Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [728,2,Mod(27,728)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(728, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("728.27");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.h (of order \(2\), degree \(1\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.81310926715\) |
Analytic rank: | \(0\) |
Dimension: | \(48\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
27.1 | −1.40591 | − | 0.153058i | − | 1.61368i | 1.95315 | + | 0.430370i | −3.74465 | −0.246987 | + | 2.26868i | 0.220320 | + | 2.63656i | −2.68007 | − | 0.904005i | 0.396033 | 5.26463 | + | 0.573149i | |||||
27.2 | −1.40591 | + | 0.153058i | 1.61368i | 1.95315 | − | 0.430370i | −3.74465 | −0.246987 | − | 2.26868i | 0.220320 | − | 2.63656i | −2.68007 | + | 0.904005i | 0.396033 | 5.26463 | − | 0.573149i | ||||||
27.3 | −1.39580 | − | 0.227483i | 1.35635i | 1.89650 | + | 0.635042i | 2.01767 | 0.308546 | − | 1.89318i | −2.18534 | − | 1.49140i | −2.50267 | − | 1.31781i | 1.16033 | −2.81626 | − | 0.458986i | ||||||
27.4 | −1.39580 | + | 0.227483i | − | 1.35635i | 1.89650 | − | 0.635042i | 2.01767 | 0.308546 | + | 1.89318i | −2.18534 | + | 1.49140i | −2.50267 | + | 1.31781i | 1.16033 | −2.81626 | + | 0.458986i | |||||
27.5 | −1.32721 | − | 0.488382i | 0.610846i | 1.52297 | + | 1.29637i | 0.780706 | 0.298326 | − | 0.810720i | 2.18555 | − | 1.49110i | −1.38817 | − | 2.46434i | 2.62687 | −1.03616 | − | 0.381283i | ||||||
27.6 | −1.32721 | + | 0.488382i | − | 0.610846i | 1.52297 | − | 1.29637i | 0.780706 | 0.298326 | + | 0.810720i | 2.18555 | + | 1.49110i | −1.38817 | + | 2.46434i | 2.62687 | −1.03616 | + | 0.381283i | |||||
27.7 | −1.29766 | − | 0.562216i | − | 3.37415i | 1.36783 | + | 1.45913i | −0.523773 | −1.89700 | + | 4.37848i | −2.30913 | − | 1.29148i | −0.954623 | − | 2.66246i | −8.38487 | 0.679678 | + | 0.294474i | |||||
27.8 | −1.29766 | + | 0.562216i | 3.37415i | 1.36783 | − | 1.45913i | −0.523773 | −1.89700 | − | 4.37848i | −2.30913 | + | 1.29148i | −0.954623 | + | 2.66246i | −8.38487 | 0.679678 | − | 0.294474i | ||||||
27.9 | −1.25982 | − | 0.642544i | − | 2.44281i | 1.17427 | + | 1.61897i | 3.85137 | −1.56961 | + | 3.07749i | 2.49284 | + | 0.886436i | −0.439107 | − | 2.79413i | −2.96733 | −4.85202 | − | 2.47467i | |||||
27.10 | −1.25982 | + | 0.642544i | 2.44281i | 1.17427 | − | 1.61897i | 3.85137 | −1.56961 | − | 3.07749i | 2.49284 | − | 0.886436i | −0.439107 | + | 2.79413i | −2.96733 | −4.85202 | + | 2.47467i | ||||||
27.11 | −1.10110 | − | 0.887461i | 0.140163i | 0.424825 | + | 1.95436i | −0.986963 | 0.124389 | − | 0.154333i | −1.39484 | + | 2.24820i | 1.26665 | − | 2.52895i | 2.98035 | 1.08674 | + | 0.875891i | ||||||
27.12 | −1.10110 | + | 0.887461i | − | 0.140163i | 0.424825 | − | 1.95436i | −0.986963 | 0.124389 | + | 0.154333i | −1.39484 | − | 2.24820i | 1.26665 | + | 2.52895i | 2.98035 | 1.08674 | − | 0.875891i | |||||
27.13 | −0.879218 | − | 1.10769i | 1.92788i | −0.453951 | + | 1.94780i | −2.16680 | 2.13549 | − | 1.69503i | 1.74001 | − | 1.99308i | 2.55668 | − | 1.20971i | −0.716713 | 1.90509 | + | 2.40014i | ||||||
27.14 | −0.879218 | + | 1.10769i | − | 1.92788i | −0.453951 | − | 1.94780i | −2.16680 | 2.13549 | + | 1.69503i | 1.74001 | + | 1.99308i | 2.55668 | + | 1.20971i | −0.716713 | 1.90509 | − | 2.40014i | |||||
27.15 | −0.635480 | − | 1.26339i | − | 1.40360i | −1.19233 | + | 1.60572i | −3.11493 | −1.77331 | + | 0.891962i | −2.64532 | − | 0.0479799i | 2.78636 | + | 0.485980i | 1.02989 | 1.97948 | + | 3.93539i | |||||
27.16 | −0.635480 | + | 1.26339i | 1.40360i | −1.19233 | − | 1.60572i | −3.11493 | −1.77331 | − | 0.891962i | −2.64532 | + | 0.0479799i | 2.78636 | − | 0.485980i | 1.02989 | 1.97948 | − | 3.93539i | ||||||
27.17 | −0.629285 | − | 1.26649i | 2.38356i | −1.20800 | + | 1.59397i | −1.68057 | 3.01876 | − | 1.49994i | 1.10198 | + | 2.40533i | 2.77892 | + | 0.526865i | −2.68138 | 1.05755 | + | 2.12842i | ||||||
27.18 | −0.629285 | + | 1.26649i | − | 2.38356i | −1.20800 | − | 1.59397i | −1.68057 | 3.01876 | + | 1.49994i | 1.10198 | − | 2.40533i | 2.77892 | − | 0.526865i | −2.68138 | 1.05755 | − | 2.12842i | |||||
27.19 | −0.270952 | − | 1.38801i | 0.332595i | −1.85317 | + | 0.752171i | 4.11591 | 0.461647 | − | 0.0901174i | −1.93546 | + | 1.80388i | 1.54614 | + | 2.36843i | 2.88938 | −1.11521 | − | 5.71294i | ||||||
27.20 | −0.270952 | + | 1.38801i | − | 0.332595i | −1.85317 | − | 0.752171i | 4.11591 | 0.461647 | + | 0.0901174i | −1.93546 | − | 1.80388i | 1.54614 | − | 2.36843i | 2.88938 | −1.11521 | + | 5.71294i | |||||
See all 48 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
56.e | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 728.2.h.a | ✓ | 48 |
4.b | odd | 2 | 1 | 2912.2.h.a | 48 | ||
7.b | odd | 2 | 1 | 728.2.h.b | yes | 48 | |
8.b | even | 2 | 1 | 2912.2.h.b | 48 | ||
8.d | odd | 2 | 1 | 728.2.h.b | yes | 48 | |
28.d | even | 2 | 1 | 2912.2.h.b | 48 | ||
56.e | even | 2 | 1 | inner | 728.2.h.a | ✓ | 48 |
56.h | odd | 2 | 1 | 2912.2.h.a | 48 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.h.a | ✓ | 48 | 1.a | even | 1 | 1 | trivial |
728.2.h.a | ✓ | 48 | 56.e | even | 2 | 1 | inner |
728.2.h.b | yes | 48 | 7.b | odd | 2 | 1 | |
728.2.h.b | yes | 48 | 8.d | odd | 2 | 1 | |
2912.2.h.a | 48 | 4.b | odd | 2 | 1 | ||
2912.2.h.a | 48 | 56.h | odd | 2 | 1 | ||
2912.2.h.b | 48 | 8.b | even | 2 | 1 | ||
2912.2.h.b | 48 | 28.d | even | 2 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{24} - 72 T_{5}^{22} - 4 T_{5}^{21} + 2196 T_{5}^{20} + 220 T_{5}^{19} - 37124 T_{5}^{18} + \cdots - 75264 \) acting on \(S_{2}^{\mathrm{new}}(728, [\chi])\).