Properties

Label 728.2.ds.a.461.1
Level $728$
Weight $2$
Character 728.461
Analytic conductor $5.813$
Analytic rank $0$
Dimension $16$
CM discriminant -56
Inner twists $8$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(293,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(12))
 
chi = DirichletCharacter(H, H._module([0, 6, 6, 11]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.293");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.ds (of order \(12\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(16\)
Relative dimension: \(4\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{16} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{16} - 4x^{14} + 8x^{12} + 40x^{10} - 161x^{8} + 360x^{6} + 648x^{4} - 2916x^{2} + 6561 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{U}(1)[D_{12}]$

Embedding invariants

Embedding label 461.1
Root \(1.35670 - 1.07674i\) of defining polynomial
Character \(\chi\) \(=\) 728.461
Dual form 728.2.ds.a.349.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.366025 + 1.36603i) q^{2} +(-1.61083 + 2.79005i) q^{3} +(-1.73205 + 1.00000i) q^{4} +(3.12775 - 3.12775i) q^{5} +(-4.40088 - 1.17921i) q^{6} +(0.684771 - 2.55560i) q^{7} +(-2.00000 - 2.00000i) q^{8} +(-3.68957 - 6.39053i) q^{9} +(5.41743 + 3.12775i) q^{10} -6.44334i q^{12} +(3.60409 - 0.102471i) q^{13} +3.74166 q^{14} +(3.68829 + 13.7649i) q^{15} +(2.00000 - 3.46410i) q^{16} +(7.37915 - 7.37915i) q^{18} +(4.07621 + 1.09222i) q^{19} +(-2.28968 + 8.54518i) q^{20} +(6.02719 + 6.02719i) q^{21} +(-3.01441 - 1.74037i) q^{23} +(8.80176 - 2.35843i) q^{24} -14.5657i q^{25} +(1.45917 + 4.88578i) q^{26} +14.1082 q^{27} +(1.36954 + 5.11120i) q^{28} +(-17.4532 + 10.0766i) q^{30} +(5.46410 + 1.46410i) q^{32} +(-5.85149 - 10.1351i) q^{35} +(12.7811 + 7.37915i) q^{36} +5.96798i q^{38} +(-5.51970 + 10.2207i) q^{39} -12.5110 q^{40} +(-6.02719 + 10.4394i) q^{42} +(-31.5281 - 8.44793i) q^{45} +(1.27404 - 4.75478i) q^{46} +(6.44334 + 11.1602i) q^{48} +(-6.06218 - 3.50000i) q^{49} +(19.8971 - 5.33141i) q^{50} +(-6.14000 + 3.78158i) q^{52} +(5.16395 + 19.2721i) q^{54} +(-6.48074 + 3.74166i) q^{56} +(-9.61343 + 9.61343i) q^{57} +(2.12668 - 7.93688i) q^{59} +(-20.1532 - 20.1532i) q^{60} +(0.749378 + 1.29796i) q^{61} +(-18.8581 + 5.05303i) q^{63} +8.00000i q^{64} +(10.9522 - 11.5932i) q^{65} +(9.71143 - 5.60690i) q^{69} +(11.7030 - 11.7030i) q^{70} +(16.0113 + 4.29022i) q^{71} +(-5.40191 + 20.1602i) q^{72} +(40.6390 + 23.4629i) q^{75} +(-8.15241 + 2.18443i) q^{76} +(-15.9820 - 3.79903i) q^{78} -8.25834 q^{79} +(-4.57935 - 17.0904i) q^{80} +(-11.6572 + 20.1908i) q^{81} +(-12.2473 + 12.2473i) q^{83} +(-16.4666 - 4.41221i) q^{84} -46.1603i q^{90} +(2.20610 - 9.28079i) q^{91} +6.96148 q^{92} +(16.1656 - 9.33319i) q^{95} +(-12.8867 + 12.8867i) q^{96} +(2.56218 - 9.56218i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 16 q - 8 q^{2} - 32 q^{8} - 32 q^{9} + 40 q^{15} + 32 q^{16} + 64 q^{18} - 96 q^{30} + 32 q^{32} - 48 q^{36} + 8 q^{39} + 24 q^{46} + 136 q^{50} - 72 q^{57} - 32 q^{60} - 112 q^{63} - 16 q^{65} + 16 q^{71}+ \cdots - 56 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(1\) \(-1\) \(-1\) \(e\left(\frac{5}{12}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.366025 + 1.36603i 0.258819 + 0.965926i
\(3\) −1.61083 + 2.79005i −0.930016 + 1.61083i −0.146726 + 0.989177i \(0.546874\pi\)
−0.783289 + 0.621657i \(0.786460\pi\)
\(4\) −1.73205 + 1.00000i −0.866025 + 0.500000i
\(5\) 3.12775 3.12775i 1.39877 1.39877i 0.595187 0.803587i \(-0.297078\pi\)
0.803587 0.595187i \(-0.202922\pi\)
\(6\) −4.40088 1.17921i −1.79665 0.481411i
\(7\) 0.684771 2.55560i 0.258819 0.965926i
\(8\) −2.00000 2.00000i −0.707107 0.707107i
\(9\) −3.68957 6.39053i −1.22986 2.13018i
\(10\) 5.41743 + 3.12775i 1.71314 + 0.989083i
\(11\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(12\) 6.44334i 1.86003i
\(13\) 3.60409 0.102471i 0.999596 0.0284203i
\(14\) 3.74166 1.00000
\(15\) 3.68829 + 13.7649i 0.952312 + 3.55408i
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(18\) 7.37915 7.37915i 1.73928 1.73928i
\(19\) 4.07621 + 1.09222i 0.935146 + 0.250572i 0.694048 0.719929i \(-0.255826\pi\)
0.241098 + 0.970501i \(0.422492\pi\)
\(20\) −2.28968 + 8.54518i −0.511987 + 1.91076i
\(21\) 6.02719 + 6.02719i 1.31524 + 1.31524i
\(22\) 0 0
\(23\) −3.01441 1.74037i −0.628548 0.362892i 0.151642 0.988436i \(-0.451544\pi\)
−0.780189 + 0.625543i \(0.784877\pi\)
\(24\) 8.80176 2.35843i 1.79665 0.481411i
\(25\) 14.5657i 2.91314i
\(26\) 1.45917 + 4.88578i 0.286166 + 0.958180i
\(27\) 14.1082 2.71512
\(28\) 1.36954 + 5.11120i 0.258819 + 0.965926i
\(29\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(30\) −17.4532 + 10.0766i −3.18650 + 1.83972i
\(31\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(32\) 5.46410 + 1.46410i 0.965926 + 0.258819i
\(33\) 0 0
\(34\) 0 0
\(35\) −5.85149 10.1351i −0.989083 1.71314i
\(36\) 12.7811 + 7.37915i 2.13018 + 1.22986i
\(37\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(38\) 5.96798i 0.968134i
\(39\) −5.51970 + 10.2207i −0.883860 + 1.63661i
\(40\) −12.5110 −1.97817
\(41\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(42\) −6.02719 + 10.4394i −0.930016 + 1.61083i
\(43\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(44\) 0 0
\(45\) −31.5281 8.44793i −4.69993 1.25934i
\(46\) 1.27404 4.75478i 0.187847 0.701054i
\(47\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(48\) 6.44334 + 11.1602i 0.930016 + 1.61083i
\(49\) −6.06218 3.50000i −0.866025 0.500000i
\(50\) 19.8971 5.33141i 2.81388 0.753976i
\(51\) 0 0
\(52\) −6.14000 + 3.78158i −0.851465 + 0.524411i
\(53\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(54\) 5.16395 + 19.2721i 0.702724 + 2.62260i
\(55\) 0 0
\(56\) −6.48074 + 3.74166i −0.866025 + 0.500000i
\(57\) −9.61343 + 9.61343i −1.27333 + 1.27333i
\(58\) 0 0
\(59\) 2.12668 7.93688i 0.276870 1.03329i −0.677707 0.735332i \(-0.737026\pi\)
0.954578 0.297962i \(-0.0963069\pi\)
\(60\) −20.1532 20.1532i −2.60176 2.60176i
\(61\) 0.749378 + 1.29796i 0.0959480 + 0.166187i 0.910004 0.414600i \(-0.136078\pi\)
−0.814056 + 0.580787i \(0.802745\pi\)
\(62\) 0 0
\(63\) −18.8581 + 5.05303i −2.37590 + 0.636621i
\(64\) 8.00000i 1.00000i
\(65\) 10.9522 11.5932i 1.35846 1.43796i
\(66\) 0 0
\(67\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(68\) 0 0
\(69\) 9.71143 5.60690i 1.16912 0.674991i
\(70\) 11.7030 11.7030i 1.39877 1.39877i
\(71\) 16.0113 + 4.29022i 1.90020 + 0.509156i 0.996760 + 0.0804327i \(0.0256302\pi\)
0.903436 + 0.428723i \(0.141036\pi\)
\(72\) −5.40191 + 20.1602i −0.636621 + 2.37590i
\(73\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(74\) 0 0
\(75\) 40.6390 + 23.4629i 4.69258 + 2.70926i
\(76\) −8.15241 + 2.18443i −0.935146 + 0.250572i
\(77\) 0 0
\(78\) −15.9820 3.79903i −1.80961 0.430156i
\(79\) −8.25834 −0.929136 −0.464568 0.885537i \(-0.653790\pi\)
−0.464568 + 0.885537i \(0.653790\pi\)
\(80\) −4.57935 17.0904i −0.511987 1.91076i
\(81\) −11.6572 + 20.1908i −1.29524 + 2.24343i
\(82\) 0 0
\(83\) −12.2473 + 12.2473i −1.34431 + 1.34431i −0.452598 + 0.891715i \(0.649503\pi\)
−0.891715 + 0.452598i \(0.850497\pi\)
\(84\) −16.4666 4.41221i −1.79665 0.481411i
\(85\) 0 0
\(86\) 0 0
\(87\) 0 0
\(88\) 0 0
\(89\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(90\) 46.1603i 4.86573i
\(91\) 2.20610 9.28079i 0.231263 0.972891i
\(92\) 6.96148 0.725785
\(93\) 0 0
\(94\) 0 0
\(95\) 16.1656 9.33319i 1.65855 0.957565i
\(96\) −12.8867 + 12.8867i −1.31524 + 1.31524i
\(97\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(98\) 2.56218 9.56218i 0.258819 0.965926i
\(99\) 0 0
\(100\) 14.5657 + 25.2285i 1.45657 + 2.52285i
\(101\) 17.3650 + 10.0257i 1.72788 + 0.997594i 0.898607 + 0.438755i \(0.144581\pi\)
0.829277 + 0.558838i \(0.188753\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) −7.41313 7.00325i −0.726917 0.686725i
\(105\) 37.7031 3.67945
\(106\) 0 0
\(107\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(108\) −24.4361 + 14.1082i −2.35136 + 1.35756i
\(109\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) −7.48331 7.48331i −0.707107 0.707107i
\(113\) −0.612486 1.06086i −0.0576178 0.0997970i 0.835778 0.549068i \(-0.185017\pi\)
−0.893396 + 0.449271i \(0.851684\pi\)
\(114\) −16.6509 9.61343i −1.55950 0.900380i
\(115\) −14.8718 + 3.98488i −1.38680 + 0.371592i
\(116\) 0 0
\(117\) −13.9524 22.6540i −1.28990 2.09436i
\(118\) 11.6204 1.06974
\(119\) 0 0
\(120\) 20.1532 34.9063i 1.83972 3.18650i
\(121\) 9.52628 5.50000i 0.866025 0.500000i
\(122\) −1.49876 + 1.49876i −0.135691 + 0.135691i
\(123\) 0 0
\(124\) 0 0
\(125\) −29.9191 29.9191i −2.67605 2.67605i
\(126\) −13.8051 23.9112i −1.22986 2.13018i
\(127\) 8.22111 + 4.74646i 0.729506 + 0.421180i 0.818241 0.574875i \(-0.194949\pi\)
−0.0887357 + 0.996055i \(0.528283\pi\)
\(128\) −10.9282 + 2.92820i −0.965926 + 0.258819i
\(129\) 0 0
\(130\) 19.8454 + 10.7176i 1.74056 + 0.939995i
\(131\) −10.5556 −0.922249 −0.461125 0.887335i \(-0.652554\pi\)
−0.461125 + 0.887335i \(0.652554\pi\)
\(132\) 0 0
\(133\) 5.58253 9.66923i 0.484067 0.838429i
\(134\) 0 0
\(135\) 44.1269 44.1269i 3.79784 3.79784i
\(136\) 0 0
\(137\) −4.94743 + 18.4641i −0.422687 + 1.57749i 0.346235 + 0.938148i \(0.387460\pi\)
−0.768922 + 0.639343i \(0.779207\pi\)
\(138\) 11.2138 + 11.2138i 0.954581 + 0.954581i
\(139\) −2.66420 4.61453i −0.225974 0.391399i 0.730637 0.682766i \(-0.239223\pi\)
−0.956611 + 0.291367i \(0.905890\pi\)
\(140\) 20.2702 + 11.7030i 1.71314 + 0.989083i
\(141\) 0 0
\(142\) 23.4422i 1.96723i
\(143\) 0 0
\(144\) −29.5166 −2.45972
\(145\) 0 0
\(146\) 0 0
\(147\) 19.5303 11.2758i 1.61083 0.930016i
\(148\) 0 0
\(149\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(150\) −17.1760 + 64.1019i −1.40242 + 5.23390i
\(151\) −10.9388 10.9388i −0.890183 0.890183i 0.104357 0.994540i \(-0.466722\pi\)
−0.994540 + 0.104357i \(0.966722\pi\)
\(152\) −5.96798 10.3368i −0.484067 0.838429i
\(153\) 0 0
\(154\) 0 0
\(155\) 0 0
\(156\) −0.660254 23.2224i −0.0528626 1.85928i
\(157\) 23.2323 1.85414 0.927071 0.374885i \(-0.122318\pi\)
0.927071 + 0.374885i \(0.122318\pi\)
\(158\) −3.02276 11.2811i −0.240478 0.897477i
\(159\) 0 0
\(160\) 21.6697 12.5110i 1.71314 0.989083i
\(161\) −6.51187 + 6.51187i −0.513207 + 0.513207i
\(162\) −31.8480 8.53366i −2.50222 0.670467i
\(163\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) −21.2129 12.2473i −1.64644 0.950573i
\(167\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(168\) 24.1088i 1.86003i
\(169\) 12.9790 0.738629i 0.998385 0.0568176i
\(170\) 0 0
\(171\) −8.05963 30.0789i −0.616335 2.30019i
\(172\) 0 0
\(173\) −22.1768 + 12.8038i −1.68607 + 0.973452i −0.728588 + 0.684953i \(0.759823\pi\)
−0.957480 + 0.288499i \(0.906844\pi\)
\(174\) 0 0
\(175\) −37.2241 9.97416i −2.81388 0.753976i
\(176\) 0 0
\(177\) 18.7185 + 18.7185i 1.40697 + 1.40697i
\(178\) 0 0
\(179\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(180\) 63.0562 16.8959i 4.69993 1.25934i
\(181\) 23.4886i 1.74589i 0.487818 + 0.872945i \(0.337793\pi\)
−0.487818 + 0.872945i \(0.662207\pi\)
\(182\) 13.4853 0.383411i 0.999596 0.0284203i
\(183\) −4.82850 −0.356933
\(184\) 2.54808 + 9.50956i 0.187847 + 0.701054i
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 9.66086 36.0548i 0.702724 2.62260i
\(190\) 18.6664 + 18.6664i 1.35420 + 1.35420i
\(191\) −13.6125 23.5775i −0.984965 1.70601i −0.642092 0.766627i \(-0.721933\pi\)
−0.342873 0.939382i \(-0.611400\pi\)
\(192\) −22.3204 12.8867i −1.61083 0.930016i
\(193\) 5.67992 1.52193i 0.408850 0.109551i −0.0485316 0.998822i \(-0.515454\pi\)
0.457381 + 0.889271i \(0.348787\pi\)
\(194\) 0 0
\(195\) 14.7034 + 49.2320i 1.05293 + 3.52557i
\(196\) 14.0000 1.00000
\(197\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(198\) 0 0
\(199\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(200\) −29.1314 + 29.1314i −2.05990 + 2.05990i
\(201\) 0 0
\(202\) −7.33932 + 27.3907i −0.516393 + 1.92720i
\(203\) 0 0
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 25.6849i 1.78522i
\(208\) 6.85322 12.6899i 0.475185 0.879886i
\(209\) 0 0
\(210\) 13.8003 + 51.5034i 0.952312 + 3.55408i
\(211\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(212\) 0 0
\(213\) −37.7615 + 37.7615i −2.58738 + 2.58738i
\(214\) 0 0
\(215\) 0 0
\(216\) −28.2163 28.2163i −1.91988 1.91988i
\(217\) 0 0
\(218\) 0 0
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(224\) 7.48331 12.9615i 0.500000 0.866025i
\(225\) −93.0825 + 53.7412i −6.20550 + 3.58275i
\(226\) 1.22497 1.22497i 0.0814839 0.0814839i
\(227\) 26.7472 + 7.16690i 1.77528 + 0.475684i 0.989709 0.143094i \(-0.0457050\pi\)
0.785566 + 0.618777i \(0.212372\pi\)
\(228\) 7.03752 26.2644i 0.466071 1.73940i
\(229\) 16.6904 + 16.6904i 1.10293 + 1.10293i 0.994055 + 0.108880i \(0.0347264\pi\)
0.108880 + 0.994055i \(0.465274\pi\)
\(230\) −10.8869 18.8567i −0.717861 1.24337i
\(231\) 0 0
\(232\) 0 0
\(233\) 20.1628i 1.32091i 0.750867 + 0.660454i \(0.229636\pi\)
−0.750867 + 0.660454i \(0.770364\pi\)
\(234\) 25.8390 27.3513i 1.68915 1.78801i
\(235\) 0 0
\(236\) 4.25336 + 15.8738i 0.276870 + 1.03329i
\(237\) 13.3028 23.0412i 0.864111 1.49668i
\(238\) 0 0
\(239\) −0.379182 + 0.379182i −0.0245272 + 0.0245272i −0.719264 0.694737i \(-0.755521\pi\)
0.694737 + 0.719264i \(0.255521\pi\)
\(240\) 55.0595 + 14.7531i 3.55408 + 0.952312i
\(241\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(242\) 11.0000 + 11.0000i 0.707107 + 0.707107i
\(243\) −16.3934 28.3941i −1.05163 1.82148i
\(244\) −2.59592 1.49876i −0.166187 0.0959480i
\(245\) −29.9081 + 8.01386i −1.91076 + 0.511987i
\(246\) 0 0
\(247\) 14.8030 + 3.51876i 0.941890 + 0.223893i
\(248\) 0 0
\(249\) −14.4421 53.8988i −0.915233 3.41570i
\(250\) 29.9191 51.8215i 1.89225 3.27748i
\(251\) −2.57491 + 1.48662i −0.162527 + 0.0938349i −0.579057 0.815287i \(-0.696579\pi\)
0.416530 + 0.909122i \(0.363246\pi\)
\(252\) 27.6102 27.6102i 1.73928 1.73928i
\(253\) 0 0
\(254\) −3.47465 + 12.9676i −0.218019 + 0.813658i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(258\) 0 0
\(259\) 0 0
\(260\) −7.37657 + 31.0323i −0.457476 + 1.92454i
\(261\) 0 0
\(262\) −3.86363 14.4193i −0.238696 0.890824i
\(263\) −11.3271 + 19.6190i −0.698456 + 1.20976i 0.270546 + 0.962707i \(0.412796\pi\)
−0.969002 + 0.247054i \(0.920537\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 15.2518 + 4.08670i 0.935146 + 0.250572i
\(267\) 0 0
\(268\) 0 0
\(269\) −7.89664 13.6774i −0.481467 0.833924i 0.518307 0.855194i \(-0.326562\pi\)
−0.999774 + 0.0212700i \(0.993229\pi\)
\(270\) 76.4300 + 44.1269i 4.65138 + 2.68548i
\(271\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(272\) 0 0
\(273\) 22.3402 + 21.1050i 1.35209 + 1.27733i
\(274\) −27.0333 −1.63314
\(275\) 0 0
\(276\) −11.2138 + 19.4229i −0.674991 + 1.16912i
\(277\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(278\) 5.32840 5.32840i 0.319576 0.319576i
\(279\) 0 0
\(280\) −8.56718 + 31.9731i −0.511987 + 1.91076i
\(281\) −22.4833 22.4833i −1.34124 1.34124i −0.894825 0.446417i \(-0.852700\pi\)
−0.446417 0.894825i \(-0.647300\pi\)
\(282\) 0 0
\(283\) −10.2781 5.93408i −0.610971 0.352744i 0.162374 0.986729i \(-0.448085\pi\)
−0.773345 + 0.633985i \(0.781418\pi\)
\(284\) −32.0227 + 8.58045i −1.90020 + 0.509156i
\(285\) 60.1369i 3.56220i
\(286\) 0 0
\(287\) 0 0
\(288\) −10.8038 40.3204i −0.636621 2.37590i
\(289\) 8.50000 14.7224i 0.500000 0.866025i
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) −0.396114 + 1.47832i −0.0231412 + 0.0863642i −0.976531 0.215378i \(-0.930902\pi\)
0.953390 + 0.301742i \(0.0975682\pi\)
\(294\) 22.5517 + 22.5517i 1.31524 + 1.31524i
\(295\) −18.1729 31.4763i −1.05807 1.83262i
\(296\) 0 0
\(297\) 0 0
\(298\) 0 0
\(299\) −11.0426 5.96357i −0.638608 0.344882i
\(300\) −93.8517 −5.41853
\(301\) 0 0
\(302\) 10.9388 18.9465i 0.629454 1.09025i
\(303\) −55.9443 + 32.2995i −3.21392 + 1.85556i
\(304\) 11.9360 11.9360i 0.684574 0.684574i
\(305\) 6.40357 + 1.71583i 0.366668 + 0.0982483i
\(306\) 0 0
\(307\) 5.97537 + 5.97537i 0.341032 + 0.341032i 0.856755 0.515723i \(-0.172477\pi\)
−0.515723 + 0.856755i \(0.672477\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(312\) 31.4807 9.40191i 1.78224 0.532278i
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 8.50363 + 31.7360i 0.479887 + 1.79096i
\(315\) −43.1790 + 74.7883i −2.43286 + 4.21384i
\(316\) 14.3039 8.25834i 0.804655 0.464568i
\(317\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(318\) 0 0
\(319\) 0 0
\(320\) 25.0220 + 25.0220i 1.39877 + 1.39877i
\(321\) 0 0
\(322\) −11.2789 6.51187i −0.628548 0.362892i
\(323\) 0 0
\(324\) 46.6288i 2.59049i
\(325\) −1.49256 52.4961i −0.0827923 2.91196i
\(326\) 0 0
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(332\) 8.96563 33.4602i 0.492053 1.83637i
\(333\) 0 0
\(334\) 0 0
\(335\) 0 0
\(336\) 32.9332 8.82442i 1.79665 0.481411i
\(337\) 36.7083i 1.99963i −0.0192914 0.999814i \(-0.506141\pi\)
0.0192914 0.999814i \(-0.493859\pi\)
\(338\) 5.75963 + 17.4593i 0.313283 + 0.949660i
\(339\) 3.94645 0.214342
\(340\) 0 0
\(341\) 0 0
\(342\) 38.1386 22.0193i 2.06230 1.19067i
\(343\) −13.0958 + 13.0958i −0.707107 + 0.707107i
\(344\) 0 0
\(345\) 12.8380 47.9120i 0.691173 2.57949i
\(346\) −25.6075 25.6075i −1.37667 1.37667i
\(347\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(348\) 0 0
\(349\) 7.82407 2.09645i 0.418813 0.112221i −0.0432574 0.999064i \(-0.513774\pi\)
0.462070 + 0.886843i \(0.347107\pi\)
\(350\) 54.4998i 2.91314i
\(351\) 50.8472 1.44568i 2.71402 0.0771644i
\(352\) 0 0
\(353\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(354\) −18.7185 + 32.4215i −0.994879 + 1.72318i
\(355\) 63.4983 36.6608i 3.37014 1.94575i
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) −26.6541 26.6541i −1.40675 1.40675i −0.775934 0.630814i \(-0.782721\pi\)
−0.630814 0.775934i \(-0.717279\pi\)
\(360\) 46.1603 + 79.9520i 2.43286 + 4.21384i
\(361\) −1.03196 0.595801i −0.0543135 0.0313579i
\(362\) −32.0860 + 8.59741i −1.68640 + 0.451870i
\(363\) 35.4384i 1.86003i
\(364\) 5.45971 + 18.2809i 0.286166 + 0.958180i
\(365\) 0 0
\(366\) −1.76735 6.59585i −0.0923810 0.344770i
\(367\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(368\) −12.0576 + 6.96148i −0.628548 + 0.362892i
\(369\) 0 0
\(370\) 0 0
\(371\) 0 0
\(372\) 0 0
\(373\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(374\) 0 0
\(375\) 131.671 35.2810i 6.79944 1.82190i
\(376\) 0 0
\(377\) 0 0
\(378\) 52.7879 2.71512
\(379\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(380\) −18.6664 + 32.3311i −0.957565 + 1.65855i
\(381\) −26.4857 + 15.2915i −1.35690 + 0.783408i
\(382\) 27.2250 27.2250i 1.39295 1.39295i
\(383\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(384\) 9.43370 35.2070i 0.481411 1.79665i
\(385\) 0 0
\(386\) 4.15799 + 7.20185i 0.211636 + 0.366565i
\(387\) 0 0
\(388\) 0 0
\(389\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(390\) −61.8703 + 38.1054i −3.13292 + 1.92954i
\(391\) 0 0
\(392\) 5.12436 + 19.1244i 0.258819 + 0.965926i
\(393\) 17.0034 29.4507i 0.857706 1.48559i
\(394\) 0 0
\(395\) −25.8301 + 25.8301i −1.29965 + 1.29965i
\(396\) 0 0
\(397\) −4.56394 + 17.0329i −0.229058 + 0.854855i 0.751680 + 0.659528i \(0.229244\pi\)
−0.980738 + 0.195327i \(0.937423\pi\)
\(398\) 0 0
\(399\) 17.9851 + 31.1511i 0.900380 + 1.55950i
\(400\) −50.4570 29.1314i −2.52285 1.45657i
\(401\) −15.3336 + 4.10862i −0.765723 + 0.205175i −0.620481 0.784221i \(-0.713063\pi\)
−0.145242 + 0.989396i \(0.546396\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) −40.1028 −1.99519
\(405\) 26.6912 + 99.6128i 1.32630 + 4.94980i
\(406\) 0 0
\(407\) 0 0
\(408\) 0 0
\(409\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(410\) 0 0
\(411\) −43.5461 43.5461i −2.14797 2.14797i
\(412\) 0 0
\(413\) −18.8272 10.8699i −0.926426 0.534872i
\(414\) −35.0862 + 9.40133i −1.72439 + 0.462050i
\(415\) 76.6129i 3.76078i
\(416\) 19.8432 + 4.71685i 0.972891 + 0.231263i
\(417\) 17.1663 0.840639
\(418\) 0 0
\(419\) −13.3866 + 23.1864i −0.653981 + 1.13273i 0.328168 + 0.944619i \(0.393569\pi\)
−0.982148 + 0.188108i \(0.939764\pi\)
\(420\) −65.3038 + 37.7031i −3.18650 + 1.83972i
\(421\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(422\) 0 0
\(423\) 0 0
\(424\) 0 0
\(425\) 0 0
\(426\) −65.4049 37.7615i −3.16888 1.82955i
\(427\) 3.83022 1.02630i 0.185357 0.0496664i
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 1.99356 + 7.44009i 0.0960266 + 0.358376i 0.997173 0.0751385i \(-0.0239399\pi\)
−0.901146 + 0.433515i \(0.857273\pi\)
\(432\) 28.2163 48.8721i 1.35756 2.35136i
\(433\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) −10.3865 10.3865i −0.496854 0.496854i
\(438\) 0 0
\(439\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(440\) 0 0
\(441\) 51.6540i 2.45972i
\(442\) 0 0
\(443\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 20.4448 + 5.47817i 0.965926 + 0.258819i
\(449\) −5.49485 + 20.5071i −0.259318 + 0.967788i 0.706319 + 0.707894i \(0.250354\pi\)
−0.965637 + 0.259895i \(0.916312\pi\)
\(450\) −107.482 107.482i −5.06677 5.06677i
\(451\) 0 0
\(452\) 2.12171 + 1.22497i 0.0997970 + 0.0576178i
\(453\) 48.1401 12.8991i 2.26182 0.606053i
\(454\) 39.1607i 1.83790i
\(455\) −22.1279 35.9282i −1.03737 1.68434i
\(456\) 38.4537 1.80076
\(457\) 10.1944 + 38.0460i 0.476873 + 1.77972i 0.614157 + 0.789184i \(0.289496\pi\)
−0.137283 + 0.990532i \(0.543837\pi\)
\(458\) −16.6904 + 28.9087i −0.779893 + 1.35081i
\(459\) 0 0
\(460\) 21.7738 21.7738i 1.01521 1.01521i
\(461\) 0.570661 + 0.152908i 0.0265783 + 0.00712164i 0.272084 0.962274i \(-0.412287\pi\)
−0.245505 + 0.969395i \(0.578954\pi\)
\(462\) 0 0
\(463\) 28.2019 + 28.2019i 1.31065 + 1.31065i 0.920935 + 0.389716i \(0.127427\pi\)
0.389716 + 0.920935i \(0.372573\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) −27.5429 + 7.38009i −1.27590 + 0.341876i
\(467\) 34.5598i 1.59924i 0.600508 + 0.799618i \(0.294965\pi\)
−0.600508 + 0.799618i \(0.705035\pi\)
\(468\) 46.8203 + 25.2855i 2.16427 + 1.16882i
\(469\) 0 0
\(470\) 0 0
\(471\) −37.4235 + 64.8193i −1.72438 + 2.98672i
\(472\) −20.1271 + 11.6204i −0.926426 + 0.534872i
\(473\) 0 0
\(474\) 36.3440 + 9.73834i 1.66933 + 0.447297i
\(475\) 15.9089 59.3728i 0.729950 2.72421i
\(476\) 0 0
\(477\) 0 0
\(478\) −0.656763 0.379182i −0.0300396 0.0173434i
\(479\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(480\) 80.6127i 3.67945i
\(481\) 0 0
\(482\) 0 0
\(483\) −7.67888 28.6580i −0.349401 1.30398i
\(484\) −11.0000 + 19.0526i −0.500000 + 0.866025i
\(485\) 0 0
\(486\) 32.7867 32.7867i 1.48724 1.48724i
\(487\) −11.4461 3.06697i −0.518672 0.138978i −0.0100195 0.999950i \(-0.503189\pi\)
−0.508652 + 0.860972i \(0.669856\pi\)
\(488\) 1.09717 4.09468i 0.0496664 0.185357i
\(489\) 0 0
\(490\) −21.8943 37.9220i −0.989083 1.71314i
\(491\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0.611544 + 21.5092i 0.0275147 + 0.967743i
\(495\) 0 0
\(496\) 0 0
\(497\) 21.9282 37.9807i 0.983614 1.70367i
\(498\) 68.3409 39.4567i 3.06243 1.76809i
\(499\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(500\) 81.7406 + 21.9023i 3.65555 + 0.979502i
\(501\) 0 0
\(502\) −2.97325 2.97325i −0.132703 0.132703i
\(503\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(504\) 47.8223 + 27.6102i 2.13018 + 1.22986i
\(505\) 85.6714 22.9556i 3.81233 1.02151i
\(506\) 0 0
\(507\) −18.8462 + 37.4018i −0.836989 + 1.66107i
\(508\) −18.9858 −0.842361
\(509\) 7.71548 + 28.7946i 0.341983 + 1.27630i 0.896098 + 0.443857i \(0.146390\pi\)
−0.554115 + 0.832440i \(0.686943\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 16.0000 16.0000i 0.707107 0.707107i
\(513\) 57.5078 + 15.4092i 2.53903 + 0.680331i
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0 0
\(519\) 82.4989i 3.62130i
\(520\) −45.0909 + 1.28201i −1.97737 + 0.0562200i
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 0 0
\(523\) 17.3322 30.0202i 0.757884 1.31269i −0.186044 0.982541i \(-0.559567\pi\)
0.943928 0.330152i \(-0.107100\pi\)
\(524\) 18.2829 10.5556i 0.798691 0.461125i
\(525\) 87.7902 87.7902i 3.83148 3.83148i
\(526\) −30.9461 8.29198i −1.34931 0.361547i
\(527\) 0 0
\(528\) 0 0
\(529\) −5.44222 9.42621i −0.236618 0.409835i
\(530\) 0 0
\(531\) −58.5674 + 15.6931i −2.54161 + 0.681022i
\(532\) 22.3301i 0.968134i
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 0 0
\(538\) 15.7933 15.7933i 0.680896 0.680896i
\(539\) 0 0
\(540\) −32.3031 + 120.557i −1.39010 + 5.18794i
\(541\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(542\) 0 0
\(543\) −65.5342 37.8362i −2.81234 1.62371i
\(544\) 0 0
\(545\) 0 0
\(546\) −20.6528 + 38.2422i −0.883860 + 1.63661i
\(547\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(548\) −9.89486 36.9281i −0.422687 1.57749i
\(549\) 5.52977 9.57785i 0.236005 0.408772i
\(550\) 0 0
\(551\) 0 0
\(552\) −30.6367 8.20907i −1.30398 0.349401i
\(553\) −5.65507 + 21.1050i −0.240478 + 0.897477i
\(554\) 0 0
\(555\) 0 0
\(556\) 9.22906 + 5.32840i 0.391399 + 0.225974i
\(557\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) −46.8119 −1.97817
\(561\) 0 0
\(562\) 22.4833 38.9422i 0.948401 1.64268i
\(563\) −34.5173 + 19.9286i −1.45473 + 0.839889i −0.998744 0.0500986i \(-0.984046\pi\)
−0.455985 + 0.889987i \(0.650713\pi\)
\(564\) 0 0
\(565\) −5.23381 1.40239i −0.220188 0.0589992i
\(566\) 4.34405 16.2122i 0.182594 0.681450i
\(567\) 43.6172 + 43.6172i 1.83175 + 1.83175i
\(568\) −23.4422 40.6031i −0.983614 1.70367i
\(569\) 13.0405 + 7.52896i 0.546688 + 0.315631i 0.747785 0.663941i \(-0.231117\pi\)
−0.201097 + 0.979571i \(0.564451\pi\)
\(570\) −82.1485 + 22.0116i −3.44082 + 0.921966i
\(571\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(572\) 0 0
\(573\) 87.7098 3.66413
\(574\) 0 0
\(575\) −25.3497 + 43.9070i −1.05716 + 1.83105i
\(576\) 51.1242 29.5166i 2.13018 1.22986i
\(577\) 0 0 0.707107 0.707107i \(-0.250000\pi\)
−0.707107 + 0.707107i \(0.750000\pi\)
\(578\) 23.2224 + 6.22243i 0.965926 + 0.258819i
\(579\) −4.90316 + 18.2988i −0.203768 + 0.760473i
\(580\) 0 0
\(581\) 22.9125 + 39.6857i 0.950573 + 1.64644i
\(582\) 0 0
\(583\) 0 0
\(584\) 0 0
\(585\) −114.496 27.2164i −4.73382 1.12526i
\(586\) −2.16441 −0.0894108
\(587\) −10.4600 39.0373i −0.431731 1.61124i −0.748771 0.662829i \(-0.769356\pi\)
0.317041 0.948412i \(-0.397311\pi\)
\(588\) −22.5517 + 39.0607i −0.930016 + 1.61083i
\(589\) 0 0
\(590\) 36.3458 36.3458i 1.49633 1.49633i
\(591\) 0 0
\(592\) 0 0
\(593\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 0 0
\(598\) 4.10453 17.2672i 0.167847 0.706110i
\(599\) 48.9290 1.99918 0.999592 0.0285537i \(-0.00909015\pi\)
0.999592 + 0.0285537i \(0.00909015\pi\)
\(600\) −34.3521 128.204i −1.40242 5.23390i
\(601\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(602\) 0 0
\(603\) 0 0
\(604\) 29.8852 + 8.00772i 1.21601 + 0.325830i
\(605\) 12.5932 46.9985i 0.511987 1.91076i
\(606\) −64.5989 64.5989i −2.62415 2.62415i
\(607\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(608\) 20.6737 + 11.9360i 0.838429 + 0.484067i
\(609\) 0 0
\(610\) 9.37548i 0.379602i
\(611\) 0 0
\(612\) 0 0
\(613\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(614\) −5.97537 + 10.3496i −0.241146 + 0.417678i
\(615\) 0 0
\(616\) 0 0
\(617\) −34.8305 9.33281i −1.40222 0.375725i −0.523081 0.852283i \(-0.675218\pi\)
−0.879143 + 0.476558i \(0.841884\pi\)
\(618\) 0 0
\(619\) 12.3565 + 12.3565i 0.496650 + 0.496650i 0.910394 0.413743i \(-0.135779\pi\)
−0.413743 + 0.910394i \(0.635779\pi\)
\(620\) 0 0
\(621\) −42.5278 24.5534i −1.70658 0.985295i
\(622\) 0 0
\(623\) 0 0
\(624\) 24.3660 + 39.5621i 0.975420 + 1.58375i
\(625\) −114.331 −4.57324
\(626\) 0 0
\(627\) 0 0
\(628\) −40.2396 + 23.2323i −1.60573 + 0.927071i
\(629\) 0 0
\(630\) −117.967 31.6092i −4.69993 1.25934i
\(631\) −2.81430 + 10.5031i −0.112035 + 0.418122i −0.999048 0.0436231i \(-0.986110\pi\)
0.887013 + 0.461745i \(0.152777\pi\)
\(632\) 16.5167 + 16.5167i 0.656998 + 0.656998i
\(633\) 0 0
\(634\) 0 0
\(635\) 40.5594 10.8679i 1.60955 0.431278i
\(636\) 0 0
\(637\) −22.2073 11.9931i −0.879886 0.475185i
\(638\) 0 0
\(639\) −31.6582 118.150i −1.25238 4.67394i
\(640\) −25.0220 + 43.3394i −0.989083 + 1.71314i
\(641\) 36.6643 21.1681i 1.44815 0.836090i 0.449780 0.893140i \(-0.351502\pi\)
0.998371 + 0.0570491i \(0.0181691\pi\)
\(642\) 0 0
\(643\) 40.1357 + 10.7543i 1.58280 + 0.424109i 0.939790 0.341752i \(-0.111020\pi\)
0.643006 + 0.765861i \(0.277687\pi\)
\(644\) 4.76702 17.7908i 0.187847 0.701054i
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(648\) 63.6961 17.0673i 2.50222 0.670467i
\(649\) 0 0
\(650\) 71.1648 21.2538i 2.79131 0.833642i
\(651\) 0 0
\(652\) 0 0
\(653\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(654\) 0 0
\(655\) −33.0154 + 33.0154i −1.29002 + 1.29002i
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) 0 0 −0.500000 0.866025i \(-0.666667\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(660\) 0 0
\(661\) −43.4381 + 11.6392i −1.68955 + 0.452713i −0.970273 0.242012i \(-0.922193\pi\)
−0.719275 + 0.694725i \(0.755526\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 48.9891 1.90115
\(665\) −12.7822 47.7038i −0.495672 1.84987i
\(666\) 0 0
\(667\) 0 0
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 24.1088 + 41.7576i 0.930016 + 1.61083i
\(673\) 38.8844 + 22.4499i 1.49889 + 0.865382i 0.999999 0.00128586i \(-0.000409302\pi\)
0.498886 + 0.866668i \(0.333743\pi\)
\(674\) 50.1445 13.4362i 1.93149 0.517542i
\(675\) 205.495i 7.90951i
\(676\) −21.7417 + 14.2583i −0.836218 + 0.548398i
\(677\) −23.6537 −0.909087 −0.454543 0.890725i \(-0.650198\pi\)
−0.454543 + 0.890725i \(0.650198\pi\)
\(678\) 1.44450 + 5.39096i 0.0554758 + 0.207038i
\(679\) 0 0
\(680\) 0 0
\(681\) −63.0813 + 63.0813i −2.41728 + 2.41728i
\(682\) 0 0
\(683\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(684\) 44.0386 + 44.0386i 1.68386 + 1.68386i
\(685\) 42.2767 + 73.2254i 1.61531 + 2.79780i
\(686\) −22.6826 13.0958i −0.866025 0.500000i
\(687\) −73.4526 + 19.6816i −2.80239 + 0.750899i
\(688\) 0 0
\(689\) 0 0
\(690\) 70.1480 2.67049
\(691\) −9.21525 34.3918i −0.350565 1.30833i −0.885975 0.463733i \(-0.846510\pi\)
0.535410 0.844592i \(-0.320157\pi\)
\(692\) 25.6075 44.3535i 0.973452 1.68607i
\(693\) 0 0
\(694\) 0 0
\(695\) −22.7661 6.10015i −0.863566 0.231392i
\(696\) 0 0
\(697\) 0 0
\(698\) 5.72761 + 9.92052i 0.216793 + 0.375497i
\(699\) −56.2551 32.4789i −2.12776 1.22846i
\(700\) 74.4482 19.9483i 2.81388 0.753976i
\(701\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(702\) 20.5862 + 68.9294i 0.776975 + 2.60157i
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 37.5127 37.5127i 1.41081 1.41081i
\(708\) −51.1400 13.7029i −1.92196 0.514987i
\(709\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(710\) 73.3215 + 73.3215i 2.75171 + 2.75171i
\(711\) 30.4698 + 52.7752i 1.14271 + 1.97922i
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −0.447136 1.66873i −0.0166986 0.0623200i
\(718\) 26.6541 46.1662i 0.994721 1.72291i
\(719\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(720\) −92.3207 + 92.3207i −3.44059 + 3.44059i
\(721\) 0 0
\(722\) 0.436156 1.62776i 0.0162321 0.0605789i
\(723\) 0 0
\(724\) −23.4886 40.6834i −0.872945 1.51199i
\(725\) 0 0
\(726\) −48.4097 + 12.9713i −1.79665 + 0.481411i
\(727\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(728\) −22.9738 + 14.1494i −0.851465 + 0.524411i
\(729\) 35.6848 1.32166
\(730\) 0 0
\(731\) 0 0
\(732\) 8.36320 4.82850i 0.309113 0.178466i
\(733\) −33.1335 + 33.1335i −1.22381 + 1.22381i −0.257546 + 0.966266i \(0.582914\pi\)
−0.966266 + 0.257546i \(0.917086\pi\)
\(734\) 0 0
\(735\) 25.8180 96.3541i 0.952312 3.55408i
\(736\) −13.9230 13.9230i −0.513207 0.513207i
\(737\) 0 0
\(738\) 0 0
\(739\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(740\) 0 0
\(741\) −33.6626 + 35.6328i −1.23663 + 1.30900i
\(742\) 0 0
\(743\) 11.2522 + 41.9939i 0.412804 + 1.54061i 0.789193 + 0.614145i \(0.210499\pi\)
−0.376389 + 0.926462i \(0.622834\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) 123.454 + 33.0793i 4.51694 + 1.21031i
\(748\) 0 0
\(749\) 0 0
\(750\) 96.3896 + 166.952i 3.51965 + 6.09621i
\(751\) 47.2211 + 27.2631i 1.72312 + 0.994845i 0.912263 + 0.409605i \(0.134333\pi\)
0.810860 + 0.585240i \(0.199000\pi\)
\(752\) 0 0
\(753\) 9.57883i 0.349072i
\(754\) 0 0
\(755\) −68.4275 −2.49033
\(756\) 19.3217 + 72.1096i 0.702724 + 2.62260i
\(757\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(758\) 0 0
\(759\) 0 0
\(760\) −50.9975 13.6647i −1.84987 0.495672i
\(761\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(762\) −30.5830 30.5830i −1.10791 1.10791i
\(763\) 0 0
\(764\) 47.1550 + 27.2250i 1.70601 + 0.984965i
\(765\) 0 0
\(766\) 0 0
\(767\) 6.85146 28.8232i 0.247392 1.04075i
\(768\) 51.5467 1.86003
\(769\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −8.31598 + 8.31598i −0.299299 + 0.299299i
\(773\) −4.94989 1.32632i −0.178035 0.0477044i 0.168700 0.985667i \(-0.446043\pi\)
−0.346735 + 0.937963i \(0.612710\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) 0 0
\(779\) 0 0
\(780\) −74.6991 70.5688i −2.67466 2.52677i
\(781\) 0 0
\(782\) 0 0
\(783\) 0 0
\(784\) −24.2487 + 14.0000i −0.866025 + 0.500000i
\(785\) 72.6651 72.6651i 2.59353 2.59353i
\(786\) 46.4540 + 12.4473i 1.65696 + 0.443981i
\(787\) −10.4819 + 39.1191i −0.373641 + 1.39445i 0.481680 + 0.876347i \(0.340027\pi\)
−0.855321 + 0.518099i \(0.826640\pi\)
\(788\) 0 0
\(789\) −36.4920 63.2060i −1.29915 2.25019i
\(790\) −44.7390 25.8301i −1.59174 0.918993i
\(791\) −3.13054 + 0.838825i −0.111309 + 0.0298252i
\(792\) 0 0
\(793\) 2.83383 + 4.60118i 0.100632 + 0.163393i
\(794\) −24.9378 −0.885011
\(795\) 0 0
\(796\) 0 0
\(797\) 13.2267 7.63642i 0.468513 0.270496i −0.247104 0.968989i \(-0.579479\pi\)
0.715617 + 0.698493i \(0.246146\pi\)
\(798\) −35.9702 + 35.9702i −1.27333 + 1.27333i
\(799\) 0 0
\(800\) 21.3257 79.5884i 0.753976 2.81388i
\(801\) 0 0
\(802\) −11.2250 19.4422i −0.396368 0.686529i
\(803\) 0 0
\(804\) 0 0
\(805\) 40.7351i 1.43572i
\(806\) 0 0
\(807\) 50.8807 1.79109
\(808\) −14.6786 54.7814i −0.516393 1.92720i
\(809\) −27.8375 + 48.2159i −0.978713 + 1.69518i −0.311619 + 0.950207i \(0.600871\pi\)
−0.667094 + 0.744973i \(0.732462\pi\)
\(810\) −126.304 + 72.9217i −4.43787 + 2.56221i
\(811\) −16.5261 + 16.5261i −0.580310 + 0.580310i −0.934988 0.354679i \(-0.884590\pi\)
0.354679 + 0.934988i \(0.384590\pi\)
\(812\) 0 0
\(813\) 0 0
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) −67.4488 + 20.1440i −2.35685 + 0.703888i
\(820\) 0 0
\(821\) 0 0 −0.258819 0.965926i \(-0.583333\pi\)
0.258819 + 0.965926i \(0.416667\pi\)
\(822\) 43.5461 75.4240i 1.51884 2.63072i
\(823\) −10.7206 + 6.18954i −0.373697 + 0.215754i −0.675072 0.737752i \(-0.735888\pi\)
0.301376 + 0.953506i \(0.402554\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 7.95731 29.6971i 0.276870 1.03329i
\(827\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(828\) −25.6849 44.4876i −0.892612 1.54605i
\(829\) 7.64657 + 4.41475i 0.265576 + 0.153331i 0.626876 0.779119i \(-0.284333\pi\)
−0.361299 + 0.932450i \(0.617667\pi\)
\(830\) −104.655 + 28.0423i −3.63263 + 0.973362i
\(831\) 0 0
\(832\) 0.819767 + 28.8328i 0.0284203 + 0.999596i
\(833\) 0 0
\(834\) 6.28331 + 23.4496i 0.217573 + 0.811995i
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) −36.5730 9.79971i −1.26339 0.338525i
\(839\) 0 0 0.258819 0.965926i \(-0.416667\pi\)
−0.258819 + 0.965926i \(0.583333\pi\)
\(840\) −75.4063 75.4063i −2.60176 2.60176i
\(841\) −14.5000 25.1147i −0.500000 0.866025i
\(842\) 0 0
\(843\) 98.9464 26.5126i 3.40789 0.913143i
\(844\) 0 0
\(845\) 38.2849 42.9054i 1.31704 1.47599i
\(846\) 0 0
\(847\) −7.53248 28.1116i −0.258819 0.965926i
\(848\) 0 0
\(849\) 33.1127 19.1176i 1.13643 0.656116i
\(850\) 0 0
\(851\) 0 0
\(852\) 27.6434 103.166i 0.947046 3.53442i
\(853\) 29.1336 + 29.1336i 0.997515 + 0.997515i 0.999997 0.00248202i \(-0.000790052\pi\)
−0.00248202 + 0.999997i \(0.500790\pi\)
\(854\) 2.80392 + 4.85652i 0.0959480 + 0.166187i
\(855\) −119.288 68.8710i −4.07957 2.35534i
\(856\) 0 0
\(857\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(858\) 0 0
\(859\) −41.1363 −1.40355 −0.701776 0.712398i \(-0.747609\pi\)
−0.701776 + 0.712398i \(0.747609\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −9.43365 + 5.44652i −0.321311 + 0.185509i
\(863\) −29.0285 + 29.0285i −0.988143 + 0.988143i −0.999931 0.0117879i \(-0.996248\pi\)
0.0117879 + 0.999931i \(0.496248\pi\)
\(864\) 77.0884 + 20.6558i 2.62260 + 0.702724i
\(865\) −29.3164 + 109.410i −0.996789 + 3.72007i
\(866\) 0 0
\(867\) 27.3842 + 47.4308i 0.930016 + 1.61083i
\(868\) 0 0
\(869\) 0 0
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 0 0
\(874\) 10.3865 17.9899i 0.351329 0.608519i
\(875\) −96.9491 + 55.9736i −3.27748 + 1.89225i
\(876\) 0 0
\(877\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(878\) 0 0
\(879\) −3.48650 3.48650i −0.117597 0.117597i
\(880\) 0 0
\(881\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(882\) −70.5607 + 18.9067i −2.37590 + 0.636621i
\(883\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(884\) 0 0
\(885\) 117.094 3.93607
\(886\) 0 0
\(887\) 0 0 0.500000 0.866025i \(-0.333333\pi\)
−0.500000 + 0.866025i \(0.666667\pi\)
\(888\) 0 0
\(889\) 17.7596 17.7596i 0.595639 0.595639i
\(890\) 0 0
\(891\) 0 0
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 29.9333i 1.00000i
\(897\) 34.4264 21.2029i 1.14946 0.707945i
\(898\) −30.0244 −1.00193
\(899\) 0 0
\(900\) 107.482 186.165i 3.58275 6.20550i
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −0.896742 + 3.34669i −0.0298252 + 0.111309i
\(905\) 73.4664 + 73.4664i 2.44211 + 2.44211i
\(906\) 35.2410 + 61.0393i 1.17080 + 2.02789i
\(907\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(908\) −53.4944 + 14.3338i −1.77528 + 0.475684i
\(909\) 147.962i 4.90759i
\(910\) 40.9795 43.3779i 1.35846 1.43796i
\(911\) 52.1724 1.72855 0.864274 0.503022i \(-0.167778\pi\)
0.864274 + 0.503022i \(0.167778\pi\)
\(912\) 14.0750 + 52.5287i 0.466071 + 1.73940i
\(913\) 0 0
\(914\) −48.2404 + 27.8516i −1.59565 + 0.921249i
\(915\) −15.1023 + 15.1023i −0.499268 + 0.499268i
\(916\) −45.5991 12.2182i −1.50664 0.403702i
\(917\) −7.22818 + 26.9759i −0.238696 + 0.890824i
\(918\) 0 0
\(919\) 0.663673 + 1.14952i 0.0218926 + 0.0379190i 0.876764 0.480921i \(-0.159697\pi\)
−0.854872 + 0.518840i \(0.826364\pi\)
\(920\) 37.7133 + 21.7738i 1.24337 + 0.717861i
\(921\) −26.2969 + 7.04623i −0.866512 + 0.232181i
\(922\) 0.835506i 0.0275159i
\(923\) 58.1460 + 13.8217i 1.91390 + 0.454946i
\(924\) 0 0
\(925\) 0 0
\(926\) −28.2019 + 48.8470i −0.926770 + 1.60521i
\(927\) 0 0
\(928\) 0 0
\(929\) 0 0 −0.965926 0.258819i \(-0.916667\pi\)
0.965926 + 0.258819i \(0.0833333\pi\)
\(930\) 0 0
\(931\) −20.8879 20.8879i −0.684574 0.684574i
\(932\) −20.1628 34.9230i −0.660454 1.14394i
\(933\) 0 0
\(934\) −47.2096 + 12.6498i −1.54474 + 0.413913i
\(935\) 0 0
\(936\) −17.4032 + 73.2128i −0.568840 + 2.39304i
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 0 0
\(941\) 40.9192 40.9192i 1.33393 1.33393i 0.432101 0.901825i \(-0.357772\pi\)
0.901825 0.432101i \(-0.142228\pi\)
\(942\) −102.243 27.3959i −3.33125 0.892606i
\(943\) 0 0
\(944\) −23.2408 23.2408i −0.756424 0.756424i
\(945\) −82.5538 142.987i −2.68548 4.65138i
\(946\) 0 0
\(947\) 0 0 0.965926 0.258819i \(-0.0833333\pi\)
−0.965926 + 0.258819i \(0.916667\pi\)
\(948\) 53.2113i 1.72822i
\(949\) 0 0
\(950\) 86.9278 2.82031
\(951\) 0 0
\(952\) 0 0
\(953\) −45.8326 + 26.4615i −1.48466 + 0.857171i −0.999848 0.0174443i \(-0.994447\pi\)
−0.484817 + 0.874616i \(0.661114\pi\)
\(954\) 0 0
\(955\) −116.321 31.1682i −3.76407 1.00858i
\(956\) 0.277580 1.03594i 0.00897759 0.0335048i
\(957\) 0 0
\(958\) 0 0
\(959\) 43.7989 + 25.2873i 1.41434 + 0.816569i
\(960\) −110.119 + 29.5063i −3.55408 + 0.952312i
\(961\) 31.0000i 1.00000i
\(962\) 0 0
\(963\) 0 0
\(964\) 0 0
\(965\) 13.0052 22.5256i 0.418651 0.725125i
\(966\) 36.3368 20.9791i 1.16912 0.674991i
\(967\) 40.2250 40.2250i 1.29355 1.29355i 0.360971 0.932577i \(-0.382445\pi\)
0.932577 0.360971i \(-0.117555\pi\)
\(968\) −30.0526 8.05256i −0.965926 0.258819i
\(969\) 0 0
\(970\) 0 0
\(971\) −30.8853 53.4950i −0.991157 1.71673i −0.610493 0.792021i \(-0.709029\pi\)
−0.380664 0.924713i \(-0.624305\pi\)
\(972\) 56.7883 + 32.7867i 1.82148 + 1.05163i
\(973\) −13.6173 + 3.64873i −0.436549 + 0.116973i
\(974\) 16.7582i 0.536968i
\(975\) 148.871 + 80.3983i 4.76769 + 2.57481i
\(976\) 5.99502 0.191896
\(977\) 8.51030 + 31.7609i 0.272269 + 1.01612i 0.957650 + 0.287936i \(0.0929689\pi\)
−0.685381 + 0.728184i \(0.740364\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 43.7886 43.7886i 1.39877 1.39877i
\(981\) 0 0
\(982\) 0 0
\(983\) 0 0 −0.707107 0.707107i \(-0.750000\pi\)
0.707107 + 0.707107i \(0.250000\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) −29.1582 + 8.70829i −0.927647 + 0.277048i
\(989\) 0 0
\(990\) 0 0
\(991\) 19.7951 34.2861i 0.628811 1.08913i −0.358980 0.933345i \(-0.616875\pi\)
0.987791 0.155787i \(-0.0497914\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 59.9089 + 16.0525i 1.90020 + 0.509156i
\(995\) 0 0
\(996\) 78.9133 + 78.9133i 2.50046 + 2.50046i
\(997\) 23.7448 + 41.1271i 0.752004 + 1.30251i 0.946850 + 0.321675i \(0.104246\pi\)
−0.194846 + 0.980834i \(0.562421\pi\)
\(998\) 0 0
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.ds.a.461.1 yes 16
7.6 odd 2 inner 728.2.ds.a.461.4 yes 16
8.5 even 2 inner 728.2.ds.a.461.4 yes 16
13.11 odd 12 inner 728.2.ds.a.349.1 16
56.13 odd 2 CM 728.2.ds.a.461.1 yes 16
91.76 even 12 inner 728.2.ds.a.349.4 yes 16
104.37 odd 12 inner 728.2.ds.a.349.4 yes 16
728.349 even 12 inner 728.2.ds.a.349.1 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.ds.a.349.1 16 13.11 odd 12 inner
728.2.ds.a.349.1 16 728.349 even 12 inner
728.2.ds.a.349.4 yes 16 91.76 even 12 inner
728.2.ds.a.349.4 yes 16 104.37 odd 12 inner
728.2.ds.a.461.1 yes 16 1.1 even 1 trivial
728.2.ds.a.461.1 yes 16 56.13 odd 2 CM
728.2.ds.a.461.4 yes 16 7.6 odd 2 inner
728.2.ds.a.461.4 yes 16 8.5 even 2 inner