(98\) −9.56218 2.56218i −0.965926 0.258819i
\(99\) 0 0
\(100\) 7.91505 + 13.7093i 0.791505 + 1.37093i
\(101\) −13.1323 7.58192i −1.30671 0.754429i −0.325164 0.945658i \(-0.605419\pi\)
−0.981546 + 0.191229i \(0.938753\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −0.289831 10.1939i −0.0284203 0.999596i
\(105\) 30.2198 2.94915
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −22.5792 + 13.0361i −2.17268 + 1.25440i
\(109\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 7.48331 7.48331i 0.707107 0.707107i
\(113\) 10.6125 + 18.3814i 0.998339 + 1.72917i 0.549068 + 0.835778i \(0.314983\pi\)
0.449271 + 0.893396i \(0.351684\pi\)
\(114\) 32.6124 + 18.8288i 3.05443 + 1.76348i
\(115\) 3.23755 + 12.0827i 0.301903 + 1.12672i
\(116\) 0 0
\(117\) 24.9110 + 5.92152i 2.30303 + 0.547444i
\(118\) −21.1970 −1.95134
\(119\) 0 0
\(120\) −16.1532 + 27.9781i −1.47458 + 2.55404i
\(121\) −9.52628 + 5.50000i −0.866025 + 0.500000i
\(122\) 9.93462 + 9.93462i 0.899438 + 0.899438i
\(123\) 0 0
\(124\) 0 0
\(125\) −7.40762 + 7.40762i −0.662557 + 0.662557i
\(126\) 13.2859 + 23.0118i 1.18360 + 2.05005i
\(127\) 8.22111 + 4.74646i 0.729506 + 0.421180i 0.818241 0.574875i \(-0.194949\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 2.92820 + 10.9282i 0.258819 + 0.965926i
\(129\) 0 0
\(130\) 17.5583 5.24389i 1.53996 0.459919i
\(131\) −21.8267 −1.90701 −0.953505 0.301377i \(-0.902554\pi\)
−0.953505 + 0.301377i \(0.902554\pi\)
\(132\) 0 0
\(133\) 11.0831 19.1965i 0.961027 1.66455i
\(134\) 0 0
\(135\) −33.1269 33.1269i −2.85111 2.85111i
\(136\) 0 0
\(137\) −13.0526 3.49743i −1.11516 0.298805i −0.346235 0.938148i \(-0.612540\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) −11.0628 + 11.0628i −0.941731 + 0.941731i
\(139\) −6.23715 10.8031i −0.529028 0.916304i −0.999427 0.0338497i \(-0.989223\pi\)
0.470399 0.882454i \(-0.344110\pi\)
\(140\) 16.4686 + 9.50817i 1.39185 + 0.803587i
\(141\) 0 0
\(142\) 23.4422i 1.96723i
\(143\) 0 0
\(144\) −28.4064 −2.36720
\(145\) 0 0
\(146\) 0 0
\(147\) 19.2674 11.1241i 1.58915 0.917496i
\(148\) 0 0
\(149\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(150\) −34.3643 9.20788i −2.80583 0.751820i
\(151\) −13.5035 + 13.5035i −1.09890 + 1.09890i −0.104357 + 0.994540i \(0.533278\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) 11.8483 + 20.5219i 0.961027 + 1.66455i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 16.6603 + 15.7391i 1.33389 + 1.26014i
\(157\) −23.0707 −1.84124 −0.920622 0.390455i \(-0.872318\pi\)
−0.920622 + 0.390455i \(0.872318\pi\)
\(158\) 21.5035 5.76185i 1.71073 0.458388i
\(159\) 0 0
\(160\) −17.6057 + 10.1647i −1.39185 + 0.803587i
\(161\) 6.51187 + 6.51187i 0.513207 + 0.513207i
\(162\) 7.36730 27.4951i 0.578830 2.16022i
\(163\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 10.1001 + 5.83132i 0.783923 + 0.452598i
\(167\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(168\) 23.7842i 1.83499i
\(169\) −0.738629 12.9790i −0.0568176 0.998385i
\(170\) 0 0
\(171\) −57.4701 + 15.3991i −4.39485 + 1.17760i
\(172\) 0 0
\(173\) 11.9941 6.92480i 0.911895 0.526483i 0.0308546 0.999524i \(-0.490177\pi\)
0.881040 + 0.473041i \(0.156844\pi\)
\(174\) 0 0
\(175\) −5.41999 + 20.2277i −0.409713 + 1.52907i
\(176\) 0 0
\(177\) 33.6852 33.6852i 2.53193 2.53193i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) −13.2108 49.3035i −0.984677 3.67486i
\(181\) 7.32755i 0.544652i 0.962205 + 0.272326i \(0.0877929\pi\)
−0.962205 + 0.272326i \(0.912207\pi\)
\(182\) 9.26443 9.80665i 0.686725 0.726917i
\(183\) −31.5752 −2.33411
\(184\) −9.50956 + 2.54808i −0.701054 + 0.187847i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −33.3150 8.92674i −2.42331 0.649324i
\(190\) −30.1086 + 30.1086i −2.18431 + 2.18431i
\(191\) −2.38751 4.13530i −0.172754 0.299219i 0.766627 0.642092i \(-0.221933\pi\)
−0.939382 + 0.342873i \(0.888600\pi\)
\(192\) −22.0199 12.7132i −1.58915 0.917496i
\(193\) 1.52193 + 5.67992i 0.109551 + 0.408850i 0.998822 0.0485316i \(-0.0154541\pi\)
−0.889271 + 0.457381i \(0.848787\pi\)
\(194\) 0 0
\(195\) −19.5694 + 36.2361i −1.40139 + 2.59492i
\(196\) 14.0000 1.00000
\(197\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −15.8301 15.8301i −1.11936 1.11936i
\(201\) 0 0
\(202\) 20.7142 + 5.55035i 1.45744 + 0.390521i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 24.7188i 1.71808i
\(208\) 4.12715 + 13.8191i 0.286166 + 0.958180i
\(209\) 0 0
\(210\) −41.2810 + 11.0612i −2.84866 + 0.763297i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) 37.2532 + 37.2532i 2.55255 + 2.55255i
\(214\) 0 0
\(215\) 0 0
\(216\) 26.0722 26.0722i 1.77399 1.77399i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(224\) −7.48331 + 12.9615i −0.500000 + 0.866025i
\(225\) 48.6788 28.1047i 3.24525 1.87365i
\(226\) −21.2250 21.2250i −1.41186 1.41186i
\(227\) −2.89290 + 10.7964i −0.192008 + 0.716585i 0.801013 + 0.598647i \(0.204295\pi\)
−0.993021 + 0.117938i \(0.962372\pi\)
\(228\) −51.4412 13.7836i −3.40678 0.912843i
\(229\) 2.33013 2.33013i 0.153979 0.153979i −0.625913 0.779893i \(-0.715274\pi\)
0.779893 + 0.625913i \(0.215274\pi\)
\(230\) −8.84514 15.3202i −0.583231 1.01019i
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1628i 1.32091i 0.750867 + 0.660454i \(0.229636\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) −36.1965 + 1.02913i −2.36624 + 0.0672764i
\(235\) 0 0
\(236\) 28.9556 7.75863i 1.88485 0.505044i
\(237\) −25.0159 + 43.3287i −1.62495 + 2.81450i
\(238\) 0 0
\(239\) 21.8599 + 21.8599i 1.41400 + 1.41400i 0.719264 + 0.694737i \(0.244479\pi\)
0.694737 + 0.719264i \(0.255521\pi\)
\(240\) 11.8249 44.1313i 0.763297 2.84866i
\(241\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(242\) 11.0000 11.0000i 0.707107 0.707107i
\(243\) 12.4320 + 21.5329i 0.797514 + 1.38134i
\(244\) −17.2073 9.93462i −1.10158 0.635999i
\(245\) 6.51092 + 24.2991i 0.415967 + 1.55241i
\(246\) 0 0
\(247\) 15.8411 + 25.7206i 1.00795 + 1.63656i
\(248\) 0 0
\(249\) −25.3175 + 6.78380i −1.60443 + 0.429906i
\(250\) 7.40762 12.8304i 0.468499 0.811464i
\(251\) 21.1387 12.2045i 1.33426 0.770338i 0.348315 0.937378i \(-0.386754\pi\)
0.985950 + 0.167039i \(0.0534207\pi\)
\(252\) −26.5717 26.5717i −1.67386 1.67386i
\(253\) 0 0
\(254\) −12.9676 3.47465i −0.813658 0.218019i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −22.0656 + 13.5901i −1.36845 + 0.842819i
\(261\) 0 0
\(262\) 29.8159 7.98914i 1.84203 0.493571i
\(263\) 11.6059 20.1021i 0.715653 1.23955i −0.247054 0.969002i \(-0.579463\pi\)
0.962707 0.270546i \(-0.0872041\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −8.11340 + 30.2796i −0.497464 + 1.85656i
\(267\) 0 0
\(268\) 0 0
\(269\) 4.58095 + 7.93445i 0.279306 + 0.483772i 0.971212 0.238215i \(-0.0765624\pi\)
−0.691907 + 0.721987i \(0.743229\pi\)
\(270\) 57.3774 + 33.1269i 3.49188 + 2.01604i
\(271\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(272\) 0 0
\(273\) 0.861676 + 30.3068i 0.0521510 + 1.83425i
\(274\) 19.1103 1.15449
\(275\) 0 0
\(276\) 11.0628 19.1614i 0.665905 1.15338i
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) 12.4743 + 12.4743i 0.748159 + 0.748159i
\(279\) 0 0
\(280\) −25.9768 6.96046i −1.55241 0.415967i
\(281\) −7.51669 + 7.51669i −0.448408 + 0.448408i −0.894825 0.446417i \(-0.852700\pi\)
0.446417 + 0.894825i \(0.352700\pi\)
\(282\) 0 0
\(283\) 12.0113 + 6.93471i 0.713996 + 0.412226i 0.812539 0.582907i \(-0.198085\pi\)
−0.0985428 + 0.995133i \(0.531418\pi\)
\(284\) 8.58045 + 32.0227i 0.509156 + 1.90020i
\(285\) 95.6942i 5.66843i
\(286\) 0 0
\(287\) 0 0
\(288\) 38.8038 10.3975i 2.28654 0.612676i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −22.3139 5.97899i −1.30359 0.349296i −0.460784 0.887512i \(-0.652432\pi\)
−0.842807 + 0.538216i \(0.819098\pi\)
\(294\) −22.2481 + 22.2481i −1.29754 + 1.29754i
\(295\) 26.9325 + 46.6485i 1.56807 + 2.71598i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −12.0251 + 3.59139i −0.695432 + 0.207695i
\(300\) 50.3128 2.90481
\(301\) 0 0
\(302\) 13.5035 23.3887i 0.777037 1.34587i
\(303\) −41.7383 + 24.0976i −2.39780 + 1.38437i
\(304\) −23.6967 23.6967i −1.35910 1.35910i
\(305\) 9.24050 34.4860i 0.529110 1.97466i
\(306\) 0 0
\(307\) 12.7791 12.7791i 0.729342 0.729342i −0.241146 0.970489i \(-0.577523\pi\)
0.970489 + 0.241146i \(0.0775234\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −28.5192 15.4019i −1.61458 0.871962i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 31.5152 8.44447i 1.77851 0.476549i
\(315\) 33.7616 58.4768i 1.90225 3.29479i
\(316\) −27.2654 + 15.7417i −1.53380 + 0.885537i
\(317\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 20.3293 20.3293i 1.13644 1.13644i
\(321\) 0 0
\(322\) −11.2789 6.51187i −0.628548 0.362892i
\(323\) 0 0
\(324\) 40.2557i 2.23643i
\(325\) −20.7448 19.5978i −1.15072 1.08709i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(332\) −15.9315 4.26882i −0.874353 0.234282i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) −8.70563 32.4899i −0.474931 1.77247i
\(337\) 0.708287i 0.0385828i −0.999814 0.0192914i \(-0.993859\pi\)
0.999814 0.0192914i \(-0.00614103\pi\)
\(338\) 5.75963 + 17.4593i 0.313283 + 0.949660i
\(339\) 67.4593 3.66389
\(340\) 0 0
\(341\) 0 0
\(342\) 72.8692 42.0710i 3.94031 2.27494i
\(343\) 13.0958 + 13.0958i 0.707107 + 0.707107i
\(344\) 0 0
\(345\) 38.4024 + 10.2899i 2.06752 + 0.553989i
\(346\) −13.8496 + 13.8496i −0.744559 + 0.744559i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 8.15771 + 30.4450i 0.436672 + 1.62968i 0.737032 + 0.675857i \(0.236226\pi\)
−0.300360 + 0.953826i \(0.597107\pi\)
\(350\) 29.6154i 1.58301i
\(351\) 32.2777 34.1668i 1.72285 1.82369i
\(352\) 0 0
\(353\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(354\) −33.6852 + 58.3444i −1.79035 + 3.10097i
\(355\) −51.5896 + 29.7853i −2.73809 + 1.58084i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −2.74963 + 2.74963i −0.145120 + 0.145120i −0.775934 0.630814i \(-0.782721\pi\)
0.630814 + 0.775934i \(0.282721\pi\)
\(360\) 36.0926 + 62.5143i 1.90225 + 3.29479i
\(361\) −44.3332 25.5958i −2.33333 1.34715i
\(362\) −2.68207 10.0096i −0.140966 0.526094i
\(363\) 34.9613i 1.83499i
\(364\) −9.06596 + 16.7871i −0.475185 + 0.879886i
\(365\) 0 0
\(366\) 43.1325 11.5573i 2.25457 0.604111i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) 12.0576 6.96148i 0.628548 0.362892i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 8.61757 + 32.1612i 0.445009 + 1.66080i
\(376\) 0 0
\(377\) 0 0
\(378\) 48.7766 2.50880
\(379\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(380\) 30.1086 52.1496i 1.54454 2.67522i
\(381\) 26.1292 15.0857i 1.33864 0.772863i
\(382\) 4.77503 + 4.77503i 0.244312 + 0.244312i
\(383\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(384\) 34.7331 + 9.30671i 1.77247 + 0.474931i
\(385\) 0 0
\(386\) −4.15799 7.20185i −0.211636 0.366565i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) 13.4690 56.6623i 0.682029 2.86921i
\(391\) 0 0
\(392\) −19.1244 + 5.12436i −0.965926 + 0.258819i
\(393\) −34.6860 + 60.0778i −1.74967 + 3.03053i
\(394\) 0 0
\(395\) −40.0022 40.0022i −2.01273 2.01273i
\(396\) 0 0
\(397\) 12.3640 + 3.31292i 0.620531 + 0.166271i 0.555369 0.831604i \(-0.312577\pi\)
0.0651619 + 0.997875i \(0.479244\pi\)
\(398\) 0 0
\(399\) −35.2254 61.0123i −1.76348 3.05443i
\(400\) 27.4185 + 15.8301i 1.37093 + 0.791505i
\(401\) −4.10862 15.3336i −0.205175 0.765723i −0.989396 0.145242i \(-0.953604\pi\)
0.784221 0.620481i \(-0.213063\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −30.3277 −1.50886
\(405\) −69.8697 + 18.7215i −3.47185 + 0.930280i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(410\) 0 0
\(411\) −30.3691 + 30.3691i −1.49800 + 1.49800i
\(412\) 0 0
\(413\) 34.3430 + 19.8279i 1.68991 + 0.975670i
\(414\) 9.04771 + 33.7665i 0.444671 + 1.65953i
\(415\) 29.6367i 1.45481i
\(416\) −10.6959 17.3666i −0.524411 0.851465i
\(417\) −39.6471 −1.94153
\(418\) 0 0
\(419\) −20.4156 + 35.3609i −0.997368 + 1.72749i −0.435897 + 0.899996i \(0.643569\pi\)
−0.561471 + 0.827496i \(0.689764\pi\)
\(420\) 52.3423 30.2198i 2.55404 1.47458i
\(421\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −64.5245 37.2532i −3.12622 1.80492i
\(427\) −6.80294 25.3889i −0.329217 1.22866i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 39.4101 10.5599i 1.89832 0.508653i 0.901146 0.433515i \(-0.142727\pi\)
0.997173 0.0751385i \(-0.0239399\pi\)
\(432\) −26.0722 + 45.1583i −1.25440 + 2.17268i
\(433\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 20.6205 20.6205i 0.986412 0.986412i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 49.7111i 2.36720i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 5.47817 20.4448i 0.258819 0.965926i
\(449\) −35.4281 9.49293i −1.67196 0.447999i −0.706319 0.707894i \(-0.749646\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(450\) −56.2094 + 56.2094i −2.64974 + 2.64974i
\(451\) 0 0
\(452\) 36.7627 + 21.2250i 1.72917 + 0.998339i
\(453\) 15.7091 + 58.6272i 0.738078 + 2.75455i
\(454\) 15.8071i 0.741863i
\(455\) −33.3529 7.92819i −1.56361 0.371679i
\(456\) 75.3152 3.52696
\(457\) 38.0460 10.1944i 1.77972 0.476873i 0.789184 0.614157i \(-0.210504\pi\)
0.990532 + 0.137283i \(0.0438371\pi\)
\(458\) −2.33013 + 4.03590i −0.108880 + 0.188585i
\(459\) 0 0
\(460\) 17.6903 + 17.6903i 0.824813 + 0.824813i
\(461\) 7.96628 29.7306i 0.371027 1.38469i −0.488038 0.872822i \(-0.662287\pi\)
0.859064 0.511867i \(-0.171046\pi\)
\(462\) 0 0
\(463\) 28.2019 28.2019i 1.31065 1.31065i 0.389716 0.920935i \(-0.372573\pi\)
0.920935 0.389716i \(-0.127427\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −7.38009 27.5429i −0.341876 1.27590i
\(467\) 6.08508i 0.281584i −0.990039 0.140792i \(-0.955035\pi\)
0.990039 0.140792i \(-0.0449649\pi\)
\(468\) 49.0687 14.6547i 2.26820 0.677412i
\(469\) 0 0
\(470\) 0 0
\(471\) −36.6628 + 63.5019i −1.68933 + 2.92601i
\(472\) −36.7142 + 21.1970i −1.68991 + 0.975670i
\(473\) 0 0
\(474\) 18.3129 68.3446i 0.841138 3.13917i
\(475\) 64.0531 + 17.1630i 2.93896 + 0.787491i
\(476\) 0 0
\(477\) 0 0
\(478\) −37.8625 21.8599i −1.73179 0.999850i
\(479\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(480\) 64.6127i 2.94915i
\(481\) 0 0
\(482\) 0 0
\(483\) 28.2722 7.57551i 1.28643 0.344698i
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) −24.8640 24.8640i −1.12786 1.12786i
\(487\) 11.0039 41.0670i 0.498633 1.86092i −0.0100195 0.999950i \(-0.503189\pi\)
0.508652 0.860972i \(-0.330144\pi\)
\(488\) 27.1419 + 7.27265i 1.22866 + 0.329217i
\(489\) 0 0
\(490\) −17.7882 30.8100i −0.803587 1.39185i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −31.0538 29.3368i −1.39717 1.31992i
\(495\) 0 0
\(496\) 0 0
\(497\) −21.9282 + 37.9807i −0.983614 + 1.70367i
\(498\) 32.1013 18.5337i 1.43849 0.830515i
\(499\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(500\) −5.42275 + 20.2380i −0.242513 + 0.905070i
\(501\) 0 0
\(502\) −24.4089 + 24.4089i −1.08942 + 1.08942i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 46.0236 + 26.5717i 2.05005 + 1.18360i
\(505\) −14.1044 52.6382i −0.627636 2.34237i
\(506\) 0 0
\(507\) −36.8983 18.5925i −1.63871 0.825722i
\(508\) 18.9858 0.842361
\(509\) 2.77450 0.743425i 0.122978 0.0329518i −0.196805 0.980443i \(-0.563057\pi\)
0.319783 + 0.947491i \(0.396390\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 + 16.0000i 0.707107 + 0.707107i
\(513\) −28.2674 + 105.495i −1.24804 + 4.65774i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 44.0182i 1.93218i
\(520\) 25.1679 26.6409i 1.10369 1.16828i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 22.8055 39.5002i 0.997214 1.72723i 0.434005 0.900910i \(-0.357100\pi\)
0.563209 0.826315i \(-0.309567\pi\)
\(524\) −37.8050 + 21.8267i −1.65152 + 0.953505i
\(525\) 47.0633 + 47.0633i 2.05401 + 2.05401i
\(526\) −8.49614 + 31.7080i −0.370449 + 1.38254i
\(527\) 0 0
\(528\) 0 0
\(529\) −5.44222 9.42621i −0.236618 0.409835i
\(530\) 0 0
\(531\) −27.5493 102.815i −1.19554 4.46181i
\(532\) 44.3324i 1.92205i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −9.16191 9.16191i −0.394998 0.394998i
\(539\) 0 0
\(540\) −90.5043 24.2506i −3.89468 1.04358i
\(541\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(542\) 0 0
\(543\) 20.1690 + 11.6446i 0.865534 + 0.499716i
\(544\) 0 0
\(545\) 0 0
\(546\) −12.2701 41.0845i −0.525113 1.75825i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −26.1051 + 6.99485i −1.11516 + 0.298805i
\(549\) −35.2758 + 61.0995i −1.50554 + 2.60766i
\(550\) 0 0
\(551\) 0 0
\(552\) −8.09856 + 30.2242i −0.344698 + 1.28643i
\(553\) −40.2294 10.7794i −1.71073 0.458388i
\(554\) 0 0
\(555\) 0 0
\(556\) −21.6061 12.4743i −0.916304 0.529028i
\(557\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 38.0327 1.60717
\(561\) 0 0
\(562\) 7.51669 13.0193i 0.317072 0.549185i
\(563\) −8.63468 + 4.98523i −0.363908 + 0.210103i −0.670794 0.741644i \(-0.734046\pi\)
0.306886 + 0.951746i \(0.400713\pi\)
\(564\) 0 0
\(565\) −19.7420 + 73.6782i −0.830553 + 3.09966i
\(566\) −18.9460 5.07656i −0.796359 0.213384i
\(567\) −37.6557 + 37.6557i −1.58139 + 1.58139i
\(568\) −23.4422 40.6031i −0.983614 1.70367i
\(569\) −39.2039 22.6344i −1.64351 0.948882i −0.979571 0.201097i \(-0.935549\pi\)
−0.663941 0.747785i \(-0.731117\pi\)
\(570\) 35.0265 + 130.721i 1.46710 + 5.47529i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) −15.1765 −0.634006
\(574\) 0 0
\(575\) −13.7751 + 23.8592i −0.574462 + 0.994997i
\(576\) −49.2013 + 28.4064i −2.05005 + 1.18360i
\(577\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(578\) −6.22243 + 23.2224i −0.258819 + 0.965926i
\(579\) 18.0525 + 4.83715i 0.750236 + 0.201025i
\(580\) 0 0
\(581\) −10.9094 18.8956i −0.452598 0.783923i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) 48.2555 + 78.3506i 1.99512 + 3.23940i
\(586\) 32.6698 1.34958
\(587\) −9.34420 + 2.50377i −0.385676 + 0.103342i −0.446447 0.894810i \(-0.647311\pi\)
0.0607706 + 0.998152i \(0.480644\pi\)
\(588\) 22.2481 38.5348i 0.917496 1.58915i
\(589\) 0 0
\(590\) −53.8650 53.8650i −2.21759 2.21759i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 15.1121 9.30743i 0.617981 0.380609i
\(599\) 1.39767 0.0571073 0.0285537 0.999592i \(-0.490910\pi\)
0.0285537 + 0.999592i \(0.490910\pi\)
\(600\) −68.7285 + 18.4158i −2.80583 + 0.751820i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) −9.88523 + 36.8922i −0.402224 + 1.50112i
\(605\) −38.1843 10.2314i −1.55241 0.415967i
\(606\) 48.1952 48.1952i 1.95780 1.95780i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 41.0439 + 23.6967i 1.66455 + 0.961027i
\(609\) 0 0
\(610\) 50.4910i 2.04432i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(614\) −12.7791 + 22.1341i −0.515723 + 0.893258i
\(615\) 0 0
\(616\) 0 0
\(617\) −9.33281 + 34.8305i −0.375725 + 1.40222i 0.476558 + 0.879143i \(0.341884\pi\)
−0.852283 + 0.523081i \(0.824782\pi\)
\(618\) 0 0
\(619\) 32.0324 32.0324i 1.28749 1.28749i 0.351185 0.936306i \(-0.385779\pi\)
0.936306 0.351185i \(-0.114221\pi\)
\(620\) 0 0
\(621\) −39.2961 22.6876i −1.57690 0.910423i
\(622\) 0 0
\(623\) 0 0
\(624\) 44.5955 + 10.6006i 1.78525 + 0.424365i
\(625\) 1.92727 0.0770908
\(626\) 0 0
\(627\) 0 0
\(628\) −39.9597 + 23.0707i −1.59456 + 0.920622i
\(629\) 0 0
\(630\) −24.7152 + 92.2384i −0.984677 + 3.67486i
\(631\) −10.5031 2.81430i −0.418122 0.112035i 0.0436231 0.999048i \(-0.486110\pi\)
−0.461745 + 0.887013i \(0.652777\pi\)
\(632\) 31.4833 31.4833i 1.25234 1.25234i
\(633\) 0 0
\(634\) 0 0
\(635\) 8.82966 + 32.9527i 0.350394 + 1.30769i
\(636\) 0 0
\(637\) −24.1834 + 7.22251i −0.958180 + 0.286166i
\(638\) 0 0
\(639\) 113.706 30.4674i 4.49814 1.20527i
\(640\) −20.3293 + 35.2114i −0.803587 + 1.39185i
\(641\) 24.0569 13.8892i 0.950189 0.548592i 0.0570491 0.998371i \(-0.481831\pi\)
0.893140 + 0.449780i \(0.148498\pi\)
\(642\) 0 0
\(643\) 2.28299 8.52022i 0.0900322 0.336005i −0.906187 0.422876i \(-0.861020\pi\)
0.996219 + 0.0868719i \(0.0276871\pi\)
\(644\) 17.7908 + 4.76702i 0.701054 + 0.187847i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) −14.7346 54.9903i −0.578830 2.16022i
\(649\) 0 0
\(650\) 35.5113 + 19.1780i 1.39287 + 0.752223i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) −55.4653 55.4653i −2.16721 2.16721i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −3.66711 13.6858i −0.142634 0.532317i −0.999849 0.0173592i \(-0.994474\pi\)
0.857215 0.514958i \(-0.172193\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 23.3253 0.905197
\(665\) 76.9455 20.6175i 2.98382 0.799512i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 23.7842 + 41.1955i 0.917496 + 1.58915i
\(673\) 38.8844 + 22.4499i 1.49889 + 0.865382i 0.999999 0.00128586i \(-0.000409302\pi\)
0.498886 + 0.866668i \(0.333743\pi\)
\(674\) 0.259251 + 0.967538i 0.00998598 + 0.0372682i
\(675\) 103.181i 3.97145i
\(676\) −14.2583 21.7417i −0.548398 0.836218i
\(677\) −16.0501 −0.616854 −0.308427 0.951248i \(-0.599802\pi\)
−0.308427 + 0.951248i \(0.599802\pi\)
\(678\) −92.1512 + 24.6918i −3.53904 + 0.948284i
\(679\) 0 0
\(680\) 0 0
\(681\) 25.1198 + 25.1198i 0.962594 + 0.962594i
\(682\) 0 0
\(683\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(684\) −84.1421 + 84.1421i −3.21725 + 3.21725i
\(685\) −24.2812 42.0563i −0.927737 1.60689i
\(686\) −22.6826 13.0958i −0.866025 0.500000i
\(687\) −2.71073 10.1166i −0.103421 0.385972i
\(688\) 0 0
\(689\) 0 0
\(690\) −56.2250 −2.14045
\(691\) −2.10151 + 0.563098i −0.0799452 + 0.0214213i −0.298570 0.954388i \(-0.596510\pi\)
0.218625 + 0.975809i \(0.429843\pi\)
\(692\) 13.8496 23.9882i 0.526483 0.911895i
\(693\) 0 0
\(694\) 0 0
\(695\) 11.6027 43.3020i 0.440117 1.64254i
\(696\) 0 0
\(697\) 0 0
\(698\) −22.2873 38.6027i −0.843586 1.46113i
\(699\) 55.4978 + 32.0417i 2.09912 + 1.21193i
\(700\) 10.8400 + 40.4554i 0.409713 + 1.52907i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −31.5862 + 58.4871i −1.19214 + 2.20745i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −28.3689 28.3689i −1.06692 1.06692i
\(708\) 24.6593 92.0296i 0.926751 3.45868i
\(709\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(710\) 59.5706 59.5706i 2.23564 2.23564i
\(711\) 55.8954 + 96.8137i 2.09624 + 3.63080i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 94.9079 25.4305i 3.54440 0.949719i
\(718\) 2.74963 4.76250i 0.102615 0.177735i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −72.1853 72.1853i −2.69019 2.69019i
\(721\) 0 0
\(722\) 69.9290 + 18.7374i 2.60249 + 0.697335i
\(723\) 0 0
\(724\) 7.32755 + 12.6917i 0.272326 + 0.471683i
\(725\) 0 0
\(726\) −12.7967 47.7580i −0.474931 1.77247i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) 6.23981 26.2500i 0.231263 0.972891i
\(729\) 18.6419 0.690439
\(730\) 0 0
\(731\) 0 0
\(732\) −54.6899 + 31.5752i −2.02140 + 1.16705i
\(733\) −9.86103 9.86103i −0.364226 0.364226i 0.501140 0.865366i \(-0.332914\pi\)
−0.865366 + 0.501140i \(0.832914\pi\)
\(734\) 0 0
\(735\) 77.2298 + 20.6937i 2.84866 + 0.763297i
\(736\) −13.9230 + 13.9230i −0.513207 + 0.513207i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(740\) 0 0
\(741\) 95.9696 2.72859i 3.52553 0.100237i
\(742\) 0 0
\(743\) −31.7715 + 8.51314i −1.16558 + 0.312317i −0.789193 0.614145i \(-0.789501\pi\)
−0.376389 + 0.926462i \(0.622834\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −15.1577 + 56.5694i −0.554592 + 2.06977i
\(748\) 0 0
\(749\) 0 0
\(750\) −23.5436 40.7788i −0.859692 1.48903i
\(751\) 47.2211 + 27.2631i 1.72312 + 0.994845i 0.912263 + 0.409605i \(0.134333\pi\)
0.810860 + 0.585240i \(0.199000\pi\)
\(752\) 0 0
\(753\) 77.5788i 2.82713i
\(754\) 0 0
\(755\) −68.6291 −2.49767
\(756\) −66.6301 + 17.8535i −2.42331 + 0.649324i
\(757\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −22.0410 + 82.2582i −0.799512 + 2.98382i
\(761\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(762\) −30.1714 + 30.1714i −1.09299 + 1.09299i
\(763\) 0 0
\(764\) −8.27059 4.77503i −0.299219 0.172754i
\(765\) 0 0
\(766\) 0 0
\(767\) −46.0148 + 28.3401i −1.66150 + 1.02330i
\(768\) −50.8528 −1.83499
\(769\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) 8.31598 + 8.31598i 0.299299 + 0.299299i
\(773\) −11.0711 + 41.3179i −0.398200 + 1.48610i 0.418061 + 0.908419i \(0.362710\pi\)
−0.816261 + 0.577683i \(0.803957\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) 2.34085 + 82.3321i 0.0838158 + 2.94796i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 14.0000i 0.866025 0.500000i
\(785\) −58.6265 58.6265i −2.09247 2.09247i
\(786\) 25.3919 94.7638i 0.905698 3.38011i
\(787\) 54.1833 + 14.5184i 1.93142 + 0.517524i 0.971154 + 0.238451i \(0.0766398\pi\)
0.960270 + 0.279072i \(0.0900269\pi\)
\(788\) 0 0
\(789\) −36.8872 63.8904i −1.31322 2.27456i
\(790\) 69.2858 + 40.0022i 2.46508 + 1.42321i
\(791\) 14.5342 + 54.2425i 0.516778 + 1.92864i
\(792\) 0 0
\(793\) 34.8488 + 8.28378i 1.23752 + 0.294166i
\(794\) −18.1021 −0.642421
\(795\) 0 0
\(796\) 0 0
\(797\) −23.9344 + 13.8185i −0.847799 + 0.489477i −0.859908 0.510449i \(-0.829479\pi\)
0.0121083 + 0.999927i \(0.496146\pi\)
\(798\) 70.4509 + 70.4509i 2.49393 + 2.49393i
\(799\) 0 0
\(800\) −43.2486 11.5884i −1.52907 0.409713i
\(801\) 0 0
\(802\) 11.2250 + 19.4422i 0.396368 + 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 33.0955i 1.16646i
\(806\) 0 0
\(807\) 29.1193 1.02505
\(808\) 41.4284 11.1007i 1.45744 0.390521i
\(809\) 5.83746 10.1108i 0.205234 0.355476i −0.744973 0.667094i \(-0.767538\pi\)
0.950207 + 0.311619i \(0.100871\pi\)
\(810\) 88.5912 51.1482i 3.11278 1.79716i
\(811\) 37.6558 + 37.6558i 1.32227 + 1.32227i 0.911932 + 0.410341i \(0.134590\pi\)
0.410341 + 0.911932i \(0.365410\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 59.6077 + 32.1914i 2.08286 + 1.12486i
\(820\) 0 0
\(821\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(822\) 30.3691 52.6009i 1.05924 1.83467i
\(823\) 48.5187 28.0123i 1.69126 0.976448i 0.737752 0.675072i \(-0.235888\pi\)
0.953506 0.301376i \(-0.0974458\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −54.1710 14.5151i −1.88485 0.505044i
\(827\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(828\) −24.7188 42.8142i −0.859038 1.48790i
\(829\) −29.4394 16.9968i −1.02247 0.590324i −0.107653 0.994189i \(-0.534333\pi\)
−0.914819 + 0.403864i \(0.867667\pi\)
\(830\) 10.8478 + 40.4845i 0.376532 + 1.40524i
\(831\) 0 0
\(832\) 20.9675 + 19.8082i 0.726917 + 0.686725i
\(833\) 0 0
\(834\) 54.1589 14.5118i 1.87537 0.502504i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 14.9453 55.7765i 0.516276 1.92677i
\(839\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(840\) −60.4396 + 60.4396i −2.08537 + 2.08537i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) 8.74445 + 32.6347i 0.301175 + 1.12400i
\(844\) 0 0
\(845\) 31.1048 34.8588i 1.07004 1.19918i
\(846\) 0 0
\(847\) −28.1116 + 7.53248i −0.965926 + 0.258819i
\(848\) 0 0
\(849\) 38.1754 22.0406i 1.31018 0.756431i
\(850\) 0 0
\(851\) 0 0
\(852\) 101.778 + 27.2712i 3.48685 + 0.934297i
\(853\) −41.3036 + 41.3036i −1.41421 + 1.41421i −0.705350 + 0.708860i \(0.749210\pi\)
−0.708860 + 0.705350i \(0.750790\pi\)
\(854\) 18.5860 + 32.1919i 0.635999 + 1.10158i
\(855\) −185.173 106.910i −6.33277 3.65623i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) 58.6158 1.99994 0.999972 0.00751074i \(-0.00239076\pi\)
0.999972 + 0.00751074i \(0.00239076\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −49.9701 + 28.8502i −1.70199 + 0.982643i
\(863\) 29.0285 + 29.0285i 0.988143 + 0.988143i 0.999931 0.0117879i \(-0.00375228\pi\)
−0.0117879 + 0.999931i \(0.503752\pi\)
\(864\) 19.0862 71.2305i 0.649324 2.42331i
\(865\) 48.0761 + 12.8819i 1.63464 + 0.437999i
\(866\) 0 0
\(867\) −27.0156 46.7923i −0.917496 1.58915i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −20.6205 + 35.7158i −0.697499 + 1.20810i
\(875\) −24.0034 + 13.8584i −0.811464 + 0.468499i
\(876\) 0 0
\(877\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(878\) 0 0
\(879\) −51.9172 + 51.9172i −1.75112 + 1.75112i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) 18.1955 + 67.9067i 0.612676 + 2.28654i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 171.199 5.75480
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 17.7596 + 17.7596i 0.595639 + 0.595639i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) −9.22452 + 38.8063i −0.307998 + 1.29571i
\(898\) 51.8704 1.73094
\(899\) 0 0
\(900\) 56.2094 97.3576i 1.87365 3.24525i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −57.9877 15.5378i −1.92864 0.516778i
\(905\) −18.6205 + 18.6205i −0.618967 + 0.618967i
\(906\) −42.9181 74.3363i −1.42586 2.46966i
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) 5.78580 + 21.5929i 0.192008 + 0.716585i
\(909\) 107.687i 3.57176i
\(910\) 48.4628 1.37788i 1.60653 0.0456764i
\(911\) −52.1724 −1.72855 −0.864274 0.503022i \(-0.832222\pi\)
−0.864274 + 0.503022i \(0.832222\pi\)
\(912\) −102.882 + 27.5673i −3.40678 + 0.912843i
\(913\) 0 0
\(914\) −48.2404 + 27.8516i −1.59565 + 0.921249i
\(915\) −80.2378 80.2378i −2.65258 2.65258i
\(916\) 1.70577 6.36603i 0.0563603 0.210340i
\(917\) −55.7804 14.9463i −1.84203 0.493571i
\(918\) 0 0
\(919\) −30.3077 52.4946i −0.999760 1.73164i −0.518840 0.854872i \(-0.673636\pi\)
−0.480921 0.876764i \(-0.659697\pi\)
\(920\) −30.6405 17.6903i −1.01019 0.583231i
\(921\) −14.8664 55.4823i −0.489866 1.82820i
\(922\) 43.5285i 1.43354i
\(923\) −31.3420 50.8888i −1.03164 1.67503i
\(924\) 0 0
\(925\) 0 0
\(926\) −28.2019 + 48.8470i −0.926770 + 1.60521i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(930\) 0 0
\(931\) 41.4692 41.4692i 1.35910 1.35910i
\(932\) 20.1628 + 34.9230i 0.660454 + 1.14394i
\(933\) 0 0
\(934\) 2.22730 + 8.31238i 0.0728793 + 0.271989i
\(935\) 0 0
\(936\) −61.6651 + 37.9790i −2.01559 + 1.24138i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −39.1230 39.1230i −1.27537 1.27537i −0.943228 0.332145i \(-0.892228\pi\)
−0.332145 0.943228i \(-0.607772\pi\)
\(942\) 26.8391 100.165i 0.874464 3.26354i
\(943\) 0 0
\(944\) 42.3939 42.3939i 1.37981 1.37981i
\(945\) −61.9747 107.343i −2.01604 3.49188i
\(946\) 0 0
\(947\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(948\) 100.063i 3.24991i
\(949\) 0 0
\(950\) −93.7802 −3.04263
\(951\) 0 0
\(952\) 0 0
\(953\) 45.8326 26.4615i 1.48466 0.857171i 0.484817 0.874616i \(-0.338886\pi\)
0.999848 + 0.0174443i \(0.00555298\pi\)
\(954\) 0 0
\(955\) 4.44140 16.5755i 0.143720 0.536372i
\(956\) 59.7224 + 16.0026i 1.93156 + 0.517560i
\(957\) 0 0
\(958\) 0 0
\(959\) −30.9622 17.8760i −0.999822 0.577247i
\(960\) −23.6499 88.2626i −0.763297 2.84866i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −10.5661 + 18.3011i −0.340136 + 0.589133i
\(966\) −35.8477 + 20.6967i −1.15338 + 0.665905i
\(967\) 17.7750 + 17.7750i 0.571606 + 0.571606i 0.932577 0.360971i \(-0.117555\pi\)
−0.360971 + 0.932577i \(0.617555\pi\)
\(968\) 8.05256 30.0526i 0.258819 0.965926i
\(969\) 0 0
\(970\) 0 0
\(971\) −24.7630 42.8907i −0.794681 1.37643i −0.923041 0.384701i \(-0.874305\pi\)
0.128360 0.991728i \(-0.459029\pi\)
\(972\) 43.0658 + 24.8640i 1.38134 + 0.797514i
\(973\) −8.54204 31.8793i −0.273845 1.02200i
\(974\) 60.1262i 1.92657i
\(975\) −86.9095 + 25.9561i −2.78333 + 0.831259i
\(976\) −39.7385 −1.27200
\(977\) −51.3562 + 13.7609i −1.64303 + 0.440249i −0.957650 0.287936i \(-0.907031\pi\)
−0.685381 + 0.728184i \(0.740364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 35.5763 + 35.5763i 1.13644 + 1.13644i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 53.1582 + 28.7083i 1.69119 + 0.913332i
\(989\) 0 0
\(990\) 0 0
\(991\) −24.4777 + 42.3965i −0.777558 + 1.34677i 0.155787 + 0.987791i \(0.450209\pi\)
−0.933345 + 0.358980i \(0.883125\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 16.0525 59.9089i 0.509156 1.90020i
\(995\) 0 0
\(996\) −37.0674 + 37.0674i −1.17452 + 1.17452i
\(997\) −2.07298 3.59050i −0.0656519 0.113712i 0.831331 0.555777i \(-0.187579\pi\)
−0.896983 + 0.442065i \(0.854246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.a.293.4 yes 16
7.6 odd 2 inner 728.2.ds.a.293.1 16
8.5 even 2 inner 728.2.ds.a.293.1 16
13.2 odd 12 inner 728.2.ds.a.405.4 yes 16
56.13 odd 2 CM 728.2.ds.a.293.4 yes 16
91.41 even 12 inner 728.2.ds.a.405.1 yes 16
104.93 odd 12 inner 728.2.ds.a.405.1 yes 16
728.405 even 12 inner 728.2.ds.a.405.4 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.a.293.1 16 7.6 odd 2 inner
728.2.ds.a.293.1 16 8.5 even 2 inner
728.2.ds.a.293.4 yes 16 1.1 even 1 trivial
728.2.ds.a.293.4 yes 16 56.13 odd 2 CM
728.2.ds.a.405.1 yes 16 91.41 even 12 inner
728.2.ds.a.405.1 yes 16 104.93 odd 12 inner
728.2.ds.a.405.4 yes 16 13.2 odd 12 inner
728.2.ds.a.405.4 yes 16 728.405 even 12 inner