Properties

Label 728.2.ds.a.405.3
Level $728$
Weight $2$
Character 728.405
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(293,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 405.3
Root \(-1.61083 - 0.636563i\) of defining polynomial
Character \(\chi\) \(=\) 728.405
Dual form 728.2.ds.a.293.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.36603 - 0.366025i) q^{2} +(1.35670 + 2.34987i) q^{3} +(1.73205 + 1.00000i) q^{4} +(-1.16031 + 1.16031i) q^{5} +(-0.993171 - 3.70657i) q^{6} +(-2.55560 + 0.684771i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-2.18125 + 3.77804i) q^{9} +(2.00972 - 1.16031i) q^{10} +5.42679i q^{12} +(-1.89079 - 3.07000i) q^{13} +3.74166 q^{14} +(-4.30077 - 1.15239i) q^{15} +(2.00000 + 3.46410i) q^{16} +(4.36251 - 4.36251i) q^{18} +(-1.09222 - 4.07621i) q^{19} +(-3.17003 + 0.849407i) q^{20} +(-5.07630 - 5.07630i) q^{21} +(-8.21056 + 4.74037i) q^{23} +(1.98634 - 7.41313i) q^{24} +2.30735i q^{25} +(1.45917 + 4.88578i) q^{26} -3.69702 q^{27} +(-5.11120 - 1.36954i) q^{28} +(5.45316 + 3.14838i) q^{30} +(-1.46410 - 5.46410i) q^{32} +(2.17075 - 3.75984i) q^{35} +(-7.55609 + 4.36251i) q^{36} +5.96798i q^{38} +(4.64887 - 8.60817i) q^{39} +4.64125 q^{40} +(5.07630 + 8.79240i) q^{42} +(-1.85277 - 6.91465i) q^{45} +(12.9509 - 3.47019i) q^{46} +(-5.42679 + 9.39947i) q^{48} +(6.06218 - 3.50000i) q^{49} +(0.844549 - 3.15190i) q^{50} +(-0.204942 - 7.20819i) q^{52} +(5.05023 + 1.35320i) q^{54} +(6.48074 + 3.74166i) q^{56} +(8.09674 - 8.09674i) q^{57} +(-6.88963 + 1.84607i) q^{59} +(-6.29677 - 6.29677i) q^{60} +(6.35798 - 11.0123i) q^{61} +(2.98732 - 11.1488i) q^{63} +8.00000i q^{64} +(5.75607 + 1.36825i) q^{65} +(-22.2785 - 12.8625i) q^{69} +(-4.34149 + 4.34149i) q^{70} +(2.82612 + 10.5472i) q^{71} +(11.9186 - 3.19358i) q^{72} +(-5.42197 + 3.13038i) q^{75} +(2.18443 - 8.15241i) q^{76} +(-9.50129 + 10.0574i) q^{78} -8.25834 q^{79} +(-6.34006 - 1.69881i) q^{80} +(1.52802 + 2.64661i) q^{81} +(-12.2473 + 12.2473i) q^{83} +(-3.71611 - 13.8687i) q^{84} +10.1237i q^{90} +(6.93435 + 6.55094i) q^{91} -18.9615 q^{92} +(5.99698 + 3.46236i) q^{95} +(10.8536 - 10.8536i) q^{96} +(-9.56218 + 2.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 32 q^{8} - 32 q^{9} + 40 q^{15} + 32 q^{16} + 64 q^{18} - 96 q^{30} + 32 q^{32} - 48 q^{36} + 8 q^{39} + 24 q^{46} + 136 q^{50} - 72 q^{57} - 32 q^{60} - 112 q^{63} - 16 q^{65} + 16 q^{71}+ \cdots - 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{1}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.36603 0.366025i −0.965926 0.258819i
\(3\) 1.35670 + 2.34987i 0.783289 + 1.35670i 0.930016 + 0.367520i \(0.119793\pi\)
−0.146726 + 0.989177i \(0.546874\pi\)
\(4\) 1.73205 + 1.00000i 0.866025 + 0.500000i
\(5\) −1.16031 + 1.16031i −0.518907 + 0.518907i −0.917241 0.398333i \(-0.869589\pi\)
0.398333 + 0.917241i \(0.369589\pi\)
\(6\) −0.993171 3.70657i −0.405460 1.51320i
\(7\) −2.55560 + 0.684771i −0.965926 + 0.258819i
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) −2.18125 + 3.77804i −0.727085 + 1.25935i
\(10\) 2.00972 1.16031i 0.635529 0.366923i
\(11\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(12\) 5.42679i 1.56658i
\(13\) −1.89079 3.07000i −0.524411 0.851465i
\(14\) 3.74166 1.00000
\(15\) −4.30077 1.15239i −1.11045 0.297545i
\(16\) 2.00000 + 3.46410i 0.500000 + 0.866025i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 4.36251 4.36251i 1.02825 1.02825i
\(19\) −1.09222 4.07621i −0.250572 0.935146i −0.970501 0.241098i \(-0.922492\pi\)
0.719929 0.694048i \(-0.244174\pi\)
\(20\) −3.17003 + 0.849407i −0.708841 + 0.189933i
\(21\) −5.07630 5.07630i −1.10774 1.10774i
\(22\) 0 0
\(23\) −8.21056 + 4.74037i −1.71202 + 0.988436i −0.780189 + 0.625543i \(0.784877\pi\)
−0.931831 + 0.362892i \(0.881789\pi\)
\(24\) 1.98634 7.41313i 0.405460 1.51320i
\(25\) 2.30735i 0.461470i
\(26\) 1.45917 + 4.88578i 0.286166 + 0.958180i
\(27\) −3.69702 −0.711493
\(28\) −5.11120 1.36954i −0.965926 0.258819i
\(29\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(30\) 5.45316 + 3.14838i 0.995607 + 0.574814i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) −1.46410 5.46410i −0.258819 0.965926i
\(33\) 0 0
\(34\) 0 0
\(35\) 2.17075 3.75984i 0.366923 0.635529i
\(36\) −7.55609 + 4.36251i −1.25935 + 0.727085i
\(37\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(38\) 5.96798i 0.968134i
\(39\) 4.64887 8.60817i 0.744415 1.37841i
\(40\) 4.64125 0.733846
\(41\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(42\) 5.07630 + 8.79240i 0.783289 + 1.35670i
\(43\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(44\) 0 0
\(45\) −1.85277 6.91465i −0.276195 1.03077i
\(46\) 12.9509 3.47019i 1.90951 0.511652i
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) −5.42679 + 9.39947i −0.783289 + 1.35670i
\(49\) 6.06218 3.50000i 0.866025 0.500000i
\(50\) 0.844549 3.15190i 0.119437 0.445746i
\(51\) 0 0
\(52\) −0.204942 7.20819i −0.0284203 0.999596i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 5.05023 + 1.35320i 0.687249 + 0.184148i
\(55\) 0 0
\(56\) 6.48074 + 3.74166i 0.866025 + 0.500000i
\(57\) 8.09674 8.09674i 1.07244 1.07244i
\(58\) 0 0
\(59\) −6.88963 + 1.84607i −0.896954 + 0.240338i −0.677707 0.735332i \(-0.737026\pi\)
−0.219246 + 0.975670i \(0.570360\pi\)
\(60\) −6.29677 6.29677i −0.812909 0.812909i
\(61\) 6.35798 11.0123i 0.814056 1.40999i −0.0959480 0.995386i \(-0.530588\pi\)
0.910004 0.414600i \(-0.136078\pi\)
\(62\) 0 0
\(63\) 2.98732 11.1488i 0.376367 1.40462i
\(64\) 8.00000i 1.00000i
\(65\) 5.75607 + 1.36825i 0.713952 + 0.169711i
\(66\) 0 0
\(67\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(68\) 0 0
\(69\) −22.2785 12.8625i −2.68202 1.54846i
\(70\) −4.34149 + 4.34149i −0.518907 + 0.518907i
\(71\) 2.82612 + 10.5472i 0.335399 + 1.25173i 0.903436 + 0.428723i \(0.141036\pi\)
−0.568037 + 0.823003i \(0.692297\pi\)
\(72\) 11.9186 3.19358i 1.40462 0.376367i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) −5.42197 + 3.13038i −0.626075 + 0.361465i
\(76\) 2.18443 8.15241i 0.250572 0.935146i
\(77\) 0 0
\(78\) −9.50129 + 10.0574i −1.07581 + 1.13877i
\(79\) −8.25834 −0.929136 −0.464568 0.885537i \(-0.653790\pi\)
−0.464568 + 0.885537i \(0.653790\pi\)
\(80\) −6.34006 1.69881i −0.708841 0.189933i
\(81\) 1.52802 + 2.64661i 0.169780 + 0.294068i
\(82\) 0 0
\(83\) −12.2473 + 12.2473i −1.34431 + 1.34431i −0.452598 + 0.891715i \(0.649503\pi\)
−0.891715 + 0.452598i \(0.850497\pi\)
\(84\) −3.71611 13.8687i −0.405460 1.51320i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(90\) 10.1237i 1.06714i
\(91\) 6.93435 + 6.55094i 0.726917 + 0.686725i
\(92\) −18.9615 −1.97687
\(93\) 0 0
\(94\) 0 0
\(95\) 5.99698 + 3.46236i 0.615278 + 0.355231i
\(96\) 10.8536 10.8536i 1.10774 1.10774i
\(97\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(98\) −9.56218 + 2.56218i −0.965926 + 0.258819i
\(99\) 0 0
\(100\) −2.30735 + 3.99645i −0.230735 + 0.399645i
\(101\) −17.3650 + 10.0257i −1.72788 + 0.997594i −0.829277 + 0.558838i \(0.811247\pi\)
−0.898607 + 0.438755i \(0.855419\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −2.35843 + 9.92158i −0.231263 + 0.972891i
\(105\) 11.7802 1.14963
\(106\) 0 0
\(107\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(108\) −6.40343 3.69702i −0.616171 0.355746i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.48331 7.48331i −0.707107 0.707107i
\(113\) −0.612486 + 1.06086i −0.0576178 + 0.0997970i −0.893396 0.449271i \(-0.851684\pi\)
0.835778 + 0.549068i \(0.185017\pi\)
\(114\) −14.0240 + 8.09674i −1.31347 + 0.758329i
\(115\) 4.02651 15.0271i 0.375474 1.40129i
\(116\) 0 0
\(117\) 15.7229 0.447030i 1.45358 0.0413279i
\(118\) 10.0871 0.928595
\(119\) 0 0
\(120\) 6.29677 + 10.9063i 0.574814 + 0.995607i
\(121\) −9.52628 5.50000i −0.866025 0.500000i
\(122\) −12.7160 + 12.7160i −1.15125 + 1.15125i
\(123\) 0 0
\(124\) 0 0
\(125\) −8.47881 8.47881i −0.758368 0.758368i
\(126\) −8.16151 + 14.1361i −0.727085 + 1.25935i
\(127\) −11.2211 + 6.47851i −0.995713 + 0.574875i −0.906977 0.421180i \(-0.861616\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) 2.92820 10.9282i 0.258819 0.965926i
\(129\) 0 0
\(130\) −7.36212 3.97594i −0.645700 0.348713i
\(131\) 22.8686 1.99803 0.999017 0.0443221i \(-0.0141128\pi\)
0.999017 + 0.0443221i \(0.0141128\pi\)
\(132\) 0 0
\(133\) 5.58253 + 9.66923i 0.484067 + 0.838429i
\(134\) 0 0
\(135\) 4.28970 4.28970i 0.369199 0.369199i
\(136\) 0 0
\(137\) −20.5359 + 5.50257i −1.75450 + 0.470117i −0.985577 0.169226i \(-0.945873\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 25.7250 + 25.7250i 2.18986 + 2.18986i
\(139\) −2.66420 + 4.61453i −0.225974 + 0.391399i −0.956611 0.291367i \(-0.905890\pi\)
0.730637 + 0.682766i \(0.239223\pi\)
\(140\) 7.51968 4.34149i 0.635529 0.366923i
\(141\) 0 0
\(142\) 15.4422i 1.29588i
\(143\) 0 0
\(144\) −17.4500 −1.45417
\(145\) 0 0
\(146\) 0 0
\(147\) 16.4491 + 9.49688i 1.35670 + 0.783289i
\(148\) 0 0
\(149\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(150\) 8.55235 2.29160i 0.698296 0.187108i
\(151\) 17.1637 + 17.1637i 1.39676 + 1.39676i 0.809118 + 0.587646i \(0.199945\pi\)
0.587646 + 0.809118i \(0.300055\pi\)
\(152\) −5.96798 + 10.3368i −0.484067 + 0.838429i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) 16.6603 10.2609i 1.33389 0.821531i
\(157\) 23.2323 1.85414 0.927071 0.374885i \(-0.122318\pi\)
0.927071 + 0.374885i \(0.122318\pi\)
\(158\) 11.2811 + 3.02276i 0.897477 + 0.240478i
\(159\) 0 0
\(160\) 8.03888 + 4.64125i 0.635529 + 0.366923i
\(161\) 17.7368 17.7368i 1.39786 1.39786i
\(162\) −1.11859 4.17463i −0.0878846 0.327990i
\(163\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 21.2129 12.2473i 1.64644 0.950573i
\(167\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(168\) 20.3052i 1.56658i
\(169\) −5.84983 + 11.6095i −0.449987 + 0.893035i
\(170\) 0 0
\(171\) 17.7825 + 4.76480i 1.35986 + 0.364374i
\(172\) 0 0
\(173\) −6.57246 3.79461i −0.499695 0.288499i 0.228893 0.973452i \(-0.426490\pi\)
−0.728588 + 0.684953i \(0.759823\pi\)
\(174\) 0 0
\(175\) −1.58001 5.89667i −0.119437 0.445746i
\(176\) 0 0
\(177\) −13.6852 13.6852i −1.02864 1.02864i
\(178\) 0 0
\(179\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(180\) 3.70555 13.8293i 0.276195 1.03077i
\(181\) 23.1116i 1.71787i −0.512084 0.858936i \(-0.671126\pi\)
0.512084 0.858936i \(-0.328874\pi\)
\(182\) −7.07469 11.4869i −0.524411 0.851465i
\(183\) 34.5034 2.55057
\(184\) 25.9019 + 6.94038i 1.90951 + 0.511652i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 9.44811 2.53161i 0.687249 0.184148i
\(190\) −6.92472 6.92472i −0.502372 0.502372i
\(191\) −13.6125 + 23.5775i −0.984965 + 1.70601i −0.342873 + 0.939382i \(0.611400\pi\)
−0.642092 + 0.766627i \(0.721933\pi\)
\(192\) −18.7989 + 10.8536i −1.35670 + 0.783289i
\(193\) −5.32578 + 19.8761i −0.383358 + 1.43071i 0.457381 + 0.889271i \(0.348787\pi\)
−0.840739 + 0.541440i \(0.817879\pi\)
\(194\) 0 0
\(195\) 4.59402 + 15.3823i 0.328985 + 1.10155i
\(196\) 14.0000 1.00000
\(197\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(198\) 0 0
\(199\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(200\) 4.61470 4.61470i 0.326309 0.326309i
\(201\) 0 0
\(202\) 27.3907 7.33932i 1.92720 0.516393i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 41.3598i 2.87471i
\(208\) 6.85322 12.6899i 0.475185 0.879886i
\(209\) 0 0
\(210\) −16.0920 4.31184i −1.11045 0.297545i
\(211\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(212\) 0 0
\(213\) −20.9504 + 20.9504i −1.43550 + 1.43550i
\(214\) 0 0
\(215\) 0 0
\(216\) 7.39405 + 7.39405i 0.503101 + 0.503101i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(224\) 7.48331 + 12.9615i 0.500000 + 0.866025i
\(225\) −8.71727 5.03292i −0.581152 0.335528i
\(226\) 1.22497 1.22497i 0.0814839 0.0814839i
\(227\) 0.919796 + 3.43273i 0.0610490 + 0.227838i 0.989709 0.143094i \(-0.0457050\pi\)
−0.928660 + 0.370932i \(0.879038\pi\)
\(228\) 22.1207 5.92723i 1.46498 0.392540i
\(229\) 16.6904 + 16.6904i 1.10293 + 1.10293i 0.994055 + 0.108880i \(0.0347264\pi\)
0.108880 + 0.994055i \(0.465274\pi\)
\(230\) −11.0006 + 19.0536i −0.725359 + 1.25636i
\(231\) 0 0
\(232\) 0 0
\(233\) 9.77048i 0.640085i 0.947403 + 0.320043i \(0.103697\pi\)
−0.947403 + 0.320043i \(0.896303\pi\)
\(234\) −21.6415 5.14433i −1.41475 0.336295i
\(235\) 0 0
\(236\) −13.7793 3.69214i −0.896954 0.240338i
\(237\) −11.2041 19.4060i −0.727783 1.26056i
\(238\) 0 0
\(239\) 19.1208 19.1208i 1.23682 1.23682i 0.275533 0.961292i \(-0.411146\pi\)
0.961292 0.275533i \(-0.0888542\pi\)
\(240\) −4.60955 17.2031i −0.297545 1.11045i
\(241\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(242\) 11.0000 + 11.0000i 0.707107 + 0.707107i
\(243\) −9.69166 + 16.7864i −0.621720 + 1.07685i
\(244\) 22.0247 12.7160i 1.40999 0.814056i
\(245\) −2.97293 + 11.0951i −0.189933 + 0.708841i
\(246\) 0 0
\(247\) −10.4488 + 11.0604i −0.664842 + 0.703754i
\(248\) 0 0
\(249\) −45.3953 12.1636i −2.87681 0.770839i
\(250\) 8.47881 + 14.6857i 0.536247 + 0.928807i
\(251\) 22.3722 + 12.9166i 1.41212 + 0.815287i 0.995588 0.0938349i \(-0.0299126\pi\)
0.416530 + 0.909122i \(0.363246\pi\)
\(252\) 16.3230 16.3230i 1.02825 1.02825i
\(253\) 0 0
\(254\) 17.6996 4.74260i 1.11057 0.297577i
\(255\) 0 0
\(256\) −8.00000 + 13.8564i −0.500000 + 0.866025i
\(257\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) 8.60155 + 8.12595i 0.533445 + 0.503950i
\(261\) 0 0
\(262\) −31.2390 8.37047i −1.92995 0.517129i
\(263\) 15.7146 + 27.2184i 0.969002 + 1.67836i 0.698456 + 0.715653i \(0.253871\pi\)
0.270546 + 0.962707i \(0.412796\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) −4.08670 15.2518i −0.250572 0.935146i
\(267\) 0 0
\(268\) 0 0
\(269\) 16.3975 28.4013i 0.999774 1.73166i 0.481467 0.876464i \(-0.340104\pi\)
0.518307 0.855194i \(-0.326562\pi\)
\(270\) −7.42998 + 4.28970i −0.452174 + 0.261063i
\(271\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(272\) 0 0
\(273\) −5.98603 + 25.1824i −0.362291 + 1.52411i
\(274\) 30.0666 1.81639
\(275\) 0 0
\(276\) −25.7250 44.5570i −1.54846 2.68202i
\(277\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(278\) 5.32840 5.32840i 0.319576 0.319576i
\(279\) 0 0
\(280\) −11.8612 + 3.17819i −0.708841 + 0.189933i
\(281\) −22.4833 22.4833i −1.34124 1.34124i −0.894825 0.446417i \(-0.852700\pi\)
−0.446417 0.894825i \(-0.647300\pi\)
\(282\) 0 0
\(283\) −28.7509 + 16.5994i −1.70907 + 0.986729i −0.773345 + 0.633985i \(0.781418\pi\)
−0.935720 + 0.352744i \(0.885249\pi\)
\(284\) −5.65225 + 21.0945i −0.335399 + 1.25173i
\(285\) 18.7895i 1.11299i
\(286\) 0 0
\(287\) 0 0
\(288\) 23.8372 + 6.38716i 1.40462 + 0.376367i
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 1.47832 0.396114i 0.0863642 0.0231412i −0.215378 0.976531i \(-0.569098\pi\)
0.301742 + 0.953390i \(0.402432\pi\)
\(294\) −18.9938 18.9938i −1.10774 1.10774i
\(295\) 5.85210 10.1361i 0.340723 0.590149i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) 30.0774 + 16.2434i 1.73942 + 0.939380i
\(300\) −12.5215 −0.722930
\(301\) 0 0
\(302\) −17.1637 29.7284i −0.987661 1.71068i
\(303\) −47.1181 27.2037i −2.70687 1.56281i
\(304\) 11.9360 11.9360i 0.684574 0.684574i
\(305\) 5.40052 + 20.1550i 0.309233 + 1.15407i
\(306\) 0 0
\(307\) −23.8137 23.8137i −1.35912 1.35912i −0.875007 0.484110i \(-0.839143\pi\)
−0.484110 0.875007i \(-0.660857\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) −26.5141 + 7.91860i −1.50106 + 0.448302i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) −31.7360 8.50363i −1.79096 0.479887i
\(315\) 9.46990 + 16.4023i 0.533568 + 0.924167i
\(316\) −14.3039 8.25834i −0.804655 0.464568i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) −9.28250 9.28250i −0.518907 0.518907i
\(321\) 0 0
\(322\) −30.7211 + 17.7368i −1.71202 + 0.988436i
\(323\) 0 0
\(324\) 6.11208i 0.339560i
\(325\) 7.08357 4.36272i 0.392926 0.242000i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(332\) −33.4602 + 8.96563i −1.83637 + 0.492053i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 7.43221 27.7374i 0.405460 1.51320i
\(337\) 36.7083i 1.99963i −0.0192914 0.999814i \(-0.506141\pi\)
0.0192914 0.999814i \(-0.493859\pi\)
\(338\) 12.2404 13.7176i 0.665788 0.746141i
\(339\) −3.32383 −0.180526
\(340\) 0 0
\(341\) 0 0
\(342\) −22.5473 13.0177i −1.21922 0.703916i
\(343\) −13.0958 + 13.0958i −0.707107 + 0.707107i
\(344\) 0 0
\(345\) 40.7745 10.9255i 2.19523 0.588209i
\(346\) 7.58923 + 7.58923i 0.407999 + 0.407999i
\(347\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(348\) 0 0
\(349\) −7.12731 + 26.5995i −0.381516 + 1.42384i 0.462070 + 0.886843i \(0.347107\pi\)
−0.843586 + 0.536994i \(0.819560\pi\)
\(350\) 8.63332i 0.461470i
\(351\) 6.99030 + 11.3499i 0.373114 + 0.605811i
\(352\) 0 0
\(353\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(354\) 13.6852 + 23.7034i 0.727358 + 1.25982i
\(355\) −15.5173 8.95890i −0.823571 0.475489i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 10.9458 + 10.9458i 0.577696 + 0.577696i 0.934268 0.356572i \(-0.116054\pi\)
−0.356572 + 0.934268i \(0.616054\pi\)
\(360\) −10.1237 + 17.5348i −0.533568 + 0.924167i
\(361\) 1.03196 0.595801i 0.0543135 0.0313579i
\(362\) −8.45943 + 31.5710i −0.444618 + 1.65934i
\(363\) 29.8473i 1.56658i
\(364\) 5.45971 + 18.2809i 0.286166 + 0.958180i
\(365\) 0 0
\(366\) −47.1325 12.6291i −2.46366 0.660135i
\(367\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(368\) −32.8422 18.9615i −1.71202 0.988436i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(374\) 0 0
\(375\) 8.42091 31.4273i 0.434854 1.62290i
\(376\) 0 0
\(377\) 0 0
\(378\) −13.8330 −0.711493
\(379\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(380\) 6.92472 + 11.9940i 0.355231 + 0.615278i
\(381\) −30.4473 17.5788i −1.55986 0.900587i
\(382\) 27.2250 27.2250i 1.39295 1.39295i
\(383\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(384\) 29.6525 7.94537i 1.51320 0.405460i
\(385\) 0 0
\(386\) 14.5503 25.2019i 0.740591 1.28274i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −0.645235 22.6942i −0.0326727 1.14916i
\(391\) 0 0
\(392\) −19.1244 5.12436i −0.965926 0.258819i
\(393\) 31.0257 + 53.7381i 1.56504 + 2.71073i
\(394\) 0 0
\(395\) 9.58226 9.58226i 0.482136 0.482136i
\(396\) 0 0
\(397\) 21.3772 5.72800i 1.07289 0.287480i 0.321211 0.947008i \(-0.395910\pi\)
0.751680 + 0.659528i \(0.229244\pi\)
\(398\) 0 0
\(399\) −15.1476 + 26.2364i −0.758329 + 1.31347i
\(400\) −7.99290 + 4.61470i −0.399645 + 0.230735i
\(401\) 4.10862 15.3336i 0.205175 0.765723i −0.784221 0.620481i \(-0.786937\pi\)
0.989396 0.145242i \(-0.0463961\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −40.1028 −1.99519
\(405\) −4.84387 1.29791i −0.240694 0.0644938i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(410\) 0 0
\(411\) −40.7913 40.7913i −2.01209 2.01209i
\(412\) 0 0
\(413\) 16.3430 9.43564i 0.804187 0.464297i
\(414\) −15.1387 + 56.4986i −0.744029 + 2.77675i
\(415\) 28.4213i 1.39515i
\(416\) −14.0065 + 14.8263i −0.686725 + 0.726917i
\(417\) −14.4580 −0.708014
\(418\) 0 0
\(419\) −13.3866 23.1864i −0.653981 1.13273i −0.982148 0.188108i \(-0.939764\pi\)
0.328168 0.944619i \(-0.393569\pi\)
\(420\) 20.4039 + 11.7802i 0.995607 + 0.574814i
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) 36.2872 20.9504i 1.75812 1.01505i
\(427\) −8.70752 + 32.4969i −0.421386 + 1.57264i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −30.4101 8.14837i −1.46480 0.392493i −0.563658 0.826008i \(-0.690607\pi\)
−0.901146 + 0.433515i \(0.857273\pi\)
\(432\) −7.39405 12.8069i −0.355746 0.616171i
\(433\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 28.2904 + 28.2904i 1.35332 + 1.35332i
\(438\) 0 0
\(439\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(440\) 0 0
\(441\) 30.5376i 1.45417i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) −5.47817 20.4448i −0.258819 0.965926i
\(449\) 20.4281 5.47370i 0.964062 0.258320i 0.257743 0.966213i \(-0.417021\pi\)
0.706319 + 0.707894i \(0.250354\pi\)
\(450\) 10.0658 + 10.0658i 0.474508 + 0.474508i
\(451\) 0 0
\(452\) −2.12171 + 1.22497i −0.0997970 + 0.0576178i
\(453\) −17.0465 + 63.6185i −0.800915 + 2.98906i
\(454\) 5.02586i 0.235875i
\(455\) −15.6471 + 0.444876i −0.733549 + 0.0208561i
\(456\) −32.3870 −1.51666
\(457\) 32.9348 + 8.82485i 1.54062 + 0.412809i 0.926467 0.376375i \(-0.122830\pi\)
0.614157 + 0.789184i \(0.289496\pi\)
\(458\) −16.6904 28.9087i −0.779893 1.35081i
\(459\) 0 0
\(460\) 22.0012 22.0012i 1.02581 1.02581i
\(461\) 9.70069 + 36.2035i 0.451806 + 1.68616i 0.697312 + 0.716768i \(0.254379\pi\)
−0.245505 + 0.969395i \(0.578954\pi\)
\(462\) 0 0
\(463\) −4.20185 4.20185i −0.195277 0.195277i 0.602695 0.797972i \(-0.294094\pi\)
−0.797972 + 0.602695i \(0.794094\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 3.57624 13.3467i 0.165666 0.618275i
\(467\) 39.7569i 1.83973i −0.392236 0.919865i \(-0.628298\pi\)
0.392236 0.919865i \(-0.371702\pi\)
\(468\) 27.6799 + 14.9486i 1.27950 + 0.691000i
\(469\) 0 0
\(470\) 0 0
\(471\) 31.5193 + 54.5929i 1.45233 + 2.51551i
\(472\) 17.4714 + 10.0871i 0.804187 + 0.464297i
\(473\) 0 0
\(474\) 8.20195 + 30.6101i 0.376728 + 1.40597i
\(475\) 9.40524 2.52013i 0.431542 0.115631i
\(476\) 0 0
\(477\) 0 0
\(478\) −33.1183 + 19.1208i −1.51479 + 0.874567i
\(479\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(480\) 25.1871i 1.14963i
\(481\) 0 0
\(482\) 0 0
\(483\) 65.7428 + 17.6157i 2.99140 + 0.801543i
\(484\) −11.0000 19.0526i −0.500000 0.866025i
\(485\) 0 0
\(486\) 19.3833 19.3833i 0.879245 0.879245i
\(487\) 7.99614 + 29.8420i 0.362340 + 1.35227i 0.870992 + 0.491298i \(0.163477\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) −34.7406 + 9.30873i −1.57264 + 0.421386i
\(489\) 0 0
\(490\) 8.12218 14.0680i 0.366923 0.635529i
\(491\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 18.3217 11.2842i 0.824333 0.507700i
\(495\) 0 0
\(496\) 0 0
\(497\) −14.4449 25.0193i −0.647941 1.12227i
\(498\) 57.5590 + 33.2317i 2.57928 + 1.48915i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) −6.20692 23.1645i −0.277582 1.03595i
\(501\) 0 0
\(502\) −25.8331 25.8331i −1.15299 1.15299i
\(503\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(504\) −28.2723 + 16.3230i −1.25935 + 0.727085i
\(505\) 8.51590 31.7818i 0.378953 1.41427i
\(506\) 0 0
\(507\) −35.2171 + 2.00419i −1.56405 + 0.0890093i
\(508\) −25.9140 −1.14975
\(509\) −13.9376 3.73457i −0.617773 0.165532i −0.0636579 0.997972i \(-0.520277\pi\)
−0.554115 + 0.832440i \(0.686943\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 4.03795 + 15.0698i 0.178280 + 0.665350i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 20.5926i 0.903913i
\(520\) −8.77563 14.2486i −0.384837 0.624844i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) −21.5869 37.3896i −0.943928 1.63493i −0.757884 0.652390i \(-0.773767\pi\)
−0.186044 0.982541i \(-0.559567\pi\)
\(524\) 39.6095 + 22.8686i 1.73035 + 0.999017i
\(525\) 11.7128 11.7128i 0.511188 0.511188i
\(526\) −11.5039 42.9330i −0.501592 1.87197i
\(527\) 0 0
\(528\) 0 0
\(529\) 33.4422 57.9236i 1.45401 2.51842i
\(530\) 0 0
\(531\) 8.05350 30.0561i 0.349492 1.30432i
\(532\) 22.3301i 0.968134i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) −32.7950 + 32.7950i −1.41389 + 1.41389i
\(539\) 0 0
\(540\) 11.7197 3.14028i 0.504335 0.135136i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) 54.3092 31.3554i 2.33063 1.34559i
\(544\) 0 0
\(545\) 0 0
\(546\) 17.3945 32.2088i 0.744415 1.37841i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −41.0718 11.0051i −1.75450 0.470117i
\(549\) 27.7367 + 48.0414i 1.18378 + 2.05036i
\(550\) 0 0
\(551\) 0 0
\(552\) 18.8320 + 70.2820i 0.801543 + 2.99140i
\(553\) 21.1050 5.65507i 0.897477 0.240478i
\(554\) 0 0
\(555\) 0 0
\(556\) −9.22906 + 5.32840i −0.391399 + 0.225974i
\(557\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 17.3660 0.733846
\(561\) 0 0
\(562\) 22.4833 + 38.9422i 0.948401 + 1.64268i
\(563\) 34.5173 + 19.9286i 1.45473 + 0.839889i 0.998744 0.0500986i \(-0.0159536\pi\)
0.455985 + 0.889987i \(0.349287\pi\)
\(564\) 0 0
\(565\) −0.520250 1.94160i −0.0218871 0.0816837i
\(566\) 45.3503 12.1516i 1.90621 0.510769i
\(567\) −5.71733 5.71733i −0.240105 0.240105i
\(568\) 15.4422 26.7467i 0.647941 1.12227i
\(569\) 40.4718 23.3664i 1.69667 0.979571i 0.747785 0.663941i \(-0.231117\pi\)
0.948882 0.315631i \(-0.102216\pi\)
\(570\) 6.87743 25.6669i 0.288064 1.07507i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) −73.8721 −3.08605
\(574\) 0 0
\(575\) −10.9377 18.9447i −0.456134 0.790047i
\(576\) −30.2243 17.4500i −1.25935 0.727085i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) −6.22243 23.2224i −0.258819 0.965926i
\(579\) −53.9316 + 14.4509i −2.24132 + 0.600560i
\(580\) 0 0
\(581\) 22.9125 39.6857i 0.950573 1.64644i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −17.7248 + 18.7622i −0.732829 + 0.775720i
\(586\) −2.16441 −0.0894108
\(587\) 2.84437 + 0.762147i 0.117400 + 0.0314572i 0.317041 0.948412i \(-0.397311\pi\)
−0.199641 + 0.979869i \(0.563978\pi\)
\(588\) 18.9938 + 32.8982i 0.783289 + 1.35670i
\(589\) 0 0
\(590\) −11.7042 + 11.7042i −0.481855 + 0.481855i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) −35.1410 33.1980i −1.43702 1.35757i
\(599\) −23.2541 −0.950136 −0.475068 0.879949i \(-0.657577\pi\)
−0.475068 + 0.879949i \(0.657577\pi\)
\(600\) 17.1047 + 4.58319i 0.698296 + 0.187108i
\(601\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 12.5647 + 46.8922i 0.511251 + 1.90802i
\(605\) 17.4352 4.67174i 0.708841 0.189933i
\(606\) 54.4073 + 54.4073i 2.21015 + 2.21015i
\(607\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(608\) −20.6737 + 11.9360i −0.838429 + 0.484067i
\(609\) 0 0
\(610\) 29.5090i 1.19478i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(614\) 23.8137 + 41.2465i 0.961041 + 1.66457i
\(615\) 0 0
\(616\) 0 0
\(617\) 2.99306 + 11.1703i 0.120496 + 0.449698i 0.999639 0.0268600i \(-0.00855084\pi\)
−0.879143 + 0.476558i \(0.841884\pi\)
\(618\) 0 0
\(619\) 22.3522 + 22.3522i 0.898411 + 0.898411i 0.995296 0.0968845i \(-0.0308877\pi\)
−0.0968845 + 0.995296i \(0.530888\pi\)
\(620\) 0 0
\(621\) 30.3547 17.5253i 1.21809 0.703265i
\(622\) 0 0
\(623\) 0 0
\(624\) 39.1173 1.11217i 1.56595 0.0445226i
\(625\) 8.13937 0.325575
\(626\) 0 0
\(627\) 0 0
\(628\) 40.2396 + 23.2323i 1.60573 + 0.927071i
\(629\) 0 0
\(630\) −6.93245 25.8722i −0.276195 1.03077i
\(631\) −46.2815 + 12.4011i −1.84244 + 0.493680i −0.999048 0.0436231i \(-0.986110\pi\)
−0.843389 + 0.537303i \(0.819443\pi\)
\(632\) 16.5167 + 16.5167i 0.656998 + 0.656998i
\(633\) 0 0
\(634\) 0 0
\(635\) 5.50290 20.5371i 0.218376 0.814989i
\(636\) 0 0
\(637\) −22.2073 11.9931i −0.879886 0.475185i
\(638\) 0 0
\(639\) −46.0124 12.3290i −1.82022 0.487727i
\(640\) 9.28250 + 16.0778i 0.366923 + 0.635529i
\(641\) −2.50172 1.44437i −0.0988119 0.0570491i 0.449780 0.893140i \(-0.351502\pi\)
−0.548592 + 0.836090i \(0.684836\pi\)
\(642\) 0 0
\(643\) 11.8946 + 44.3912i 0.469077 + 1.75062i 0.643006 + 0.765861i \(0.277687\pi\)
−0.173929 + 0.984758i \(0.555646\pi\)
\(644\) 48.4580 12.9843i 1.90951 0.511652i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(648\) 2.23718 8.34926i 0.0878846 0.327990i
\(649\) 0 0
\(650\) −11.2732 + 3.36681i −0.442172 + 0.132057i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(654\) 0 0
\(655\) −26.5347 + 26.5347i −1.03679 + 1.03679i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(660\) 0 0
\(661\) −0.231024 + 0.862193i −0.00898579 + 0.0335354i −0.970273 0.242012i \(-0.922193\pi\)
0.961287 + 0.275548i \(0.0888592\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 48.9891 1.90115
\(665\) −17.6968 4.74185i −0.686253 0.183881i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) −20.3052 + 35.1696i −0.783289 + 1.35670i
\(673\) −38.8844 + 22.4499i −1.49889 + 0.865382i −0.999999 0.00128586i \(-0.999591\pi\)
−0.498886 + 0.866668i \(0.666257\pi\)
\(674\) −13.4362 + 50.1445i −0.517542 + 1.93149i
\(675\) 8.53034i 0.328333i
\(676\) −21.7417 + 14.2583i −0.836218 + 0.548398i
\(677\) 51.9688 1.99732 0.998662 0.0517163i \(-0.0164691\pi\)
0.998662 + 0.0517163i \(0.0164691\pi\)
\(678\) 4.54044 + 1.21661i 0.174375 + 0.0467235i
\(679\) 0 0
\(680\) 0 0
\(681\) −6.81857 + 6.81857i −0.261288 + 0.261288i
\(682\) 0 0
\(683\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(684\) 26.0354 + 26.0354i 0.995487 + 0.995487i
\(685\) 17.4433 30.2127i 0.666476 1.15437i
\(686\) 22.6826 13.0958i 0.866025 0.500000i
\(687\) −16.5765 + 61.8642i −0.632431 + 2.36027i
\(688\) 0 0
\(689\) 0 0
\(690\) −59.6980 −2.27267
\(691\) −49.5539 13.2779i −1.88512 0.505116i −0.999143 0.0413827i \(-0.986824\pi\)
−0.885975 0.463733i \(-0.846510\pi\)
\(692\) −7.58923 13.1449i −0.288499 0.499695i
\(693\) 0 0
\(694\) 0 0
\(695\) −2.26299 8.44560i −0.0858401 0.320360i
\(696\) 0 0
\(697\) 0 0
\(698\) 19.4722 33.7268i 0.737032 1.27658i
\(699\) −22.9593 + 13.2556i −0.868402 + 0.501372i
\(700\) 3.16001 11.7933i 0.119437 0.445746i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) −5.39458 18.0628i −0.203605 0.681738i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 37.5127 37.5127i 1.41081 1.41081i
\(708\) −10.0182 37.3886i −0.376508 1.40515i
\(709\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(710\) 17.9178 + 17.9178i 0.672443 + 0.672443i
\(711\) 18.0135 31.2004i 0.675561 1.17011i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 70.8726 + 18.9903i 2.64679 + 0.709205i
\(718\) −10.9458 18.9587i −0.408493 0.707531i
\(719\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(720\) 20.2475 20.2475i 0.754579 0.754579i
\(721\) 0 0
\(722\) −1.62776 + 0.436156i −0.0605789 + 0.0162321i
\(723\) 0 0
\(724\) 23.1116 40.0304i 0.858936 1.48772i
\(725\) 0 0
\(726\) −10.9249 + 40.7722i −0.405460 + 1.51320i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −0.766821 26.9706i −0.0284203 0.999596i
\(729\) −43.4265 −1.60839
\(730\) 0 0
\(731\) 0 0
\(732\) 59.7617 + 34.5034i 2.20885 + 1.27528i
\(733\) −0.0504373 + 0.0504373i −0.00186294 + 0.00186294i −0.708038 0.706175i \(-0.750419\pi\)
0.706175 + 0.708038i \(0.250419\pi\)
\(734\) 0 0
\(735\) −30.1054 + 8.06672i −1.11045 + 0.297545i
\(736\) 37.9230 + 37.9230i 1.39786 + 1.39786i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(740\) 0 0
\(741\) −40.1663 9.54778i −1.47554 0.350746i
\(742\) 0 0
\(743\) −41.9939 11.2522i −1.54061 0.412804i −0.614145 0.789193i \(-0.710499\pi\)
−0.926462 + 0.376389i \(0.877166\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −19.5563 72.9852i −0.715528 2.67039i
\(748\) 0 0
\(749\) 0 0
\(750\) −23.0064 + 39.8482i −0.840073 + 1.45505i
\(751\) 27.7789 16.0381i 1.01367 0.585240i 0.101403 0.994845i \(-0.467667\pi\)
0.912263 + 0.409605i \(0.134333\pi\)
\(752\) 0 0
\(753\) 70.0955i 2.55442i
\(754\) 0 0
\(755\) −39.8306 −1.44958
\(756\) 18.8962 + 5.06323i 0.687249 + 0.184148i
\(757\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −5.06925 18.9187i −0.183881 0.686253i
\(761\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(762\) 35.1575 + 35.1575i 1.27362 + 1.27362i
\(763\) 0 0
\(764\) −47.1550 + 27.2250i −1.70601 + 0.984965i
\(765\) 0 0
\(766\) 0 0
\(767\) 18.6943 + 17.6606i 0.675012 + 0.637689i
\(768\) −43.4143 −1.56658
\(769\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −29.1006 + 29.1006i −1.04735 + 1.04735i
\(773\) 1.32632 + 4.94989i 0.0477044 + 0.178035i 0.985667 0.168700i \(-0.0539569\pi\)
−0.937963 + 0.346735i \(0.887290\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −7.42523 + 31.2370i −0.265866 + 1.11846i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) 24.2487 + 14.0000i 0.866025 + 0.500000i
\(785\) −26.9568 + 26.9568i −0.962128 + 0.962128i
\(786\) −22.7124 84.7638i −0.810124 3.02342i
\(787\) −52.0421 + 13.9446i −1.85510 + 0.497072i −0.999779 0.0210268i \(-0.993306\pi\)
−0.855321 + 0.518099i \(0.826640\pi\)
\(788\) 0 0
\(789\) −42.6398 + 73.8543i −1.51802 + 2.62928i
\(790\) −16.5970 + 9.58226i −0.590493 + 0.340921i
\(791\) 0.838825 3.13054i 0.0298252 0.111309i
\(792\) 0 0
\(793\) −45.8295 + 1.30301i −1.62745 + 0.0462714i
\(794\) −31.2984 −1.11074
\(795\) 0 0
\(796\) 0 0
\(797\) −34.1548 19.7193i −1.20983 0.698493i −0.247104 0.968989i \(-0.579479\pi\)
−0.962721 + 0.270496i \(0.912812\pi\)
\(798\) 30.2952 30.2952i 1.07244 1.07244i
\(799\) 0 0
\(800\) 12.6076 3.37820i 0.445746 0.119437i
\(801\) 0 0
\(802\) −11.2250 + 19.4422i −0.396368 + 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 41.1605i 1.45072i
\(806\) 0 0
\(807\) 88.9858 3.13245
\(808\) 54.7814 + 14.6786i 1.92720 + 0.516393i
\(809\) −27.8375 48.2159i −0.978713 1.69518i −0.667094 0.744973i \(-0.732462\pi\)
−0.311619 0.950207i \(-0.600871\pi\)
\(810\) 6.14179 + 3.54596i 0.215800 + 0.124592i
\(811\) 40.0697 40.0697i 1.40704 1.40704i 0.632384 0.774655i \(-0.282076\pi\)
0.774655 0.632384i \(-0.217924\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −39.8753 + 11.9090i −1.39336 + 0.416135i
\(820\) 0 0
\(821\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(822\) 40.7913 + 70.6526i 1.42276 + 2.46429i
\(823\) 36.6582 + 21.1646i 1.27782 + 0.737752i 0.976448 0.215754i \(-0.0692209\pi\)
0.301376 + 0.953506i \(0.402554\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) −25.7786 + 6.90737i −0.896954 + 0.240338i
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) 41.3598 71.6373i 1.43735 2.48957i
\(829\) −38.8545 + 22.4327i −1.34947 + 0.779119i −0.988175 0.153331i \(-0.951000\pi\)
−0.361299 + 0.932450i \(0.617667\pi\)
\(830\) −10.4029 + 38.8242i −0.361091 + 1.34761i
\(831\) 0 0
\(832\) 24.5600 15.1263i 0.851465 0.524411i
\(833\) 0 0
\(834\) 19.7501 + 5.29201i 0.683889 + 0.183247i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 9.79971 + 36.5730i 0.338525 + 1.26339i
\(839\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(840\) −23.5604 23.5604i −0.812909 0.812909i
\(841\) −14.5000 + 25.1147i −0.500000 + 0.866025i
\(842\) 0 0
\(843\) 22.3298 83.3359i 0.769079 2.87024i
\(844\) 0 0
\(845\) −6.68297 20.2582i −0.229901 0.696904i
\(846\) 0 0
\(847\) 28.1116 + 7.53248i 0.965926 + 0.258819i
\(848\) 0 0
\(849\) −78.0126 45.0406i −2.67739 1.54579i
\(850\) 0 0
\(851\) 0 0
\(852\) −57.2376 + 15.3368i −1.96093 + 0.525429i
\(853\) 10.7892 + 10.7892i 0.369415 + 0.369415i 0.867264 0.497849i \(-0.165877\pi\)
−0.497849 + 0.867264i \(0.665877\pi\)
\(854\) 23.7894 41.2044i 0.814056 1.40999i
\(855\) −26.1619 + 15.1046i −0.894718 + 0.516566i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −41.1363 −1.40355 −0.701776 0.712398i \(-0.747609\pi\)
−0.701776 + 0.712398i \(0.747609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) 38.5585 + 22.2618i 1.31331 + 0.758239i
\(863\) 40.2535 40.2535i 1.37025 1.37025i 0.510174 0.860071i \(-0.329581\pi\)
0.860071 0.510174i \(-0.170419\pi\)
\(864\) 5.41282 + 20.2009i 0.184148 + 0.687249i
\(865\) 12.0290 3.22317i 0.409000 0.109591i
\(866\) 0 0
\(867\) −23.0639 + 39.9478i −0.783289 + 1.35670i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) −28.2904 49.0005i −0.956938 1.65747i
\(875\) 27.4745 + 15.8624i 0.928807 + 0.536247i
\(876\) 0 0
\(877\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(878\) 0 0
\(879\) 2.93644 + 2.93644i 0.0990438 + 0.0990438i
\(880\) 0 0
\(881\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(882\) 11.1775 41.7151i 0.376367 1.40462i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 31.7581 1.06754
\(886\) 0 0
\(887\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(888\) 0 0
\(889\) 24.2404 24.2404i 0.812996 0.812996i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) 2.63606 + 92.7153i 0.0880155 + 3.09567i
\(898\) −29.9088 −0.998071
\(899\) 0 0
\(900\) −10.0658 17.4345i −0.335528 0.581152i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) 3.34669 0.896742i 0.111309 0.0298252i
\(905\) 26.8167 + 26.8167i 0.891416 + 0.891416i
\(906\) 46.5720 80.6650i 1.54725 2.67991i
\(907\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(908\) −1.83959 + 6.86545i −0.0610490 + 0.227838i
\(909\) 87.4744i 2.90134i
\(910\) 21.5372 + 5.11954i 0.713952 + 0.169711i
\(911\) 0.210840 0.00698543 0.00349271 0.999994i \(-0.498888\pi\)
0.00349271 + 0.999994i \(0.498888\pi\)
\(912\) 44.2414 + 11.8545i 1.46498 + 0.392540i
\(913\) 0 0
\(914\) −41.7596 24.1099i −1.38129 0.797486i
\(915\) −40.0347 + 40.0347i −1.32351 + 1.32351i
\(916\) 12.2182 + 45.5991i 0.403702 + 1.50664i
\(917\) −58.4429 + 15.6597i −1.92995 + 0.517129i
\(918\) 0 0
\(919\) 25.9154 44.8869i 0.854872 1.48068i −0.0218926 0.999760i \(-0.506969\pi\)
0.876764 0.480921i \(-0.159697\pi\)
\(920\) −38.1073 + 22.0012i −1.25636 + 0.725359i
\(921\) 23.6510 88.2669i 0.779328 2.90849i
\(922\) 53.0056i 1.74564i
\(923\) 27.0364 28.6188i 0.889915 0.941999i
\(924\) 0 0
\(925\) 0 0
\(926\) 4.20185 + 7.27782i 0.138081 + 0.239164i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(930\) 0 0
\(931\) −20.8879 20.8879i −0.684574 0.684574i
\(932\) −9.77048 + 16.9230i −0.320043 + 0.554330i
\(933\) 0 0
\(934\) −14.5520 + 54.3089i −0.476157 + 1.77704i
\(935\) 0 0
\(936\) −32.3399 30.5517i −1.05706 0.998615i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) −7.98091 + 7.98091i −0.260170 + 0.260170i −0.825123 0.564953i \(-0.808894\pi\)
0.564953 + 0.825123i \(0.308894\pi\)
\(942\) −23.0737 86.1122i −0.751782 2.80569i
\(943\) 0 0
\(944\) −20.1742 20.1742i −0.656616 0.656616i
\(945\) −8.02530 + 13.9002i −0.261063 + 0.452174i
\(946\) 0 0
\(947\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(948\) 44.8163i 1.45557i
\(949\) 0 0
\(950\) −13.7702 −0.446765
\(951\) 0 0
\(952\) 0 0
\(953\) 0.932742 + 0.538519i 0.0302145 + 0.0174443i 0.515031 0.857171i \(-0.327780\pi\)
−0.484817 + 0.874616i \(0.661114\pi\)
\(954\) 0 0
\(955\) −11.5625 43.1520i −0.374155 1.39637i
\(956\) 52.2391 13.9974i 1.68953 0.452709i
\(957\) 0 0
\(958\) 0 0
\(959\) 48.7135 28.1248i 1.57304 0.908196i
\(960\) 9.21911 34.4062i 0.297545 1.11045i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) −16.8829 29.2420i −0.543479 0.941334i
\(966\) −83.3585 48.1270i −2.68202 1.54846i
\(967\) 40.2250 40.2250i 1.29355 1.29355i 0.360971 0.932577i \(-0.382445\pi\)
0.932577 0.360971i \(-0.117555\pi\)
\(968\) 8.05256 + 30.0526i 0.258819 + 0.965926i
\(969\) 0 0
\(970\) 0 0
\(971\) 19.0235 32.9497i 0.610493 1.05741i −0.380664 0.924713i \(-0.624305\pi\)
0.991157 0.132692i \(-0.0423621\pi\)
\(972\) −33.5729 + 19.3833i −1.07685 + 0.621720i
\(973\) 3.64873 13.6173i 0.116973 0.436549i
\(974\) 43.6917i 1.39997i
\(975\) 19.8621 + 10.7266i 0.636095 + 0.343526i
\(976\) 50.8638 1.62811
\(977\) 60.3562 + 16.1724i 1.93097 + 0.517401i 0.973317 + 0.229465i \(0.0736978\pi\)
0.957650 + 0.287936i \(0.0929689\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) −16.2444 + 16.2444i −0.518907 + 0.518907i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −29.1582 + 8.70829i −0.927647 + 0.277048i
\(989\) 0 0
\(990\) 0 0
\(991\) 11.3007 + 19.5735i 0.358980 + 0.621771i 0.987791 0.155787i \(-0.0497914\pi\)
−0.628811 + 0.777558i \(0.716458\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 10.5744 + 39.4641i 0.335399 + 1.25173i
\(995\) 0 0
\(996\) −66.4634 66.4634i −2.10597 2.10597i
\(997\) 6.15232 10.6561i 0.194846 0.337483i −0.752004 0.659158i \(-0.770913\pi\)
0.946850 + 0.321675i \(0.104246\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.a.405.3 yes 16
7.6 odd 2 inner 728.2.ds.a.405.2 yes 16
8.5 even 2 inner 728.2.ds.a.405.2 yes 16
13.7 odd 12 inner 728.2.ds.a.293.3 yes 16
56.13 odd 2 CM 728.2.ds.a.405.3 yes 16
91.20 even 12 inner 728.2.ds.a.293.2 16
104.85 odd 12 inner 728.2.ds.a.293.2 16
728.293 even 12 inner 728.2.ds.a.293.3 yes 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.a.293.2 16 91.20 even 12 inner
728.2.ds.a.293.2 16 104.85 odd 12 inner
728.2.ds.a.293.3 yes 16 13.7 odd 12 inner
728.2.ds.a.293.3 yes 16 728.293 even 12 inner
728.2.ds.a.405.2 yes 16 7.6 odd 2 inner
728.2.ds.a.405.2 yes 16 8.5 even 2 inner
728.2.ds.a.405.3 yes 16 1.1 even 1 trivial
728.2.ds.a.405.3 yes 16 56.13 odd 2 CM