Properties

Label 728.2.h.b.27.1
Level $728$
Weight $2$
Character 728.27
Analytic conductor $5.813$
Analytic rank $0$
Dimension $48$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [728,2,Mod(27,728)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(728, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 1, 1, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("728.27");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 728 = 2^{3} \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 728.h (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.81310926715\)
Analytic rank: \(0\)
Dimension: \(48\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 27.1
Character \(\chi\) \(=\) 728.27
Dual form 728.2.h.b.27.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.40591 - 0.153058i) q^{2} +1.61368i q^{3} +(1.95315 + 0.430370i) q^{4} +3.74465 q^{5} +(0.246987 - 2.26868i) q^{6} +(-0.220320 + 2.63656i) q^{7} +(-2.68007 - 0.904005i) q^{8} +0.396033 q^{9} +(-5.26463 - 0.573149i) q^{10} +3.49137 q^{11} +(-0.694480 + 3.15176i) q^{12} +1.00000 q^{13} +(0.713296 - 3.67304i) q^{14} +6.04268i q^{15} +(3.62956 + 1.68115i) q^{16} +2.76774i q^{17} +(-0.556786 - 0.0606160i) q^{18} -1.95616i q^{19} +(7.31386 + 1.61159i) q^{20} +(-4.25457 - 0.355526i) q^{21} +(-4.90853 - 0.534381i) q^{22} -3.57617i q^{23} +(1.45878 - 4.32478i) q^{24} +9.02242 q^{25} +(-1.40591 - 0.153058i) q^{26} +5.48011i q^{27} +(-1.56502 + 5.05477i) q^{28} -7.44638i q^{29} +(0.924879 - 8.49544i) q^{30} -2.83757 q^{31} +(-4.84551 - 2.91908i) q^{32} +5.63395i q^{33} +(0.423625 - 3.89119i) q^{34} +(-0.825022 + 9.87301i) q^{35} +(0.773511 + 0.170441i) q^{36} -7.85432i q^{37} +(-0.299406 + 2.75018i) q^{38} +1.61368i q^{39} +(-10.0359 - 3.38518i) q^{40} -9.79226i q^{41} +(5.92711 + 1.15103i) q^{42} -9.67807 q^{43} +(6.81915 + 1.50258i) q^{44} +1.48301 q^{45} +(-0.547360 + 5.02776i) q^{46} +0.142720 q^{47} +(-2.71284 + 5.85696i) q^{48} +(-6.90292 - 1.16178i) q^{49} +(-12.6847 - 1.38095i) q^{50} -4.46625 q^{51} +(1.95315 + 0.430370i) q^{52} +4.92001i q^{53} +(0.838775 - 7.70453i) q^{54} +13.0740 q^{55} +(2.97394 - 6.86700i) q^{56} +3.15663 q^{57} +(-1.13973 + 10.4689i) q^{58} +14.9529i q^{59} +(-2.60059 + 11.8022i) q^{60} -6.42304 q^{61} +(3.98936 + 0.434313i) q^{62} +(-0.0872541 + 1.04417i) q^{63} +(6.36555 + 4.84559i) q^{64} +3.74465 q^{65} +(0.862320 - 7.92081i) q^{66} +6.64374 q^{67} +(-1.19115 + 5.40581i) q^{68} +5.77079 q^{69} +(2.67105 - 13.7543i) q^{70} -2.19770i q^{71} +(-1.06140 - 0.358016i) q^{72} +7.29238i q^{73} +(-1.20217 + 11.0424i) q^{74} +14.5593i q^{75} +(0.841875 - 3.82068i) q^{76} +(-0.769218 + 9.20520i) q^{77} +(0.246987 - 2.26868i) q^{78} -7.84555i q^{79} +(13.5915 + 6.29533i) q^{80} -7.65506 q^{81} +(-1.49878 + 13.7670i) q^{82} +10.8229i q^{83} +(-8.15679 - 2.52544i) q^{84} +10.3642i q^{85} +(13.6065 + 1.48130i) q^{86} +12.0161 q^{87} +(-9.35710 - 3.15621i) q^{88} +8.96702i q^{89} +(-2.08497 - 0.226986i) q^{90} +(-0.220320 + 2.63656i) q^{91} +(1.53908 - 6.98478i) q^{92} -4.57894i q^{93} +(-0.200651 - 0.0218444i) q^{94} -7.32516i q^{95} +(4.71046 - 7.81911i) q^{96} -4.53127i q^{97} +(9.52704 + 2.68989i) q^{98} +1.38270 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + q^{2} + q^{4} + 10 q^{6} - 5 q^{8} - 48 q^{9} - 4 q^{11} - 10 q^{12} + 48 q^{13} - 6 q^{14} + 5 q^{16} - 15 q^{18} + 22 q^{20} - 6 q^{22} + 48 q^{25} + q^{26} - 26 q^{28} - 26 q^{30} - 19 q^{32}+ \cdots + 20 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/728\mathbb{Z}\right)^\times\).

\(n\) \(183\) \(365\) \(521\) \(561\)
\(\chi(n)\) \(-1\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.40591 0.153058i −0.994126 0.108228i
\(3\) 1.61368i 0.931659i 0.884874 + 0.465830i \(0.154244\pi\)
−0.884874 + 0.465830i \(0.845756\pi\)
\(4\) 1.95315 + 0.430370i 0.976573 + 0.215185i
\(5\) 3.74465 1.67466 0.837330 0.546698i \(-0.184115\pi\)
0.837330 + 0.546698i \(0.184115\pi\)
\(6\) 0.246987 2.26868i 0.100832 0.926187i
\(7\) −0.220320 + 2.63656i −0.0832732 + 0.996527i
\(8\) −2.68007 0.904005i −0.947548 0.319614i
\(9\) 0.396033 0.132011
\(10\) −5.26463 0.573149i −1.66482 0.181245i
\(11\) 3.49137 1.05269 0.526343 0.850272i \(-0.323563\pi\)
0.526343 + 0.850272i \(0.323563\pi\)
\(12\) −0.694480 + 3.15176i −0.200479 + 0.909833i
\(13\) 1.00000 0.277350
\(14\) 0.713296 3.67304i 0.190636 0.981661i
\(15\) 6.04268i 1.56021i
\(16\) 3.62956 + 1.68115i 0.907391 + 0.420288i
\(17\) 2.76774i 0.671276i 0.941991 + 0.335638i \(0.108952\pi\)
−0.941991 + 0.335638i \(0.891048\pi\)
\(18\) −0.556786 0.0606160i −0.131236 0.0142873i
\(19\) 1.95616i 0.448775i −0.974500 0.224387i \(-0.927962\pi\)
0.974500 0.224387i \(-0.0720381\pi\)
\(20\) 7.31386 + 1.61159i 1.63543 + 0.360362i
\(21\) −4.25457 0.355526i −0.928423 0.0775822i
\(22\) −4.90853 0.534381i −1.04650 0.113930i
\(23\) 3.57617i 0.745682i −0.927895 0.372841i \(-0.878384\pi\)
0.927895 0.372841i \(-0.121616\pi\)
\(24\) 1.45878 4.32478i 0.297771 0.882792i
\(25\) 9.02242 1.80448
\(26\) −1.40591 0.153058i −0.275721 0.0300171i
\(27\) 5.48011i 1.05465i
\(28\) −1.56502 + 5.05477i −0.295760 + 0.955262i
\(29\) 7.44638i 1.38276i −0.722493 0.691379i \(-0.757004\pi\)
0.722493 0.691379i \(-0.242996\pi\)
\(30\) 0.924879 8.49544i 0.168859 1.55105i
\(31\) −2.83757 −0.509643 −0.254822 0.966988i \(-0.582017\pi\)
−0.254822 + 0.966988i \(0.582017\pi\)
\(32\) −4.84551 2.91908i −0.856574 0.516025i
\(33\) 5.63395i 0.980745i
\(34\) 0.423625 3.89119i 0.0726511 0.667333i
\(35\) −0.825022 + 9.87301i −0.139454 + 1.66884i
\(36\) 0.773511 + 0.170441i 0.128919 + 0.0284068i
\(37\) 7.85432i 1.29124i −0.763658 0.645621i \(-0.776598\pi\)
0.763658 0.645621i \(-0.223402\pi\)
\(38\) −0.299406 + 2.75018i −0.0485701 + 0.446139i
\(39\) 1.61368i 0.258396i
\(40\) −10.0359 3.38518i −1.58682 0.535244i
\(41\) 9.79226i 1.52929i −0.644450 0.764647i \(-0.722914\pi\)
0.644450 0.764647i \(-0.277086\pi\)
\(42\) 5.92711 + 1.15103i 0.914573 + 0.177608i
\(43\) −9.67807 −1.47589 −0.737946 0.674860i \(-0.764204\pi\)
−0.737946 + 0.674860i \(0.764204\pi\)
\(44\) 6.81915 + 1.50258i 1.02803 + 0.226522i
\(45\) 1.48301 0.221074
\(46\) −0.547360 + 5.02776i −0.0807039 + 0.741302i
\(47\) 0.142720 0.0208178 0.0104089 0.999946i \(-0.496687\pi\)
0.0104089 + 0.999946i \(0.496687\pi\)
\(48\) −2.71284 + 5.85696i −0.391565 + 0.845379i
\(49\) −6.90292 1.16178i −0.986131 0.165968i
\(50\) −12.6847 1.38095i −1.79389 0.195296i
\(51\) −4.46625 −0.625401
\(52\) 1.95315 + 0.430370i 0.270853 + 0.0596816i
\(53\) 4.92001i 0.675815i 0.941179 + 0.337907i \(0.109719\pi\)
−0.941179 + 0.337907i \(0.890281\pi\)
\(54\) 0.838775 7.70453i 0.114143 1.04845i
\(55\) 13.0740 1.76289
\(56\) 2.97394 6.86700i 0.397409 0.917642i
\(57\) 3.15663 0.418105
\(58\) −1.13973 + 10.4689i −0.149653 + 1.37463i
\(59\) 14.9529i 1.94671i 0.229310 + 0.973354i \(0.426353\pi\)
−0.229310 + 0.973354i \(0.573647\pi\)
\(60\) −2.60059 + 11.8022i −0.335734 + 1.52366i
\(61\) −6.42304 −0.822386 −0.411193 0.911548i \(-0.634888\pi\)
−0.411193 + 0.911548i \(0.634888\pi\)
\(62\) 3.98936 + 0.434313i 0.506650 + 0.0551578i
\(63\) −0.0872541 + 1.04417i −0.0109930 + 0.131553i
\(64\) 6.36555 + 4.84559i 0.795694 + 0.605699i
\(65\) 3.74465 0.464467
\(66\) 0.862320 7.92081i 0.106144 0.974984i
\(67\) 6.64374 0.811662 0.405831 0.913948i \(-0.366982\pi\)
0.405831 + 0.913948i \(0.366982\pi\)
\(68\) −1.19115 + 5.40581i −0.144449 + 0.655550i
\(69\) 5.77079 0.694722
\(70\) 2.67105 13.7543i 0.319251 1.64395i
\(71\) 2.19770i 0.260819i −0.991460 0.130409i \(-0.958371\pi\)
0.991460 0.130409i \(-0.0416292\pi\)
\(72\) −1.06140 0.358016i −0.125087 0.0421926i
\(73\) 7.29238i 0.853508i 0.904368 + 0.426754i \(0.140343\pi\)
−0.904368 + 0.426754i \(0.859657\pi\)
\(74\) −1.20217 + 11.0424i −0.139749 + 1.28366i
\(75\) 14.5593i 1.68116i
\(76\) 0.841875 3.82068i 0.0965697 0.438262i
\(77\) −0.769218 + 9.20520i −0.0876606 + 1.04903i
\(78\) 0.246987 2.26868i 0.0279657 0.256878i
\(79\) 7.84555i 0.882694i −0.897337 0.441347i \(-0.854501\pi\)
0.897337 0.441347i \(-0.145499\pi\)
\(80\) 13.5915 + 6.29533i 1.51957 + 0.703839i
\(81\) −7.65506 −0.850562
\(82\) −1.49878 + 13.7670i −0.165513 + 1.52031i
\(83\) 10.8229i 1.18797i 0.804478 + 0.593983i \(0.202445\pi\)
−0.804478 + 0.593983i \(0.797555\pi\)
\(84\) −8.15679 2.52544i −0.889979 0.275548i
\(85\) 10.3642i 1.12416i
\(86\) 13.6065 + 1.48130i 1.46722 + 0.159733i
\(87\) 12.0161 1.28826
\(88\) −9.35710 3.15621i −0.997471 0.336453i
\(89\) 8.96702i 0.950502i 0.879850 + 0.475251i \(0.157643\pi\)
−0.879850 + 0.475251i \(0.842357\pi\)
\(90\) −2.08497 0.226986i −0.219775 0.0239264i
\(91\) −0.220320 + 2.63656i −0.0230958 + 0.276387i
\(92\) 1.53908 6.98478i 0.160460 0.728213i
\(93\) 4.57894i 0.474814i
\(94\) −0.200651 0.0218444i −0.0206955 0.00225307i
\(95\) 7.32516i 0.751545i
\(96\) 4.71046 7.81911i 0.480759 0.798035i
\(97\) 4.53127i 0.460080i −0.973181 0.230040i \(-0.926114\pi\)
0.973181 0.230040i \(-0.0738858\pi\)
\(98\) 9.52704 + 2.68989i 0.962376 + 0.271720i
\(99\) 1.38270 0.138966
\(100\) 17.6221 + 3.88298i 1.76221 + 0.388298i
\(101\) −4.60810 −0.458523 −0.229262 0.973365i \(-0.573631\pi\)
−0.229262 + 0.973365i \(0.573631\pi\)
\(102\) 6.27914 + 0.683595i 0.621727 + 0.0676860i
\(103\) −19.7394 −1.94498 −0.972491 0.232940i \(-0.925166\pi\)
−0.972491 + 0.232940i \(0.925166\pi\)
\(104\) −2.68007 0.904005i −0.262802 0.0886449i
\(105\) −15.9319 1.33132i −1.55479 0.129924i
\(106\) 0.753046 6.91707i 0.0731423 0.671845i
\(107\) −12.6613 −1.22402 −0.612008 0.790851i \(-0.709638\pi\)
−0.612008 + 0.790851i \(0.709638\pi\)
\(108\) −2.35848 + 10.7035i −0.226945 + 1.02994i
\(109\) 5.65221i 0.541383i −0.962666 0.270692i \(-0.912748\pi\)
0.962666 0.270692i \(-0.0872523\pi\)
\(110\) −18.3808 2.00107i −1.75254 0.190795i
\(111\) 12.6744 1.20300
\(112\) −5.23213 + 9.19918i −0.494390 + 0.869240i
\(113\) 17.5275 1.64885 0.824423 0.565973i \(-0.191500\pi\)
0.824423 + 0.565973i \(0.191500\pi\)
\(114\) −4.43792 0.483146i −0.415649 0.0452508i
\(115\) 13.3915i 1.24876i
\(116\) 3.20470 14.5439i 0.297549 1.35036i
\(117\) 0.396033 0.0366133
\(118\) 2.28867 21.0224i 0.210689 1.93527i
\(119\) −7.29733 0.609790i −0.668945 0.0558993i
\(120\) 5.46261 16.1948i 0.498665 1.47838i
\(121\) 1.18963 0.108149
\(122\) 9.03019 + 0.983096i 0.817555 + 0.0890054i
\(123\) 15.8016 1.42478
\(124\) −5.54220 1.22121i −0.497704 0.109668i
\(125\) 15.0626 1.34724
\(126\) 0.282489 1.45465i 0.0251661 0.129590i
\(127\) 13.5718i 1.20431i −0.798381 0.602153i \(-0.794310\pi\)
0.798381 0.602153i \(-0.205690\pi\)
\(128\) −8.20771 7.78675i −0.725466 0.688258i
\(129\) 15.6173i 1.37503i
\(130\) −5.26463 0.573149i −0.461739 0.0502685i
\(131\) 5.15777i 0.450637i 0.974285 + 0.225318i \(0.0723422\pi\)
−0.974285 + 0.225318i \(0.927658\pi\)
\(132\) −2.42468 + 11.0039i −0.211042 + 0.957769i
\(133\) 5.15755 + 0.430983i 0.447216 + 0.0373709i
\(134\) −9.34047 1.01688i −0.806894 0.0878447i
\(135\) 20.5211i 1.76618i
\(136\) 2.50205 7.41774i 0.214549 0.636066i
\(137\) −5.20015 −0.444279 −0.222139 0.975015i \(-0.571304\pi\)
−0.222139 + 0.975015i \(0.571304\pi\)
\(138\) −8.11319 0.883265i −0.690641 0.0751885i
\(139\) 8.31677i 0.705419i −0.935733 0.352710i \(-0.885260\pi\)
0.935733 0.352710i \(-0.114740\pi\)
\(140\) −5.86044 + 18.9284i −0.495297 + 1.59974i
\(141\) 0.230304i 0.0193951i
\(142\) −0.336375 + 3.08976i −0.0282280 + 0.259287i
\(143\) 3.49137 0.291963
\(144\) 1.43743 + 0.665792i 0.119786 + 0.0554827i
\(145\) 27.8841i 2.31565i
\(146\) 1.11616 10.2524i 0.0923737 0.848495i
\(147\) 1.87474 11.1391i 0.154626 0.918738i
\(148\) 3.38027 15.3406i 0.277856 1.26099i
\(149\) 15.9705i 1.30836i 0.756340 + 0.654179i \(0.226986\pi\)
−0.756340 + 0.654179i \(0.773014\pi\)
\(150\) 2.22842 20.4690i 0.181950 1.67129i
\(151\) 15.5186i 1.26288i −0.775424 0.631441i \(-0.782464\pi\)
0.775424 0.631441i \(-0.217536\pi\)
\(152\) −1.76838 + 5.24266i −0.143435 + 0.425236i
\(153\) 1.09612i 0.0886159i
\(154\) 2.49038 12.8239i 0.200680 1.03338i
\(155\) −10.6257 −0.853479
\(156\) −0.694480 + 3.15176i −0.0556029 + 0.252342i
\(157\) −12.2216 −0.975391 −0.487695 0.873014i \(-0.662162\pi\)
−0.487695 + 0.873014i \(0.662162\pi\)
\(158\) −1.20082 + 11.0301i −0.0955324 + 0.877509i
\(159\) −7.93932 −0.629629
\(160\) −18.1448 10.9309i −1.43447 0.864165i
\(161\) 9.42878 + 0.787902i 0.743092 + 0.0620953i
\(162\) 10.7623 + 1.17167i 0.845566 + 0.0920548i
\(163\) 3.28510 0.257309 0.128655 0.991689i \(-0.458934\pi\)
0.128655 + 0.991689i \(0.458934\pi\)
\(164\) 4.21429 19.1257i 0.329081 1.49347i
\(165\) 21.0972i 1.64241i
\(166\) 1.65653 15.2160i 0.128571 1.18099i
\(167\) 5.77822 0.447132 0.223566 0.974689i \(-0.428230\pi\)
0.223566 + 0.974689i \(0.428230\pi\)
\(168\) 11.0811 + 4.79899i 0.854929 + 0.370250i
\(169\) 1.00000 0.0769231
\(170\) 1.58633 14.5711i 0.121666 1.11756i
\(171\) 0.774707i 0.0592433i
\(172\) −18.9027 4.16515i −1.44132 0.317590i
\(173\) −4.09736 −0.311516 −0.155758 0.987795i \(-0.549782\pi\)
−0.155758 + 0.987795i \(0.549782\pi\)
\(174\) −16.8935 1.83915i −1.28069 0.139426i
\(175\) −1.98782 + 23.7882i −0.150265 + 1.79822i
\(176\) 12.6721 + 5.86952i 0.955198 + 0.442431i
\(177\) −24.1293 −1.81367
\(178\) 1.37247 12.6068i 0.102871 0.944919i
\(179\) 4.61280 0.344777 0.172388 0.985029i \(-0.444852\pi\)
0.172388 + 0.985029i \(0.444852\pi\)
\(180\) 2.89653 + 0.638242i 0.215895 + 0.0475718i
\(181\) −17.7102 −1.31639 −0.658194 0.752848i \(-0.728679\pi\)
−0.658194 + 0.752848i \(0.728679\pi\)
\(182\) 0.713296 3.67304i 0.0528730 0.272264i
\(183\) 10.3647i 0.766183i
\(184\) −3.23287 + 9.58438i −0.238330 + 0.706570i
\(185\) 29.4117i 2.16239i
\(186\) −0.700842 + 6.43756i −0.0513883 + 0.472025i
\(187\) 9.66320i 0.706643i
\(188\) 0.278752 + 0.0614223i 0.0203301 + 0.00447968i
\(189\) −14.4487 1.20738i −1.05099 0.0878240i
\(190\) −1.12117 + 10.2985i −0.0813384 + 0.747131i
\(191\) 0.534042i 0.0386419i 0.999813 + 0.0193210i \(0.00615044\pi\)
−0.999813 + 0.0193210i \(0.993850\pi\)
\(192\) −7.81924 + 10.2720i −0.564305 + 0.741316i
\(193\) −0.442965 −0.0318853 −0.0159427 0.999873i \(-0.505075\pi\)
−0.0159427 + 0.999873i \(0.505075\pi\)
\(194\) −0.693546 + 6.37054i −0.0497937 + 0.457378i
\(195\) 6.04268i 0.432725i
\(196\) −12.9824 5.23993i −0.927316 0.374281i
\(197\) 24.5014i 1.74565i 0.488031 + 0.872827i \(0.337715\pi\)
−0.488031 + 0.872827i \(0.662285\pi\)
\(198\) −1.94394 0.211633i −0.138150 0.0150401i
\(199\) 7.15645 0.507308 0.253654 0.967295i \(-0.418368\pi\)
0.253654 + 0.967295i \(0.418368\pi\)
\(200\) −24.1807 8.15631i −1.70984 0.576738i
\(201\) 10.7209i 0.756192i
\(202\) 6.47856 + 0.705306i 0.455830 + 0.0496252i
\(203\) 19.6328 + 1.64059i 1.37795 + 0.115147i
\(204\) −8.72325 1.92214i −0.610750 0.134577i
\(205\) 36.6686i 2.56105i
\(206\) 27.7518 + 3.02127i 1.93356 + 0.210502i
\(207\) 1.41628i 0.0984384i
\(208\) 3.62956 + 1.68115i 0.251665 + 0.116567i
\(209\) 6.82969i 0.472419i
\(210\) 22.1950 + 4.31022i 1.53160 + 0.297433i
\(211\) 6.55482 0.451252 0.225626 0.974214i \(-0.427557\pi\)
0.225626 + 0.974214i \(0.427557\pi\)
\(212\) −2.11742 + 9.60950i −0.145425 + 0.659983i
\(213\) 3.54638 0.242994
\(214\) 17.8006 + 1.93792i 1.21683 + 0.132473i
\(215\) −36.2410 −2.47162
\(216\) 4.95405 14.6871i 0.337080 0.999330i
\(217\) 0.625174 7.48144i 0.0424396 0.507873i
\(218\) −0.865114 + 7.94647i −0.0585929 + 0.538203i
\(219\) −11.7676 −0.795179
\(220\) 25.5353 + 5.62664i 1.72159 + 0.379348i
\(221\) 2.76774i 0.186179i
\(222\) −17.8190 1.93991i −1.19593 0.130198i
\(223\) 18.5332 1.24108 0.620539 0.784176i \(-0.286914\pi\)
0.620539 + 0.784176i \(0.286914\pi\)
\(224\) 8.76389 12.1324i 0.585562 0.810628i
\(225\) 3.57318 0.238212
\(226\) −24.6420 2.68272i −1.63916 0.178452i
\(227\) 3.50929i 0.232920i −0.993195 0.116460i \(-0.962845\pi\)
0.993195 0.116460i \(-0.0371547\pi\)
\(228\) 6.16535 + 1.35852i 0.408311 + 0.0899700i
\(229\) 17.2678 1.14109 0.570543 0.821268i \(-0.306733\pi\)
0.570543 + 0.821268i \(0.306733\pi\)
\(230\) −2.04967 + 18.8272i −0.135152 + 1.24143i
\(231\) −14.8543 1.24127i −0.977339 0.0816698i
\(232\) −6.73156 + 19.9568i −0.441948 + 1.31023i
\(233\) −12.4546 −0.815928 −0.407964 0.912998i \(-0.633761\pi\)
−0.407964 + 0.912998i \(0.633761\pi\)
\(234\) −0.556786 0.0606160i −0.0363982 0.00396259i
\(235\) 0.534436 0.0348627
\(236\) −6.43530 + 29.2053i −0.418902 + 1.90110i
\(237\) 12.6602 0.822370
\(238\) 10.1660 + 1.97422i 0.658965 + 0.127970i
\(239\) 4.94110i 0.319613i 0.987148 + 0.159807i \(0.0510870\pi\)
−0.987148 + 0.159807i \(0.948913\pi\)
\(240\) −10.1587 + 21.9323i −0.655738 + 1.41572i
\(241\) 7.42809i 0.478486i −0.970960 0.239243i \(-0.923101\pi\)
0.970960 0.239243i \(-0.0768992\pi\)
\(242\) −1.67252 0.182083i −0.107513 0.0117047i
\(243\) 4.08752i 0.262215i
\(244\) −12.5451 2.76428i −0.803120 0.176965i
\(245\) −25.8490 4.35045i −1.65143 0.277940i
\(246\) −22.2155 2.41856i −1.41641 0.154201i
\(247\) 1.95616i 0.124468i
\(248\) 7.60489 + 2.56518i 0.482911 + 0.162889i
\(249\) −17.4647 −1.10678
\(250\) −21.1766 2.30545i −1.33932 0.145809i
\(251\) 31.0214i 1.95805i −0.203734 0.979026i \(-0.565308\pi\)
0.203734 0.979026i \(-0.434692\pi\)
\(252\) −0.619798 + 2.00186i −0.0390436 + 0.126105i
\(253\) 12.4857i 0.784970i
\(254\) −2.07728 + 19.0807i −0.130340 + 1.19723i
\(255\) −16.7246 −1.04733
\(256\) 10.3475 + 12.2037i 0.646716 + 0.762731i
\(257\) 29.8634i 1.86283i −0.363961 0.931414i \(-0.618576\pi\)
0.363961 0.931414i \(-0.381424\pi\)
\(258\) −2.39035 + 21.9565i −0.148817 + 1.36695i
\(259\) 20.7084 + 1.73047i 1.28676 + 0.107526i
\(260\) 7.31386 + 1.61159i 0.453586 + 0.0999464i
\(261\) 2.94901i 0.182539i
\(262\) 0.789437 7.25134i 0.0487716 0.447990i
\(263\) 14.1934i 0.875204i −0.899169 0.437602i \(-0.855828\pi\)
0.899169 0.437602i \(-0.144172\pi\)
\(264\) 5.09312 15.0994i 0.313460 0.929303i
\(265\) 18.4237i 1.13176i
\(266\) −7.18507 1.39532i −0.440545 0.0855528i
\(267\) −14.4699 −0.885544
\(268\) 12.9762 + 2.85927i 0.792647 + 0.174657i
\(269\) 12.5568 0.765601 0.382800 0.923831i \(-0.374960\pi\)
0.382800 + 0.923831i \(0.374960\pi\)
\(270\) 3.14092 28.8508i 0.191150 1.75580i
\(271\) 6.45697 0.392233 0.196117 0.980581i \(-0.437167\pi\)
0.196117 + 0.980581i \(0.437167\pi\)
\(272\) −4.65300 + 10.0457i −0.282129 + 0.609110i
\(273\) −4.25457 0.355526i −0.257498 0.0215174i
\(274\) 7.31092 + 0.795924i 0.441669 + 0.0480835i
\(275\) 31.5006 1.89956
\(276\) 11.2712 + 2.48358i 0.678447 + 0.149494i
\(277\) 5.85021i 0.351505i −0.984434 0.175753i \(-0.943764\pi\)
0.984434 0.175753i \(-0.0562359\pi\)
\(278\) −1.27295 + 11.6926i −0.0763463 + 0.701276i
\(279\) −1.12377 −0.0672786
\(280\) 11.1364 25.7145i 0.665525 1.53674i
\(281\) 24.9322 1.48733 0.743666 0.668551i \(-0.233085\pi\)
0.743666 + 0.668551i \(0.233085\pi\)
\(282\) 0.0352498 0.323786i 0.00209910 0.0192812i
\(283\) 15.1831i 0.902543i 0.892387 + 0.451271i \(0.149029\pi\)
−0.892387 + 0.451271i \(0.850971\pi\)
\(284\) 0.945824 4.29243i 0.0561243 0.254709i
\(285\) 11.8205 0.700184
\(286\) −4.90853 0.534381i −0.290248 0.0315986i
\(287\) 25.8179 + 2.15743i 1.52398 + 0.127349i
\(288\) −1.91899 1.15605i −0.113077 0.0681210i
\(289\) 9.33960 0.549388
\(290\) −4.26788 + 39.2024i −0.250618 + 2.30205i
\(291\) 7.31202 0.428638
\(292\) −3.13842 + 14.2431i −0.183662 + 0.833513i
\(293\) 25.1676 1.47031 0.735154 0.677900i \(-0.237110\pi\)
0.735154 + 0.677900i \(0.237110\pi\)
\(294\) −4.34063 + 15.3736i −0.253151 + 0.896607i
\(295\) 55.9936i 3.26007i
\(296\) −7.10034 + 21.0501i −0.412699 + 1.22351i
\(297\) 19.1331i 1.11021i
\(298\) 2.44442 22.4531i 0.141601 1.30067i
\(299\) 3.57617i 0.206815i
\(300\) −6.26589 + 28.4365i −0.361762 + 1.64178i
\(301\) 2.13227 25.5168i 0.122902 1.47077i
\(302\) −2.37524 + 21.8176i −0.136679 + 1.25546i
\(303\) 7.43601i 0.427187i
\(304\) 3.28861 7.10002i 0.188615 0.407214i
\(305\) −24.0520 −1.37722
\(306\) 0.167770 1.54104i 0.00959075 0.0880954i
\(307\) 15.6955i 0.895788i −0.894087 0.447894i \(-0.852174\pi\)
0.894087 0.447894i \(-0.147826\pi\)
\(308\) −5.46404 + 17.6481i −0.311343 + 1.00559i
\(309\) 31.8531i 1.81206i
\(310\) 14.9388 + 1.62635i 0.848465 + 0.0923705i
\(311\) −17.1019 −0.969757 −0.484879 0.874581i \(-0.661136\pi\)
−0.484879 + 0.874581i \(0.661136\pi\)
\(312\) 1.45878 4.32478i 0.0825869 0.244842i
\(313\) 5.01251i 0.283324i 0.989915 + 0.141662i \(0.0452445\pi\)
−0.989915 + 0.141662i \(0.954755\pi\)
\(314\) 17.1824 + 1.87061i 0.969662 + 0.105565i
\(315\) −0.326736 + 3.91004i −0.0184095 + 0.220306i
\(316\) 3.37649 15.3235i 0.189943 0.862015i
\(317\) 26.3510i 1.48002i −0.672597 0.740009i \(-0.734821\pi\)
0.672597 0.740009i \(-0.265179\pi\)
\(318\) 11.1619 + 1.21518i 0.625931 + 0.0681437i
\(319\) 25.9980i 1.45561i
\(320\) 23.8368 + 18.1451i 1.33252 + 1.01434i
\(321\) 20.4313i 1.14037i
\(322\) −13.1354 2.55087i −0.732007 0.142154i
\(323\) 5.41416 0.301252
\(324\) −14.9514 3.29451i −0.830636 0.183028i
\(325\) 9.02242 0.500474
\(326\) −4.61855 0.502811i −0.255798 0.0278481i
\(327\) 9.12086 0.504385
\(328\) −8.85224 + 26.2439i −0.488783 + 1.44908i
\(329\) −0.0314440 + 0.376289i −0.00173356 + 0.0207455i
\(330\) 3.22909 29.6607i 0.177756 1.63277i
\(331\) −20.3918 −1.12084 −0.560418 0.828210i \(-0.689359\pi\)
−0.560418 + 0.828210i \(0.689359\pi\)
\(332\) −4.65784 + 21.1387i −0.255632 + 1.16014i
\(333\) 3.11057i 0.170458i
\(334\) −8.12364 0.884403i −0.444506 0.0483924i
\(335\) 24.8785 1.35926
\(336\) −14.8445 8.44298i −0.809836 0.460603i
\(337\) −7.26359 −0.395673 −0.197837 0.980235i \(-0.563392\pi\)
−0.197837 + 0.980235i \(0.563392\pi\)
\(338\) −1.40591 0.153058i −0.0764712 0.00832525i
\(339\) 28.2838i 1.53616i
\(340\) −4.46046 + 20.2429i −0.241902 + 1.09782i
\(341\) −9.90700 −0.536494
\(342\) −0.118575 + 1.08917i −0.00641180 + 0.0588953i
\(343\) 4.58395 17.9440i 0.247510 0.968885i
\(344\) 25.9379 + 8.74902i 1.39848 + 0.471715i
\(345\) 21.6096 1.16342
\(346\) 5.76050 + 0.627133i 0.309687 + 0.0337149i
\(347\) −20.2064 −1.08474 −0.542368 0.840141i \(-0.682472\pi\)
−0.542368 + 0.840141i \(0.682472\pi\)
\(348\) 23.4692 + 5.17136i 1.25808 + 0.277214i
\(349\) −28.4007 −1.52026 −0.760129 0.649773i \(-0.774864\pi\)
−0.760129 + 0.649773i \(0.774864\pi\)
\(350\) 6.43566 33.1397i 0.344000 1.77139i
\(351\) 5.48011i 0.292507i
\(352\) −16.9175 10.1916i −0.901704 0.543212i
\(353\) 8.93734i 0.475687i 0.971304 + 0.237843i \(0.0764405\pi\)
−0.971304 + 0.237843i \(0.923560\pi\)
\(354\) 33.9235 + 3.69318i 1.80301 + 0.196290i
\(355\) 8.22962i 0.436783i
\(356\) −3.85914 + 17.5139i −0.204534 + 0.928235i
\(357\) 0.984006 11.7756i 0.0520791 0.623228i
\(358\) −6.48516 0.706025i −0.342751 0.0373146i
\(359\) 1.50795i 0.0795866i 0.999208 + 0.0397933i \(0.0126699\pi\)
−0.999208 + 0.0397933i \(0.987330\pi\)
\(360\) −3.97456 1.34065i −0.209478 0.0706582i
\(361\) 15.1734 0.798601
\(362\) 24.8989 + 2.71068i 1.30866 + 0.142470i
\(363\) 1.91969i 0.100758i
\(364\) −1.56502 + 5.05477i −0.0820291 + 0.264942i
\(365\) 27.3074i 1.42934i
\(366\) −1.58640 + 14.5718i −0.0829227 + 0.761683i
\(367\) −10.3046 −0.537896 −0.268948 0.963155i \(-0.586676\pi\)
−0.268948 + 0.963155i \(0.586676\pi\)
\(368\) 6.01208 12.9799i 0.313401 0.676625i
\(369\) 3.87806i 0.201884i
\(370\) −4.50169 + 41.3501i −0.234032 + 2.14969i
\(371\) −12.9719 1.08398i −0.673468 0.0562773i
\(372\) 1.97064 8.94334i 0.102173 0.463690i
\(373\) 36.6619i 1.89828i 0.314850 + 0.949141i \(0.398046\pi\)
−0.314850 + 0.949141i \(0.601954\pi\)
\(374\) 1.47903 13.5856i 0.0764788 0.702493i
\(375\) 24.3062i 1.25517i
\(376\) −0.382499 0.129019i −0.0197259 0.00665366i
\(377\) 7.44638i 0.383508i
\(378\) 20.1287 + 3.90894i 1.03531 + 0.201054i
\(379\) −26.4144 −1.35682 −0.678409 0.734685i \(-0.737330\pi\)
−0.678409 + 0.734685i \(0.737330\pi\)
\(380\) 3.15253 14.3071i 0.161721 0.733939i
\(381\) 21.9006 1.12200
\(382\) 0.0817393 0.750813i 0.00418215 0.0384149i
\(383\) 10.8952 0.556719 0.278359 0.960477i \(-0.410209\pi\)
0.278359 + 0.960477i \(0.410209\pi\)
\(384\) 12.5653 13.2446i 0.641222 0.675887i
\(385\) −2.88046 + 34.4703i −0.146802 + 1.75677i
\(386\) 0.622767 + 0.0677992i 0.0316980 + 0.00345089i
\(387\) −3.83284 −0.194834
\(388\) 1.95012 8.85023i 0.0990024 0.449302i
\(389\) 5.69554i 0.288775i 0.989521 + 0.144388i \(0.0461212\pi\)
−0.989521 + 0.144388i \(0.953879\pi\)
\(390\) 0.924879 8.49544i 0.0468331 0.430183i
\(391\) 9.89791 0.500559
\(392\) 17.4501 + 9.35391i 0.881361 + 0.472444i
\(393\) −8.32300 −0.419840
\(394\) 3.75013 34.4467i 0.188929 1.73540i
\(395\) 29.3789i 1.47821i
\(396\) 2.70061 + 0.595072i 0.135711 + 0.0299035i
\(397\) −25.6458 −1.28713 −0.643564 0.765392i \(-0.722545\pi\)
−0.643564 + 0.765392i \(0.722545\pi\)
\(398\) −10.0613 1.09535i −0.504328 0.0549050i
\(399\) −0.695468 + 8.32264i −0.0348170 + 0.416653i
\(400\) 32.7475 + 15.1681i 1.63737 + 0.758403i
\(401\) 14.3701 0.717609 0.358804 0.933413i \(-0.383185\pi\)
0.358804 + 0.933413i \(0.383185\pi\)
\(402\) 1.64091 15.0725i 0.0818413 0.751750i
\(403\) −2.83757 −0.141350
\(404\) −9.00030 1.98319i −0.447782 0.0986674i
\(405\) −28.6655 −1.42440
\(406\) −27.3508 5.31147i −1.35740 0.263604i
\(407\) 27.4223i 1.35927i
\(408\) 11.9699 + 4.03751i 0.592597 + 0.199887i
\(409\) 22.9637i 1.13548i 0.823208 + 0.567740i \(0.192182\pi\)
−0.823208 + 0.567740i \(0.807818\pi\)
\(410\) −5.61242 + 51.5526i −0.277177 + 2.54600i
\(411\) 8.39138i 0.413916i
\(412\) −38.5540 8.49525i −1.89942 0.418531i
\(413\) −39.4244 3.29443i −1.93995 0.162109i
\(414\) −0.216773 + 1.99116i −0.0106538 + 0.0978601i
\(415\) 40.5279i 1.98944i
\(416\) −4.84551 2.91908i −0.237571 0.143119i
\(417\) 13.4206 0.657210
\(418\) −1.04534 + 9.60190i −0.0511291 + 0.469644i
\(419\) 16.8449i 0.822928i 0.911426 + 0.411464i \(0.134982\pi\)
−0.911426 + 0.411464i \(0.865018\pi\)
\(420\) −30.5443 9.45688i −1.49041 0.461448i
\(421\) 26.7581i 1.30411i 0.758172 + 0.652055i \(0.226093\pi\)
−0.758172 + 0.652055i \(0.773907\pi\)
\(422\) −9.21546 1.00327i −0.448602 0.0488382i
\(423\) 0.0565218 0.00274818
\(424\) 4.44771 13.1860i 0.216000 0.640367i
\(425\) 24.9717i 1.21131i
\(426\) −4.98589 0.542802i −0.241567 0.0262988i
\(427\) 1.41512 16.9347i 0.0684827 0.819529i
\(428\) −24.7294 5.44906i −1.19534 0.263390i
\(429\) 5.63395i 0.272010i
\(430\) 50.9515 + 5.54697i 2.45710 + 0.267499i
\(431\) 4.59304i 0.221239i 0.993863 + 0.110620i \(0.0352835\pi\)
−0.993863 + 0.110620i \(0.964716\pi\)
\(432\) −9.21290 + 19.8904i −0.443256 + 0.956978i
\(433\) 23.4278i 1.12587i 0.826501 + 0.562935i \(0.190328\pi\)
−0.826501 + 0.562935i \(0.809672\pi\)
\(434\) −2.02403 + 10.4225i −0.0971565 + 0.500297i
\(435\) 44.9960 2.15739
\(436\) 2.43254 11.0396i 0.116498 0.528700i
\(437\) −6.99557 −0.334644
\(438\) 16.5441 + 1.80112i 0.790508 + 0.0860608i
\(439\) 10.6934 0.510370 0.255185 0.966892i \(-0.417864\pi\)
0.255185 + 0.966892i \(0.417864\pi\)
\(440\) −35.0391 11.8189i −1.67042 0.563445i
\(441\) −2.73379 0.460102i −0.130180 0.0219096i
\(442\) 0.423625 3.89119i 0.0201498 0.185085i
\(443\) 35.3297 1.67856 0.839282 0.543696i \(-0.182976\pi\)
0.839282 + 0.543696i \(0.182976\pi\)
\(444\) 24.7549 + 5.45467i 1.17482 + 0.258867i
\(445\) 33.5784i 1.59177i
\(446\) −26.0560 2.83666i −1.23379 0.134320i
\(447\) −25.7714 −1.21894
\(448\) −14.1782 + 15.7156i −0.669855 + 0.742492i
\(449\) 7.09060 0.334626 0.167313 0.985904i \(-0.446491\pi\)
0.167313 + 0.985904i \(0.446491\pi\)
\(450\) −5.02356 0.546903i −0.236813 0.0257813i
\(451\) 34.1883i 1.60987i
\(452\) 34.2337 + 7.54330i 1.61022 + 0.354807i
\(453\) 25.0420 1.17658
\(454\) −0.537125 + 4.93374i −0.0252085 + 0.231552i
\(455\) −0.825022 + 9.87301i −0.0386776 + 0.462854i
\(456\) −8.45998 2.85360i −0.396175 0.133632i
\(457\) 13.3891 0.626314 0.313157 0.949701i \(-0.398613\pi\)
0.313157 + 0.949701i \(0.398613\pi\)
\(458\) −24.2768 2.64296i −1.13438 0.123498i
\(459\) −15.1675 −0.707961
\(460\) 5.76330 26.1556i 0.268715 1.21951i
\(461\) 26.9894 1.25702 0.628510 0.777802i \(-0.283665\pi\)
0.628510 + 0.777802i \(0.283665\pi\)
\(462\) 20.6937 + 4.01868i 0.962759 + 0.186966i
\(463\) 4.39205i 0.204116i −0.994778 0.102058i \(-0.967457\pi\)
0.994778 0.102058i \(-0.0325427\pi\)
\(464\) 12.5185 27.0271i 0.581156 1.25470i
\(465\) 17.1465i 0.795151i
\(466\) 17.5100 + 1.90627i 0.811135 + 0.0883064i
\(467\) 16.7259i 0.773981i −0.922084 0.386991i \(-0.873515\pi\)
0.922084 0.386991i \(-0.126485\pi\)
\(468\) 0.773511 + 0.170441i 0.0357556 + 0.00787864i
\(469\) −1.46375 + 17.5166i −0.0675897 + 0.808842i
\(470\) −0.751366 0.0817996i −0.0346579 0.00377313i
\(471\) 19.7218i 0.908732i
\(472\) 13.5175 40.0749i 0.622195 1.84460i
\(473\) −33.7897 −1.55365
\(474\) −17.7991 1.93775i −0.817539 0.0890037i
\(475\) 17.6493i 0.809808i
\(476\) −13.9903 4.33156i −0.641245 0.198537i
\(477\) 1.94849i 0.0892151i
\(478\) 0.756274 6.94672i 0.0345912 0.317736i
\(479\) 9.09335 0.415486 0.207743 0.978183i \(-0.433388\pi\)
0.207743 + 0.978183i \(0.433388\pi\)
\(480\) 17.6390 29.2799i 0.805108 1.33644i
\(481\) 7.85432i 0.358126i
\(482\) −1.13693 + 10.4432i −0.0517857 + 0.475675i
\(483\) −1.27142 + 15.2151i −0.0578517 + 0.692309i
\(484\) 2.32353 + 0.511983i 0.105615 + 0.0232720i
\(485\) 16.9680i 0.770478i
\(486\) 0.625628 5.74668i 0.0283790 0.260675i
\(487\) 4.59179i 0.208074i 0.994573 + 0.104037i \(0.0331760\pi\)
−0.994573 + 0.104037i \(0.966824\pi\)
\(488\) 17.2142 + 5.80646i 0.779250 + 0.262846i
\(489\) 5.30111i 0.239724i
\(490\) 35.6755 + 10.0727i 1.61165 + 0.455039i
\(491\) −39.6003 −1.78714 −0.893569 0.448926i \(-0.851807\pi\)
−0.893569 + 0.448926i \(0.851807\pi\)
\(492\) 30.8628 + 6.80053i 1.39140 + 0.306591i
\(493\) 20.6097 0.928212
\(494\) −0.299406 + 2.75018i −0.0134709 + 0.123737i
\(495\) 5.17772 0.232721
\(496\) −10.2991 4.77039i −0.462445 0.214197i
\(497\) 5.79437 + 0.484197i 0.259913 + 0.0217192i
\(498\) 24.5537 + 2.67311i 1.10028 + 0.119785i
\(499\) −15.9420 −0.713664 −0.356832 0.934169i \(-0.616143\pi\)
−0.356832 + 0.934169i \(0.616143\pi\)
\(500\) 29.4194 + 6.48248i 1.31568 + 0.289905i
\(501\) 9.32421i 0.416575i
\(502\) −4.74807 + 43.6132i −0.211917 + 1.94655i
\(503\) 31.3987 1.40000 0.699999 0.714144i \(-0.253184\pi\)
0.699999 + 0.714144i \(0.253184\pi\)
\(504\) 1.17778 2.71956i 0.0524624 0.121139i
\(505\) −17.2557 −0.767870
\(506\) −1.91104 + 17.5537i −0.0849559 + 0.780359i
\(507\) 1.61368i 0.0716661i
\(508\) 5.84091 26.5078i 0.259149 1.17609i
\(509\) 28.4145 1.25945 0.629725 0.776818i \(-0.283167\pi\)
0.629725 + 0.776818i \(0.283167\pi\)
\(510\) 23.5132 + 2.55983i 1.04118 + 0.113351i
\(511\) −19.2268 1.60666i −0.850544 0.0710744i
\(512\) −12.6797 18.7410i −0.560368 0.828244i
\(513\) 10.7200 0.473300
\(514\) −4.57083 + 41.9852i −0.201611 + 1.85189i
\(515\) −73.9173 −3.25718
\(516\) 6.72122 30.5029i 0.295885 1.34282i
\(517\) 0.498287 0.0219146
\(518\) −28.8492 5.60246i −1.26756 0.246158i
\(519\) 6.61183i 0.290227i
\(520\) −10.0359 3.38518i −0.440105 0.148450i
\(521\) 2.48871i 0.109032i 0.998513 + 0.0545161i \(0.0173616\pi\)
−0.998513 + 0.0545161i \(0.982638\pi\)
\(522\) −0.451370 + 4.14604i −0.0197559 + 0.181467i
\(523\) 12.1431i 0.530979i 0.964114 + 0.265489i \(0.0855335\pi\)
−0.964114 + 0.265489i \(0.914467\pi\)
\(524\) −2.21975 + 10.0739i −0.0969702 + 0.440080i
\(525\) −38.3865 3.20771i −1.67533 0.139996i
\(526\) −2.17242 + 19.9546i −0.0947218 + 0.870063i
\(527\) 7.85367i 0.342111i
\(528\) −9.47153 + 20.4488i −0.412195 + 0.889919i
\(529\) 10.2110 0.443958
\(530\) 2.81989 25.9020i 0.122488 1.12511i
\(531\) 5.92186i 0.256987i
\(532\) 9.88797 + 3.06143i 0.428698 + 0.132730i
\(533\) 9.79226i 0.424150i
\(534\) 20.3433 + 2.21473i 0.880343 + 0.0958409i
\(535\) −47.4123 −2.04981
\(536\) −17.8057 6.00597i −0.769088 0.259418i
\(537\) 7.44358i 0.321214i
\(538\) −17.6537 1.92192i −0.761104 0.0828596i
\(539\) −24.1006 4.05618i −1.03809 0.174712i
\(540\) −8.83168 + 40.0808i −0.380055 + 1.72480i
\(541\) 14.1176i 0.606965i −0.952837 0.303482i \(-0.901851\pi\)
0.952837 0.303482i \(-0.0981494\pi\)
\(542\) −9.07790 0.988291i −0.389929 0.0424507i
\(543\) 28.5786i 1.22643i
\(544\) 8.07925 13.4111i 0.346395 0.574998i
\(545\) 21.1655i 0.906632i
\(546\) 5.92711 + 1.15103i 0.253657 + 0.0492596i
\(547\) −17.1309 −0.732465 −0.366233 0.930523i \(-0.619353\pi\)
−0.366233 + 0.930523i \(0.619353\pi\)
\(548\) −10.1567 2.23799i −0.433871 0.0956021i
\(549\) −2.54374 −0.108564
\(550\) −44.2869 4.82141i −1.88840 0.205586i
\(551\) −14.5663 −0.620547
\(552\) −15.4661 5.21682i −0.658282 0.222043i
\(553\) 20.6853 + 1.72853i 0.879628 + 0.0735047i
\(554\) −0.895421 + 8.22485i −0.0380428 + 0.349440i
\(555\) 47.4611 2.01461
\(556\) 3.57929 16.2439i 0.151796 0.688894i
\(557\) 18.5102i 0.784302i 0.919901 + 0.392151i \(0.128269\pi\)
−0.919901 + 0.392151i \(0.871731\pi\)
\(558\) 1.57992 + 0.172002i 0.0668834 + 0.00728144i
\(559\) −9.67807 −0.409339
\(560\) −19.5925 + 34.4477i −0.827934 + 1.45568i
\(561\) −15.5933 −0.658351
\(562\) −35.0524 3.81607i −1.47860 0.160971i
\(563\) 14.4408i 0.608609i −0.952575 0.304304i \(-0.901576\pi\)
0.952575 0.304304i \(-0.0984240\pi\)
\(564\) −0.0991160 + 0.449817i −0.00417353 + 0.0189407i
\(565\) 65.6343 2.76126
\(566\) 2.32390 21.3460i 0.0976806 0.897241i
\(567\) 1.68656 20.1830i 0.0708290 0.847608i
\(568\) −1.98673 + 5.88999i −0.0833613 + 0.247138i
\(569\) −12.4987 −0.523972 −0.261986 0.965072i \(-0.584378\pi\)
−0.261986 + 0.965072i \(0.584378\pi\)
\(570\) −16.6185 1.80922i −0.696071 0.0757797i
\(571\) 12.7662 0.534248 0.267124 0.963662i \(-0.413927\pi\)
0.267124 + 0.963662i \(0.413927\pi\)
\(572\) 6.81915 + 1.50258i 0.285123 + 0.0628260i
\(573\) −0.861774 −0.0360011
\(574\) −35.9673 6.98478i −1.50125 0.291539i
\(575\) 32.2657i 1.34557i
\(576\) 2.52097 + 1.91902i 0.105040 + 0.0799590i
\(577\) 9.54539i 0.397380i −0.980062 0.198690i \(-0.936331\pi\)
0.980062 0.198690i \(-0.0636687\pi\)
\(578\) −13.1306 1.42950i −0.546161 0.0594593i
\(579\) 0.714804i 0.0297062i
\(580\) 12.0005 54.4617i 0.498293 2.26140i
\(581\) −28.5352 2.38450i −1.18384 0.0989257i
\(582\) −10.2800 1.11916i −0.426120 0.0463908i
\(583\) 17.1775i 0.711421i
\(584\) 6.59234 19.5441i 0.272793 0.808740i
\(585\) 1.48301 0.0613148
\(586\) −35.3833 3.85210i −1.46167 0.159129i
\(587\) 39.2674i 1.62074i 0.585919 + 0.810370i \(0.300734\pi\)
−0.585919 + 0.810370i \(0.699266\pi\)
\(588\) 8.45557 20.9495i 0.348702 0.863942i
\(589\) 5.55076i 0.228715i
\(590\) 8.57026 78.7217i 0.352832 3.24092i
\(591\) −39.5375 −1.62635
\(592\) 13.2043 28.5078i 0.542694 1.17166i
\(593\) 20.3965i 0.837584i −0.908082 0.418792i \(-0.862454\pi\)
0.908082 0.418792i \(-0.137546\pi\)
\(594\) 2.92847 26.8993i 0.120157 1.10369i
\(595\) −27.3259 2.28345i −1.12025 0.0936123i
\(596\) −6.87324 + 31.1928i −0.281539 + 1.27771i
\(597\) 11.5482i 0.472638i
\(598\) −0.547360 + 5.02776i −0.0223832 + 0.205600i
\(599\) 2.31530i 0.0946007i −0.998881 0.0473004i \(-0.984938\pi\)
0.998881 0.0473004i \(-0.0150618\pi\)
\(600\) 13.1617 39.0200i 0.537324 1.59298i
\(601\) 10.9430i 0.446374i 0.974776 + 0.223187i \(0.0716460\pi\)
−0.974776 + 0.223187i \(0.928354\pi\)
\(602\) −6.90333 + 35.5479i −0.281359 + 1.44882i
\(603\) 2.63114 0.107148
\(604\) 6.67872 30.3100i 0.271753 1.23330i
\(605\) 4.45477 0.181112
\(606\) −1.13814 + 10.4543i −0.0462337 + 0.424678i
\(607\) −1.43777 −0.0583574 −0.0291787 0.999574i \(-0.509289\pi\)
−0.0291787 + 0.999574i \(0.509289\pi\)
\(608\) −5.71019 + 9.47862i −0.231579 + 0.384409i
\(609\) −2.64738 + 31.6811i −0.107277 + 1.28378i
\(610\) 33.8149 + 3.68135i 1.36913 + 0.149054i
\(611\) 0.142720 0.00577382
\(612\) −0.471737 + 2.14088i −0.0190688 + 0.0865400i
\(613\) 25.8050i 1.04225i −0.853479 0.521127i \(-0.825512\pi\)
0.853479 0.521127i \(-0.174488\pi\)
\(614\) −2.40232 + 22.0664i −0.0969496 + 0.890526i
\(615\) 59.1714 2.38602
\(616\) 10.3831 23.9752i 0.418347 0.965989i
\(617\) 29.9570 1.20602 0.603011 0.797733i \(-0.293967\pi\)
0.603011 + 0.797733i \(0.293967\pi\)
\(618\) −4.87537 + 44.7825i −0.196116 + 1.80142i
\(619\) 16.3586i 0.657507i −0.944416 0.328754i \(-0.893371\pi\)
0.944416 0.328754i \(-0.106629\pi\)
\(620\) −20.7536 4.57299i −0.833485 0.183656i
\(621\) 19.5978 0.786433
\(622\) 24.0436 + 2.61757i 0.964061 + 0.104955i
\(623\) −23.6421 1.97562i −0.947201 0.0791514i
\(624\) −2.71284 + 5.85696i −0.108601 + 0.234466i
\(625\) 11.2920 0.451680
\(626\) 0.767203 7.04711i 0.0306636 0.281659i
\(627\) 11.0209 0.440134
\(628\) −23.8706 5.25982i −0.952541 0.209890i
\(629\) 21.7387 0.866781
\(630\) 1.05782 5.44714i 0.0421447 0.217019i
\(631\) 24.0956i 0.959232i −0.877479 0.479616i \(-0.840776\pi\)
0.877479 0.479616i \(-0.159224\pi\)
\(632\) −7.09242 + 21.0266i −0.282121 + 0.836395i
\(633\) 10.5774i 0.420413i
\(634\) −4.03322 + 37.0470i −0.160180 + 1.47132i
\(635\) 50.8218i 2.01680i
\(636\) −15.5067 3.41685i −0.614879 0.135487i
\(637\) −6.90292 1.16178i −0.273504 0.0460312i
\(638\) −3.97920 + 36.5508i −0.157538 + 1.44706i
\(639\) 0.870362i 0.0344310i
\(640\) −30.7350 29.1587i −1.21491 1.15260i
\(641\) −0.428772 −0.0169355 −0.00846774 0.999964i \(-0.502695\pi\)
−0.00846774 + 0.999964i \(0.502695\pi\)
\(642\) −3.12718 + 28.7246i −0.123420 + 1.13367i
\(643\) 23.1417i 0.912619i −0.889821 0.456309i \(-0.849171\pi\)
0.889821 0.456309i \(-0.150829\pi\)
\(644\) 18.0767 + 5.59675i 0.712322 + 0.220543i
\(645\) 58.4814i 2.30270i
\(646\) −7.61180 0.828680i −0.299482 0.0326040i
\(647\) 20.9849 0.825002 0.412501 0.910957i \(-0.364655\pi\)
0.412501 + 0.910957i \(0.364655\pi\)
\(648\) 20.5161 + 6.92021i 0.805948 + 0.271851i
\(649\) 52.2062i 2.04927i
\(650\) −12.6847 1.38095i −0.497534 0.0541654i
\(651\) 12.0727 + 1.00883i 0.473165 + 0.0395393i
\(652\) 6.41628 + 1.41381i 0.251281 + 0.0553691i
\(653\) 13.3109i 0.520897i 0.965488 + 0.260449i \(0.0838705\pi\)
−0.965488 + 0.260449i \(0.916130\pi\)
\(654\) −12.8231 1.39602i −0.501422 0.0545887i
\(655\) 19.3141i 0.754663i
\(656\) 16.4623 35.5416i 0.642744 1.38767i
\(657\) 2.88803i 0.112673i
\(658\) 0.101801 0.524215i 0.00396863 0.0204360i
\(659\) 15.6937 0.611338 0.305669 0.952138i \(-0.401120\pi\)
0.305669 + 0.952138i \(0.401120\pi\)
\(660\) −9.07960 + 41.2059i −0.353423 + 1.60394i
\(661\) −32.2192 −1.25318 −0.626591 0.779348i \(-0.715550\pi\)
−0.626591 + 0.779348i \(0.715550\pi\)
\(662\) 28.6690 + 3.12113i 1.11425 + 0.121306i
\(663\) −4.46625 −0.173455
\(664\) 9.78393 29.0061i 0.379690 1.12565i
\(665\) 19.3132 + 1.61388i 0.748935 + 0.0625836i
\(666\) −0.476098 + 4.37318i −0.0184484 + 0.169457i
\(667\) −26.6295 −1.03110
\(668\) 11.2857 + 2.48677i 0.436658 + 0.0962162i
\(669\) 29.9067i 1.15626i
\(670\) −34.9768 3.80785i −1.35127 0.147110i
\(671\) −22.4252 −0.865714
\(672\) 19.5778 + 14.1421i 0.755229 + 0.545544i
\(673\) −31.6717 −1.22085 −0.610427 0.792072i \(-0.709002\pi\)
−0.610427 + 0.792072i \(0.709002\pi\)
\(674\) 10.2119 + 1.11175i 0.393349 + 0.0428230i
\(675\) 49.4439i 1.90310i
\(676\) 1.95315 + 0.430370i 0.0751210 + 0.0165527i
\(677\) 2.73420 0.105084 0.0525419 0.998619i \(-0.483268\pi\)
0.0525419 + 0.998619i \(0.483268\pi\)
\(678\) 4.32905 39.7643i 0.166256 1.52714i
\(679\) 11.9470 + 0.998329i 0.458483 + 0.0383124i
\(680\) 9.36932 27.7769i 0.359297 1.06519i
\(681\) 5.66288 0.217002
\(682\) 13.9283 + 1.51634i 0.533343 + 0.0580638i
\(683\) 25.4913 0.975398 0.487699 0.873012i \(-0.337836\pi\)
0.487699 + 0.873012i \(0.337836\pi\)
\(684\) 0.333411 1.51312i 0.0127483 0.0578554i
\(685\) −19.4728 −0.744016
\(686\) −9.19107 + 24.5260i −0.350917 + 0.936407i
\(687\) 27.8646i 1.06310i
\(688\) −35.1272 16.2703i −1.33921 0.620299i
\(689\) 4.92001i 0.187437i
\(690\) −30.3811 3.30752i −1.15659 0.125915i
\(691\) 2.66422i 0.101352i −0.998715 0.0506758i \(-0.983862\pi\)
0.998715 0.0506758i \(-0.0161375\pi\)
\(692\) −8.00274 1.76338i −0.304219 0.0670337i
\(693\) −0.304636 + 3.64557i −0.0115722 + 0.138484i
\(694\) 28.4083 + 3.09275i 1.07837 + 0.117399i
\(695\) 31.1434i 1.18134i
\(696\) −32.2039 10.8626i −1.22069 0.411745i
\(697\) 27.1024 1.02658
\(698\) 39.9288 + 4.34696i 1.51133 + 0.164535i
\(699\) 20.0977i 0.760167i
\(700\) −14.1202 + 45.6063i −0.533694 + 1.72376i
\(701\) 29.1497i 1.10097i 0.834845 + 0.550485i \(0.185557\pi\)
−0.834845 + 0.550485i \(0.814443\pi\)
\(702\) 0.838775 7.70453i 0.0316575 0.290789i
\(703\) −15.3644 −0.579477
\(704\) 22.2245 + 16.9177i 0.837616 + 0.637611i
\(705\) 0.862409i 0.0324802i
\(706\) 1.36793 12.5651i 0.0514827 0.472893i
\(707\) 1.01526 12.1495i 0.0381827 0.456931i
\(708\) −47.1280 10.3845i −1.77118 0.390274i
\(709\) 26.8237i 1.00739i 0.863883 + 0.503693i \(0.168026\pi\)
−0.863883 + 0.503693i \(0.831974\pi\)
\(710\) −1.25961 + 11.5701i −0.0472722 + 0.434217i
\(711\) 3.10710i 0.116525i
\(712\) 8.10623 24.0322i 0.303794 0.900647i
\(713\) 10.1476i 0.380032i
\(714\) −3.18576 + 16.4047i −0.119224 + 0.613931i
\(715\) 13.0740 0.488938
\(716\) 9.00947 + 1.98521i 0.336700 + 0.0741908i
\(717\) −7.97336 −0.297770
\(718\) 0.230804 2.12004i 0.00861352 0.0791191i
\(719\) −42.5092 −1.58532 −0.792662 0.609661i \(-0.791306\pi\)
−0.792662 + 0.609661i \(0.791306\pi\)
\(720\) 5.38267 + 2.49316i 0.200600 + 0.0929146i
\(721\) 4.34899 52.0442i 0.161965 1.93823i
\(722\) −21.3324 2.32241i −0.793910 0.0864312i
\(723\) 11.9866 0.445785
\(724\) −34.5906 7.62194i −1.28555 0.283267i
\(725\) 67.1843i 2.49516i
\(726\) 0.293824 2.69891i 0.0109048 0.100166i
\(727\) 39.1500 1.45199 0.725997 0.687698i \(-0.241379\pi\)
0.725997 + 0.687698i \(0.241379\pi\)
\(728\) 2.97394 6.86700i 0.110221 0.254508i
\(729\) −29.5611 −1.09486
\(730\) 4.17962 38.3917i 0.154695 1.42094i
\(731\) 26.7864i 0.990731i
\(732\) 4.46067 20.2438i 0.164871 0.748234i
\(733\) 47.3188 1.74776 0.873881 0.486140i \(-0.161596\pi\)
0.873881 + 0.486140i \(0.161596\pi\)
\(734\) 14.4873 + 1.57720i 0.534737 + 0.0582156i
\(735\) 7.02023 41.7121i 0.258945 1.53857i
\(736\) −10.4391 + 17.3284i −0.384790 + 0.638732i
\(737\) 23.1957 0.854425
\(738\) −0.593568 + 5.45219i −0.0218495 + 0.200698i
\(739\) 33.8702 1.24594 0.622968 0.782248i \(-0.285927\pi\)
0.622968 + 0.782248i \(0.285927\pi\)
\(740\) 12.6579 57.4454i 0.465314 2.11173i
\(741\) 3.15663 0.115962
\(742\) 18.0714 + 3.50942i 0.663421 + 0.128835i
\(743\) 12.7354i 0.467216i 0.972331 + 0.233608i \(0.0750533\pi\)
−0.972331 + 0.233608i \(0.924947\pi\)
\(744\) −4.13938 + 12.2719i −0.151757 + 0.449909i
\(745\) 59.8041i 2.19105i
\(746\) 5.61140 51.5432i 0.205448 1.88713i
\(747\) 4.28622i 0.156825i
\(748\) −4.15875 + 18.8737i −0.152059 + 0.690089i
\(749\) 2.78955 33.3824i 0.101928 1.21977i
\(750\) 3.72025 34.1722i 0.135844 1.24779i
\(751\) 18.6960i 0.682227i 0.940022 + 0.341114i \(0.110804\pi\)
−0.940022 + 0.341114i \(0.889196\pi\)
\(752\) 0.518010 + 0.239933i 0.0188899 + 0.00874947i
\(753\) 50.0586 1.82424
\(754\) −1.13973 + 10.4689i −0.0415064 + 0.381255i
\(755\) 58.1116i 2.11490i
\(756\) −27.7007 8.57646i −1.00747 0.311923i
\(757\) 8.61922i 0.313271i 0.987657 + 0.156635i \(0.0500647\pi\)
−0.987657 + 0.156635i \(0.949935\pi\)
\(758\) 37.1362 + 4.04294i 1.34885 + 0.146846i
\(759\) 20.1479 0.731324
\(760\) −6.62198 + 19.6319i −0.240204 + 0.712125i
\(761\) 17.1945i 0.623300i −0.950197 0.311650i \(-0.899118\pi\)
0.950197 0.311650i \(-0.100882\pi\)
\(762\) −30.7902 3.35206i −1.11541 0.121432i
\(763\) 14.9024 + 1.24529i 0.539503 + 0.0450827i
\(764\) −0.229836 + 1.04306i −0.00831517 + 0.0377367i
\(765\) 4.10458i 0.148402i
\(766\) −15.3176 1.66760i −0.553449 0.0602527i
\(767\) 14.9529i 0.539919i
\(768\) −19.6929 + 16.6975i −0.710605 + 0.602519i
\(769\) 50.8313i 1.83302i 0.400008 + 0.916511i \(0.369007\pi\)
−0.400008 + 0.916511i \(0.630993\pi\)
\(770\) 9.32560 48.0211i 0.336071 1.73056i
\(771\) 48.1900 1.73552
\(772\) −0.865175 0.190639i −0.0311383 0.00686124i
\(773\) −43.5769 −1.56735 −0.783676 0.621170i \(-0.786657\pi\)
−0.783676 + 0.621170i \(0.786657\pi\)
\(774\) 5.38861 + 0.586646i 0.193690 + 0.0210866i
\(775\) −25.6018 −0.919643
\(776\) −4.09629 + 12.1441i −0.147048 + 0.435948i
\(777\) −2.79242 + 33.4168i −0.100178 + 1.19882i
\(778\) 0.871747 8.00740i 0.0312536 0.287079i
\(779\) −19.1553 −0.686309
\(780\) −2.60059 + 11.8022i −0.0931159 + 0.422588i
\(781\) 7.67297i 0.274560i
\(782\) −13.9155 1.51495i −0.497619 0.0541746i
\(783\) 40.8070 1.45832
\(784\) −23.1015 15.8216i −0.825052 0.565057i
\(785\) −45.7657 −1.63345
\(786\) 11.7014 + 1.27390i 0.417374 + 0.0454385i
\(787\) 6.15291i 0.219328i −0.993969 0.109664i \(-0.965023\pi\)
0.993969 0.109664i \(-0.0349774\pi\)
\(788\) −10.5447 + 47.8548i −0.375638 + 1.70476i
\(789\) 22.9037 0.815392
\(790\) −4.49667 + 41.3040i −0.159984 + 1.46953i
\(791\) −3.86166 + 46.2123i −0.137305 + 1.64312i
\(792\) −3.70573 1.24996i −0.131677 0.0444156i
\(793\) −6.42304 −0.228089
\(794\) 36.0556 + 3.92530i 1.27957 + 0.139304i
\(795\) −29.7300 −1.05441
\(796\) 13.9776 + 3.07992i 0.495423 + 0.109165i
\(797\) −38.1609 −1.35173 −0.675864 0.737027i \(-0.736229\pi\)
−0.675864 + 0.737027i \(0.736229\pi\)
\(798\) 2.25161 11.5944i 0.0797061 0.410438i
\(799\) 0.395011i 0.0139745i
\(800\) −43.7183 26.3371i −1.54567 0.931158i
\(801\) 3.55124i 0.125477i
\(802\) −20.2030 2.19946i −0.713393 0.0776655i
\(803\) 25.4604i 0.898477i
\(804\) −4.61394 + 20.9394i −0.162721 + 0.738477i
\(805\) 35.3075 + 2.95042i 1.24443 + 0.103989i
\(806\) 3.98936 + 0.434313i 0.140519 + 0.0152980i
\(807\) 20.2627i 0.713279i
\(808\) 12.3500 + 4.16575i 0.434473 + 0.146550i
\(809\) 28.6279 1.00651 0.503253 0.864139i \(-0.332137\pi\)
0.503253 + 0.864139i \(0.332137\pi\)
\(810\) 40.3011 + 4.38748i 1.41603 + 0.154161i
\(811\) 18.4849i 0.649094i 0.945870 + 0.324547i \(0.105212\pi\)
−0.945870 + 0.324547i \(0.894788\pi\)
\(812\) 37.6397 + 11.6537i 1.32090 + 0.408964i
\(813\) 10.4195i 0.365428i
\(814\) −4.19720 + 38.5532i −0.147112 + 1.35129i
\(815\) 12.3016 0.430905
\(816\) −16.2106 7.50845i −0.567483 0.262848i
\(817\) 18.9319i 0.662343i
\(818\) 3.51477 32.2848i 0.122891 1.12881i
\(819\) −0.0872541 + 1.04417i −0.00304891 + 0.0364861i
\(820\) 15.7811 71.6191i 0.551099 2.50105i
\(821\) 13.5883i 0.474234i −0.971481 0.237117i \(-0.923798\pi\)
0.971481 0.237117i \(-0.0762024\pi\)
\(822\) −1.28437 + 11.7975i −0.0447974 + 0.411485i
\(823\) 7.79884i 0.271850i 0.990719 + 0.135925i \(0.0434007\pi\)
−0.990719 + 0.135925i \(0.956599\pi\)
\(824\) 52.9030 + 17.8445i 1.84296 + 0.621643i
\(825\) 50.8319i 1.76974i
\(826\) 54.9227 + 10.6659i 1.91101 + 0.371113i
\(827\) 13.7228 0.477187 0.238593 0.971120i \(-0.423314\pi\)
0.238593 + 0.971120i \(0.423314\pi\)
\(828\) 0.609525 2.76621i 0.0211825 0.0961323i
\(829\) 31.6411 1.09894 0.549470 0.835513i \(-0.314830\pi\)
0.549470 + 0.835513i \(0.314830\pi\)
\(830\) 6.20312 56.9785i 0.215313 1.97775i
\(831\) 9.44037 0.327483
\(832\) 6.36555 + 4.84559i 0.220686 + 0.167991i
\(833\) 3.21550 19.1055i 0.111410 0.661966i
\(834\) −18.8681 2.05413i −0.653350 0.0711287i
\(835\) 21.6374 0.748795
\(836\) 2.93929 13.3394i 0.101658 0.461352i
\(837\) 15.5502i 0.537494i
\(838\) 2.57825 23.6824i 0.0890641 0.818094i
\(839\) −2.34931 −0.0811071 −0.0405535 0.999177i \(-0.512912\pi\)
−0.0405535 + 0.999177i \(0.512912\pi\)
\(840\) 41.4951 + 17.9705i 1.43172 + 0.620042i
\(841\) −26.4485 −0.912017
\(842\) 4.09554 37.6194i 0.141141 1.29645i
\(843\) 40.2327i 1.38569i
\(844\) 12.8025 + 2.82100i 0.440681 + 0.0971027i
\(845\) 3.74465 0.128820
\(846\) −0.0794643 0.00865110i −0.00273204 0.000297431i
\(847\) −0.262100 + 3.13655i −0.00900588 + 0.107773i
\(848\) −8.27128 + 17.8575i −0.284037 + 0.613228i
\(849\) −24.5007 −0.840862
\(850\) 3.82212 35.1079i 0.131098 1.20419i
\(851\) −28.0884 −0.962857
\(852\) 6.92661 + 1.52626i 0.237302 + 0.0522887i
\(853\) −8.75040 −0.299608 −0.149804 0.988716i \(-0.547864\pi\)
−0.149804 + 0.988716i \(0.547864\pi\)
\(854\) −4.58153 + 23.5921i −0.156777 + 0.807304i
\(855\) 2.90101i 0.0992124i
\(856\) 33.9332 + 11.4459i 1.15981 + 0.391213i
\(857\) 23.5240i 0.803565i 0.915735 + 0.401782i \(0.131609\pi\)
−0.915735 + 0.401782i \(0.868391\pi\)
\(858\) 0.862320 7.92081i 0.0294391 0.270412i
\(859\) 22.6120i 0.771512i −0.922601 0.385756i \(-0.873941\pi\)
0.922601 0.385756i \(-0.126059\pi\)
\(860\) −70.7840 15.5970i −2.41371 0.531855i
\(861\) −3.48141 + 41.6618i −0.118646 + 1.41983i
\(862\) 0.703002 6.45739i 0.0239443 0.219940i
\(863\) 47.5417i 1.61834i 0.587575 + 0.809170i \(0.300083\pi\)
−0.587575 + 0.809170i \(0.699917\pi\)
\(864\) 15.9969 26.5540i 0.544225 0.903384i
\(865\) −15.3432 −0.521684
\(866\) 3.58582 32.9374i 0.121851 1.11926i
\(867\) 15.0711i 0.511843i
\(868\) 4.44084 14.3433i 0.150732 0.486843i
\(869\) 27.3917i 0.929200i
\(870\) −63.2602 6.88700i −2.14472 0.233491i
\(871\) 6.64374 0.225114
\(872\) −5.10962 + 15.1483i −0.173034 + 0.512986i
\(873\) 1.79453i 0.0607357i
\(874\) 9.83512 + 1.07073i 0.332678 + 0.0362179i
\(875\) −3.31859 + 39.7134i −0.112189 + 1.34256i
\(876\) −22.9838 5.06441i −0.776551 0.171111i
\(877\) 51.8073i 1.74941i 0.484656 + 0.874705i \(0.338945\pi\)
−0.484656 + 0.874705i \(0.661055\pi\)
\(878\) −15.0340 1.63672i −0.507372 0.0552365i
\(879\) 40.6125i 1.36983i
\(880\) 47.4527 + 21.9793i 1.59963 + 0.740922i
\(881\) 40.0432i 1.34909i −0.738234 0.674545i \(-0.764340\pi\)
0.738234 0.674545i \(-0.235660\pi\)
\(882\) 3.77303 + 1.06529i 0.127044 + 0.0358701i
\(883\) 39.9810 1.34547 0.672733 0.739885i \(-0.265120\pi\)
0.672733 + 0.739885i \(0.265120\pi\)
\(884\) −1.19115 + 5.40581i −0.0400628 + 0.181817i
\(885\) −90.3558 −3.03728
\(886\) −49.6702 5.40749i −1.66870 0.181668i
\(887\) −49.1208 −1.64931 −0.824657 0.565633i \(-0.808632\pi\)
−0.824657 + 0.565633i \(0.808632\pi\)
\(888\) −33.9682 11.4577i −1.13990 0.384495i
\(889\) 35.7830 + 2.99015i 1.20012 + 0.100286i
\(890\) 5.13944 47.2081i 0.172274 1.58242i
\(891\) −26.7266 −0.895375
\(892\) 36.1981 + 7.97615i 1.21200 + 0.267061i
\(893\) 0.279183i 0.00934251i
\(894\) 36.2321 + 3.94451i 1.21178 + 0.131924i
\(895\) 17.2733 0.577384
\(896\) 22.3386 19.9246i 0.746279 0.665633i
\(897\) 5.77079 0.192681
\(898\) −9.96873 1.08527i −0.332661 0.0362160i
\(899\) 21.1296i 0.704713i
\(900\) 6.97895 + 1.53779i 0.232632 + 0.0512597i
\(901\) −13.6173 −0.453659
\(902\) −5.23279 + 48.0656i −0.174233 + 1.60041i
\(903\) 41.1760 + 3.44081i 1.37025 + 0.114503i
\(904\) −46.9749 15.8449i −1.56236 0.526994i
\(905\) −66.3185 −2.20450
\(906\) −35.2067 3.83287i −1.16966 0.127339i
\(907\) 28.5979 0.949577 0.474788 0.880100i \(-0.342525\pi\)
0.474788 + 0.880100i \(0.342525\pi\)
\(908\) 1.51030 6.85417i 0.0501209 0.227464i
\(909\) −1.82496 −0.0605302
\(910\) 2.67105 13.7543i 0.0885443 0.455949i
\(911\) 28.8950i 0.957335i −0.877996 0.478667i \(-0.841120\pi\)
0.877996 0.478667i \(-0.158880\pi\)
\(912\) 11.4572 + 5.30677i 0.379385 + 0.175725i
\(913\) 37.7866i 1.25056i
\(914\) −18.8238 2.04930i −0.622635 0.0677849i
\(915\) 38.8123i 1.28310i
\(916\) 33.7264 + 7.43152i 1.11435 + 0.245544i
\(917\) −13.5988 1.13636i −0.449071 0.0375259i
\(918\) 21.3242 + 2.32151i 0.703802 + 0.0766213i
\(919\) 26.0590i 0.859607i −0.902923 0.429803i \(-0.858583\pi\)
0.902923 0.429803i \(-0.141417\pi\)
\(920\) −12.1060 + 35.8902i −0.399122 + 1.18326i
\(921\) 25.3275 0.834569
\(922\) −37.9445 4.13093i −1.24964 0.136045i
\(923\) 2.19770i 0.0723381i
\(924\) −28.4783 8.81722i −0.936869 0.290065i
\(925\) 70.8650i 2.33003i
\(926\) −0.672237 + 6.17481i −0.0220911 + 0.202917i
\(927\) −7.81747 −0.256759
\(928\) −21.7365 + 36.0815i −0.713537 + 1.18443i
\(929\) 15.2468i 0.500232i −0.968216 0.250116i \(-0.919531\pi\)
0.968216 0.250116i \(-0.0804688\pi\)
\(930\) −2.62441 + 24.1064i −0.0860578 + 0.790481i
\(931\) −2.27262 + 13.5032i −0.0744823 + 0.442551i
\(932\) −24.3257 5.36009i −0.796813 0.175575i
\(933\) 27.5969i 0.903483i
\(934\) −2.56003 + 23.5150i −0.0837666 + 0.769435i
\(935\) 36.1853i 1.18339i
\(936\) −1.06140 0.358016i −0.0346929 0.0117021i
\(937\) 30.0544i 0.981835i −0.871206 0.490917i \(-0.836662\pi\)
0.871206 0.490917i \(-0.163338\pi\)
\(938\) 4.73895 24.4027i 0.154732 0.796776i
\(939\) −8.08858 −0.263961
\(940\) 1.04383 + 0.230005i 0.0340460 + 0.00750194i
\(941\) −15.0095 −0.489297 −0.244649 0.969612i \(-0.578673\pi\)
−0.244649 + 0.969612i \(0.578673\pi\)
\(942\) −3.01857 + 27.7270i −0.0983505 + 0.903394i
\(943\) −35.0187 −1.14037
\(944\) −25.1382 + 54.2726i −0.818178 + 1.76642i
\(945\) −54.1052 4.52122i −1.76004 0.147075i
\(946\) 47.5051 + 5.17177i 1.54452 + 0.168149i
\(947\) 12.4781 0.405485 0.202743 0.979232i \(-0.435015\pi\)
0.202743 + 0.979232i \(0.435015\pi\)
\(948\) 24.7273 + 5.44858i 0.803104 + 0.176962i
\(949\) 7.29238i 0.236721i
\(950\) −2.70137 + 24.8133i −0.0876441 + 0.805051i
\(951\) 42.5221 1.37887
\(952\) 19.0061 + 8.23109i 0.615991 + 0.266771i
\(953\) −3.80075 −0.123118 −0.0615592 0.998103i \(-0.519607\pi\)
−0.0615592 + 0.998103i \(0.519607\pi\)
\(954\) 0.298231 2.73939i 0.00965559 0.0886911i
\(955\) 1.99980i 0.0647121i
\(956\) −2.12650 + 9.65069i −0.0687759 + 0.312126i
\(957\) 41.9525 1.35613
\(958\) −12.7844 1.39181i −0.413045 0.0449673i
\(959\) 1.14570 13.7105i 0.0369965 0.442736i
\(960\) −29.2803 + 38.4650i −0.945019 + 1.24145i
\(961\) −22.9482 −0.740264
\(962\) −1.20217 + 11.0424i −0.0387594 + 0.356023i
\(963\) −5.01431 −0.161584
\(964\) 3.19683 14.5082i 0.102963 0.467276i
\(965\) −1.65875 −0.0533970
\(966\) 4.11628 21.1963i 0.132439 0.681981i
\(967\) 16.8661i 0.542378i −0.962526 0.271189i \(-0.912583\pi\)
0.962526 0.271189i \(-0.0874168\pi\)
\(968\) −3.18830 1.07544i −0.102476 0.0345658i
\(969\) 8.73673i 0.280664i
\(970\) −2.59709 + 23.8555i −0.0833875 + 0.765952i
\(971\) 42.9001i 1.37673i 0.725365 + 0.688364i \(0.241671\pi\)
−0.725365 + 0.688364i \(0.758329\pi\)
\(972\) −1.75915 + 7.98353i −0.0564247 + 0.256072i
\(973\) 21.9277 + 1.83235i 0.702969 + 0.0587425i
\(974\) 0.702809 6.45562i 0.0225195 0.206852i
\(975\) 14.5593i 0.466271i
\(976\) −23.3128 10.7981i −0.746225 0.345639i
\(977\) −35.4270 −1.13341 −0.566705 0.823921i \(-0.691782\pi\)
−0.566705 + 0.823921i \(0.691782\pi\)
\(978\) 0.811376 7.45286i 0.0259449 0.238316i
\(979\) 31.3072i 1.00058i
\(980\) −48.6146 19.6217i −1.55294 0.626792i
\(981\) 2.23846i 0.0714686i
\(982\) 55.6744 + 6.06114i 1.77664 + 0.193419i
\(983\) −32.3803 −1.03277 −0.516385 0.856356i \(-0.672723\pi\)
−0.516385 + 0.856356i \(0.672723\pi\)
\(984\) −42.3493 14.2847i −1.35005 0.455380i
\(985\) 91.7493i 2.92337i
\(986\) −28.9752 3.15447i −0.922760 0.100459i
\(987\) −0.607211 0.0507406i −0.0193277 0.00161509i
\(988\) 0.841875 3.82068i 0.0267836 0.121552i
\(989\) 34.6104i 1.10055i
\(990\) −7.27939 0.792491i −0.231354 0.0251870i
\(991\) 10.8930i 0.346027i −0.984919 0.173013i \(-0.944650\pi\)
0.984919 0.173013i \(-0.0553504\pi\)
\(992\) 13.7495 + 8.28309i 0.436547 + 0.262988i
\(993\) 32.9059i 1.04424i
\(994\) −8.07223 1.56761i −0.256036 0.0497216i
\(995\) 26.7984 0.849567
\(996\) −34.1111 7.51628i −1.08085 0.238162i
\(997\) 10.3344 0.327294 0.163647 0.986519i \(-0.447674\pi\)
0.163647 + 0.986519i \(0.447674\pi\)
\(998\) 22.4130 + 2.44005i 0.709472 + 0.0772386i
\(999\) 43.0426 1.36181
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 728.2.h.b.27.1 yes 48
4.3 odd 2 2912.2.h.b.2575.12 48
7.6 odd 2 728.2.h.a.27.1 48
8.3 odd 2 728.2.h.a.27.2 yes 48
8.5 even 2 2912.2.h.a.2575.12 48
28.27 even 2 2912.2.h.a.2575.37 48
56.13 odd 2 2912.2.h.b.2575.37 48
56.27 even 2 inner 728.2.h.b.27.2 yes 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
728.2.h.a.27.1 48 7.6 odd 2
728.2.h.a.27.2 yes 48 8.3 odd 2
728.2.h.b.27.1 yes 48 1.1 even 1 trivial
728.2.h.b.27.2 yes 48 56.27 even 2 inner
2912.2.h.a.2575.12 48 8.5 even 2
2912.2.h.a.2575.37 48 28.27 even 2
2912.2.h.b.2575.12 48 4.3 odd 2
2912.2.h.b.2575.37 48 56.13 odd 2