Properties

Label 728.2.h.a
Level $728$
Weight $2$
Character orbit 728.h
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(27,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.

\(\operatorname{Tr}(f)(q) = \) \( 48 q + q^{2} + q^{4} - 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} + 10 q^{12} - 48 q^{13} + 10 q^{14} + 5 q^{16} - 15 q^{18} - 22 q^{20} - 6 q^{22} + 48 q^{25} - q^{26} + 4 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
27.1 −1.40591 0.153058i 1.61368i 1.95315 + 0.430370i −3.74465 −0.246987 + 2.26868i 0.220320 + 2.63656i −2.68007 0.904005i 0.396033 5.26463 + 0.573149i
27.2 −1.40591 + 0.153058i 1.61368i 1.95315 0.430370i −3.74465 −0.246987 2.26868i 0.220320 2.63656i −2.68007 + 0.904005i 0.396033 5.26463 0.573149i
27.3 −1.39580 0.227483i 1.35635i 1.89650 + 0.635042i 2.01767 0.308546 1.89318i −2.18534 1.49140i −2.50267 1.31781i 1.16033 −2.81626 0.458986i
27.4 −1.39580 + 0.227483i 1.35635i 1.89650 0.635042i 2.01767 0.308546 + 1.89318i −2.18534 + 1.49140i −2.50267 + 1.31781i 1.16033 −2.81626 + 0.458986i
27.5 −1.32721 0.488382i 0.610846i 1.52297 + 1.29637i 0.780706 0.298326 0.810720i 2.18555 1.49110i −1.38817 2.46434i 2.62687 −1.03616 0.381283i
27.6 −1.32721 + 0.488382i 0.610846i 1.52297 1.29637i 0.780706 0.298326 + 0.810720i 2.18555 + 1.49110i −1.38817 + 2.46434i 2.62687 −1.03616 + 0.381283i
27.7 −1.29766 0.562216i 3.37415i 1.36783 + 1.45913i −0.523773 −1.89700 + 4.37848i −2.30913 1.29148i −0.954623 2.66246i −8.38487 0.679678 + 0.294474i
27.8 −1.29766 + 0.562216i 3.37415i 1.36783 1.45913i −0.523773 −1.89700 4.37848i −2.30913 + 1.29148i −0.954623 + 2.66246i −8.38487 0.679678 0.294474i
27.9 −1.25982 0.642544i 2.44281i 1.17427 + 1.61897i 3.85137 −1.56961 + 3.07749i 2.49284 + 0.886436i −0.439107 2.79413i −2.96733 −4.85202 2.47467i
27.10 −1.25982 + 0.642544i 2.44281i 1.17427 1.61897i 3.85137 −1.56961 3.07749i 2.49284 0.886436i −0.439107 + 2.79413i −2.96733 −4.85202 + 2.47467i
27.11 −1.10110 0.887461i 0.140163i 0.424825 + 1.95436i −0.986963 0.124389 0.154333i −1.39484 + 2.24820i 1.26665 2.52895i 2.98035 1.08674 + 0.875891i
27.12 −1.10110 + 0.887461i 0.140163i 0.424825 1.95436i −0.986963 0.124389 + 0.154333i −1.39484 2.24820i 1.26665 + 2.52895i 2.98035 1.08674 0.875891i
27.13 −0.879218 1.10769i 1.92788i −0.453951 + 1.94780i −2.16680 2.13549 1.69503i 1.74001 1.99308i 2.55668 1.20971i −0.716713 1.90509 + 2.40014i
27.14 −0.879218 + 1.10769i 1.92788i −0.453951 1.94780i −2.16680 2.13549 + 1.69503i 1.74001 + 1.99308i 2.55668 + 1.20971i −0.716713 1.90509 2.40014i
27.15 −0.635480 1.26339i 1.40360i −1.19233 + 1.60572i −3.11493 −1.77331 + 0.891962i −2.64532 0.0479799i 2.78636 + 0.485980i 1.02989 1.97948 + 3.93539i
27.16 −0.635480 + 1.26339i 1.40360i −1.19233 1.60572i −3.11493 −1.77331 0.891962i −2.64532 + 0.0479799i 2.78636 0.485980i 1.02989 1.97948 3.93539i
27.17 −0.629285 1.26649i 2.38356i −1.20800 + 1.59397i −1.68057 3.01876 1.49994i 1.10198 + 2.40533i 2.77892 + 0.526865i −2.68138 1.05755 + 2.12842i
27.18 −0.629285 + 1.26649i 2.38356i −1.20800 1.59397i −1.68057 3.01876 + 1.49994i 1.10198 2.40533i 2.77892 0.526865i −2.68138 1.05755 2.12842i
27.19 −0.270952 1.38801i 0.332595i −1.85317 + 0.752171i 4.11591 0.461647 0.0901174i −1.93546 + 1.80388i 1.54614 + 2.36843i 2.88938 −1.11521 5.71294i
27.20 −0.270952 + 1.38801i 0.332595i −1.85317 0.752171i 4.11591 0.461647 + 0.0901174i −1.93546 1.80388i 1.54614 2.36843i 2.88938 −1.11521 + 5.71294i
See all 48 embeddings
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 27.48
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
56.e even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 728.2.h.a 48
4.b odd 2 1 2912.2.h.a 48
7.b odd 2 1 728.2.h.b yes 48
8.b even 2 1 2912.2.h.b 48
8.d odd 2 1 728.2.h.b yes 48
28.d even 2 1 2912.2.h.b 48
56.e even 2 1 inner 728.2.h.a 48
56.h odd 2 1 2912.2.h.a 48
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
728.2.h.a 48 1.a even 1 1 trivial
728.2.h.a 48 56.e even 2 1 inner
728.2.h.b yes 48 7.b odd 2 1
728.2.h.b yes 48 8.d odd 2 1
2912.2.h.a 48 4.b odd 2 1
2912.2.h.a 48 56.h odd 2 1
2912.2.h.b 48 8.b even 2 1
2912.2.h.b 48 28.d even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} - 72 T_{5}^{22} - 4 T_{5}^{21} + 2196 T_{5}^{20} + 220 T_{5}^{19} - 37124 T_{5}^{18} + \cdots - 75264 \) acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\). Copy content Toggle raw display