Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [728,2,Mod(99,728)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(728, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([2, 2, 0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("728.99");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 728 = 2^{3} \cdot 7 \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 728.z (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.81310926715\) |
Analytic rank: | \(0\) |
Dimension: | \(168\) |
Relative dimension: | \(84\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
99.1 | −1.41371 | − | 0.0376584i | −1.29962 | 1.99716 | + | 0.106476i | −1.07967 | + | 1.07967i | 1.83728 | + | 0.0489415i | 0.707107 | + | 0.707107i | −2.81940 | − | 0.225737i | −1.31100 | 1.56700 | − | 1.48568i | ||||
99.2 | −1.41163 | + | 0.0854949i | 2.45227 | 1.98538 | − | 0.241374i | 2.76045 | − | 2.76045i | −3.46169 | + | 0.209657i | 0.707107 | + | 0.707107i | −2.78198 | + | 0.510470i | 3.01364 | −3.66073 | + | 4.13274i | ||||
99.3 | −1.40861 | − | 0.125800i | 0.804590 | 1.96835 | + | 0.354406i | −1.31095 | + | 1.31095i | −1.13335 | − | 0.101218i | 0.707107 | + | 0.707107i | −2.72805 | − | 0.746838i | −2.35264 | 2.01153 | − | 1.68170i | ||||
99.4 | −1.40544 | + | 0.157306i | 0.322497 | 1.95051 | − | 0.442167i | 0.536770 | − | 0.536770i | −0.453249 | + | 0.0507306i | −0.707107 | − | 0.707107i | −2.67176 | + | 0.928264i | −2.89600 | −0.669960 | + | 0.838834i | ||||
99.5 | −1.39814 | + | 0.212598i | −3.11840 | 1.90960 | − | 0.594484i | −1.91075 | + | 1.91075i | 4.35997 | − | 0.662965i | −0.707107 | − | 0.707107i | −2.54351 | + | 1.23715i | 6.72442 | 2.26528 | − | 3.07772i | ||||
99.6 | −1.39500 | + | 0.232335i | −0.0645954 | 1.89204 | − | 0.648214i | 2.31204 | − | 2.31204i | 0.0901105 | − | 0.0150078i | −0.707107 | − | 0.707107i | −2.48879 | + | 1.34384i | −2.99583 | −2.68812 | + | 3.76246i | ||||
99.7 | −1.38171 | + | 0.301445i | 1.78478 | 1.81826 | − | 0.833020i | −2.78184 | + | 2.78184i | −2.46605 | + | 0.538012i | −0.707107 | − | 0.707107i | −2.26121 | + | 1.69910i | 0.185435 | 3.00514 | − | 4.68228i | ||||
99.8 | −1.37091 | − | 0.347291i | −1.38625 | 1.75878 | + | 0.952208i | 2.25385 | − | 2.25385i | 1.90042 | + | 0.481432i | 0.707107 | + | 0.707107i | −2.08043 | − | 1.91620i | −1.07831 | −3.87257 | + | 2.30708i | ||||
99.9 | −1.33902 | − | 0.455004i | −1.49360 | 1.58594 | + | 1.21852i | −1.52676 | + | 1.52676i | 1.99995 | + | 0.679592i | −0.707107 | − | 0.707107i | −1.56918 | − | 2.35323i | −0.769169 | 2.73905 | − | 1.34968i | ||||
99.10 | −1.30868 | − | 0.536051i | 3.16260 | 1.42530 | + | 1.40304i | −1.63317 | + | 1.63317i | −4.13885 | − | 1.69532i | 0.707107 | + | 0.707107i | −1.11316 | − | 2.60017i | 7.00207 | 3.01275 | − | 1.26183i | ||||
99.11 | −1.28652 | − | 0.587244i | −2.05702 | 1.31029 | + | 1.51101i | 0.203896 | − | 0.203896i | 2.64640 | + | 1.20797i | −0.707107 | − | 0.707107i | −0.798389 | − | 2.71341i | 1.23132 | −0.382053 | + | 0.142580i | ||||
99.12 | −1.25686 | + | 0.648310i | −1.56353 | 1.15939 | − | 1.62967i | 0.919330 | − | 0.919330i | 1.96514 | − | 1.01365i | 0.707107 | + | 0.707107i | −0.400660 | + | 2.79991i | −0.555373 | −0.559458 | + | 1.75148i | ||||
99.13 | −1.23981 | + | 0.680346i | 3.34691 | 1.07426 | − | 1.68700i | 0.829436 | − | 0.829436i | −4.14954 | + | 2.27706i | −0.707107 | − | 0.707107i | −0.184134 | + | 2.82243i | 8.20183 | −0.464040 | + | 1.59265i | ||||
99.14 | −1.21923 | + | 0.716575i | −0.540843 | 0.973040 | − | 1.74734i | −2.54410 | + | 2.54410i | 0.659411 | − | 0.387554i | 0.707107 | + | 0.707107i | 0.0657398 | + | 2.82766i | −2.70749 | 1.27881 | − | 4.92489i | ||||
99.15 | −1.21480 | + | 0.724064i | 0.295013 | 0.951462 | − | 1.75918i | 1.00711 | − | 1.00711i | −0.358381 | + | 0.213609i | −0.707107 | − | 0.707107i | 0.117929 | + | 2.82597i | −2.91297 | −0.494220 | + | 1.95264i | ||||
99.16 | −1.21122 | − | 0.730033i | 1.01834 | 0.934103 | + | 1.76846i | 0.224245 | − | 0.224245i | −1.23343 | − | 0.743422i | −0.707107 | − | 0.707107i | 0.159632 | − | 2.82392i | −1.96298 | −0.435316 | + | 0.107903i | ||||
99.17 | −1.19188 | − | 0.761198i | 0.715638 | 0.841155 | + | 1.81451i | 1.31309 | − | 1.31309i | −0.852955 | − | 0.544742i | 0.707107 | + | 0.707107i | 0.378648 | − | 2.80297i | −2.48786 | −2.56457 | + | 0.565525i | ||||
99.18 | −1.17472 | + | 0.787426i | 2.30698 | 0.759920 | − | 1.85001i | −0.308723 | + | 0.308723i | −2.71005 | + | 1.81658i | 0.707107 | + | 0.707107i | 0.564051 | + | 2.77161i | 2.32216 | 0.119566 | − | 0.605758i | ||||
99.19 | −1.16349 | − | 0.803927i | −3.07399 | 0.707402 | + | 1.87072i | −1.42853 | + | 1.42853i | 3.57655 | + | 2.47126i | 0.707107 | + | 0.707107i | 0.680867 | − | 2.74525i | 6.44941 | 2.81051 | − | 0.513642i | ||||
99.20 | −1.08722 | − | 0.904404i | 2.69981 | 0.364106 | + | 1.96658i | −1.71234 | + | 1.71234i | −2.93529 | − | 2.44172i | −0.707107 | − | 0.707107i | 1.38272 | − | 2.46741i | 4.28897 | 3.41035 | − | 0.313048i | ||||
See next 80 embeddings (of 168 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
8.d | odd | 2 | 1 | inner |
13.d | odd | 4 | 1 | inner |
104.m | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 728.2.z.a | ✓ | 168 |
8.d | odd | 2 | 1 | inner | 728.2.z.a | ✓ | 168 |
13.d | odd | 4 | 1 | inner | 728.2.z.a | ✓ | 168 |
104.m | even | 4 | 1 | inner | 728.2.z.a | ✓ | 168 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
728.2.z.a | ✓ | 168 | 1.a | even | 1 | 1 | trivial |
728.2.z.a | ✓ | 168 | 8.d | odd | 2 | 1 | inner |
728.2.z.a | ✓ | 168 | 13.d | odd | 4 | 1 | inner |
728.2.z.a | ✓ | 168 | 104.m | even | 4 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(728, [\chi])\).