Properties

Label 729.2.a.a.1.4
Level $729$
Weight $2$
Character 729.1
Self dual yes
Analytic conductor $5.821$
Analytic rank $1$
Dimension $6$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(1,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(5.82109430735\)
Analytic rank: \(1\)
Dimension: \(6\)
Coefficient field: 6.6.1397493.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 3x^{5} - 3x^{4} + 10x^{3} + 3x^{2} - 6x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 27)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.4
Root \(-1.11662\) of defining polynomial
Character \(\chi\) \(=\) 729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.415466 q^{2} -1.82739 q^{4} +2.21519 q^{5} -1.31963 q^{7} +1.59015 q^{8} -0.920335 q^{10} -5.21519 q^{11} -0.0180585 q^{13} +0.548261 q^{14} +2.99412 q^{16} -3.13280 q^{17} +0.417352 q^{19} -4.04801 q^{20} +2.16673 q^{22} -1.03439 q^{23} -0.0929475 q^{25} +0.00750270 q^{26} +2.41147 q^{28} -7.80722 q^{29} +3.72966 q^{31} -4.42426 q^{32} +1.30157 q^{34} -2.92322 q^{35} +4.42476 q^{37} -0.173396 q^{38} +3.52248 q^{40} -3.67494 q^{41} -8.30787 q^{43} +9.53017 q^{44} +0.429753 q^{46} -7.09791 q^{47} -5.25858 q^{49} +0.0386165 q^{50} +0.0329999 q^{52} -1.30057 q^{53} -11.5526 q^{55} -2.09841 q^{56} +3.24364 q^{58} -3.70181 q^{59} +6.91424 q^{61} -1.54955 q^{62} -4.15011 q^{64} -0.0400030 q^{65} -11.0268 q^{67} +5.72483 q^{68} +1.21450 q^{70} -6.08428 q^{71} -0.546973 q^{73} -1.83834 q^{74} -0.762665 q^{76} +6.88211 q^{77} +0.489144 q^{79} +6.63254 q^{80} +1.52681 q^{82} +4.61367 q^{83} -6.93973 q^{85} +3.45164 q^{86} -8.29293 q^{88} -3.37307 q^{89} +0.0238305 q^{91} +1.89023 q^{92} +2.94894 q^{94} +0.924513 q^{95} +9.94136 q^{97} +2.18476 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 3 q^{2} + 3 q^{4} - 6 q^{5} - 6 q^{8} + 3 q^{10} - 12 q^{11} - 6 q^{14} - 3 q^{16} - 9 q^{17} + 3 q^{19} - 6 q^{20} + 6 q^{22} - 15 q^{23} - 6 q^{25} - 15 q^{26} - 6 q^{28} - 12 q^{29} - 12 q^{35}+ \cdots + 45 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.415466 −0.293779 −0.146889 0.989153i \(-0.546926\pi\)
−0.146889 + 0.989153i \(0.546926\pi\)
\(3\) 0 0
\(4\) −1.82739 −0.913694
\(5\) 2.21519 0.990662 0.495331 0.868704i \(-0.335047\pi\)
0.495331 + 0.868704i \(0.335047\pi\)
\(6\) 0 0
\(7\) −1.31963 −0.498773 −0.249386 0.968404i \(-0.580229\pi\)
−0.249386 + 0.968404i \(0.580229\pi\)
\(8\) 1.59015 0.562203
\(9\) 0 0
\(10\) −0.920335 −0.291036
\(11\) −5.21519 −1.57244 −0.786219 0.617948i \(-0.787964\pi\)
−0.786219 + 0.617948i \(0.787964\pi\)
\(12\) 0 0
\(13\) −0.0180585 −0.00500853 −0.00250427 0.999997i \(-0.500797\pi\)
−0.00250427 + 0.999997i \(0.500797\pi\)
\(14\) 0.548261 0.146529
\(15\) 0 0
\(16\) 2.99412 0.748530
\(17\) −3.13280 −0.759814 −0.379907 0.925025i \(-0.624044\pi\)
−0.379907 + 0.925025i \(0.624044\pi\)
\(18\) 0 0
\(19\) 0.417352 0.0957472 0.0478736 0.998853i \(-0.484756\pi\)
0.0478736 + 0.998853i \(0.484756\pi\)
\(20\) −4.04801 −0.905162
\(21\) 0 0
\(22\) 2.16673 0.461949
\(23\) −1.03439 −0.215684 −0.107842 0.994168i \(-0.534394\pi\)
−0.107842 + 0.994168i \(0.534394\pi\)
\(24\) 0 0
\(25\) −0.0929475 −0.0185895
\(26\) 0.00750270 0.00147140
\(27\) 0 0
\(28\) 2.41147 0.455726
\(29\) −7.80722 −1.44976 −0.724882 0.688873i \(-0.758106\pi\)
−0.724882 + 0.688873i \(0.758106\pi\)
\(30\) 0 0
\(31\) 3.72966 0.669868 0.334934 0.942242i \(-0.391286\pi\)
0.334934 + 0.942242i \(0.391286\pi\)
\(32\) −4.42426 −0.782106
\(33\) 0 0
\(34\) 1.30157 0.223218
\(35\) −2.92322 −0.494115
\(36\) 0 0
\(37\) 4.42476 0.727426 0.363713 0.931511i \(-0.381509\pi\)
0.363713 + 0.931511i \(0.381509\pi\)
\(38\) −0.173396 −0.0281285
\(39\) 0 0
\(40\) 3.52248 0.556953
\(41\) −3.67494 −0.573929 −0.286965 0.957941i \(-0.592646\pi\)
−0.286965 + 0.957941i \(0.592646\pi\)
\(42\) 0 0
\(43\) −8.30787 −1.26694 −0.633469 0.773768i \(-0.718370\pi\)
−0.633469 + 0.773768i \(0.718370\pi\)
\(44\) 9.53017 1.43673
\(45\) 0 0
\(46\) 0.429753 0.0633636
\(47\) −7.09791 −1.03534 −0.517668 0.855581i \(-0.673200\pi\)
−0.517668 + 0.855581i \(0.673200\pi\)
\(48\) 0 0
\(49\) −5.25858 −0.751226
\(50\) 0.0386165 0.00546120
\(51\) 0 0
\(52\) 0.0329999 0.00457627
\(53\) −1.30057 −0.178648 −0.0893238 0.996003i \(-0.528471\pi\)
−0.0893238 + 0.996003i \(0.528471\pi\)
\(54\) 0 0
\(55\) −11.5526 −1.55775
\(56\) −2.09841 −0.280412
\(57\) 0 0
\(58\) 3.24364 0.425910
\(59\) −3.70181 −0.481935 −0.240967 0.970533i \(-0.577465\pi\)
−0.240967 + 0.970533i \(0.577465\pi\)
\(60\) 0 0
\(61\) 6.91424 0.885277 0.442639 0.896700i \(-0.354042\pi\)
0.442639 + 0.896700i \(0.354042\pi\)
\(62\) −1.54955 −0.196793
\(63\) 0 0
\(64\) −4.15011 −0.518764
\(65\) −0.0400030 −0.00496176
\(66\) 0 0
\(67\) −11.0268 −1.34714 −0.673569 0.739125i \(-0.735239\pi\)
−0.673569 + 0.739125i \(0.735239\pi\)
\(68\) 5.72483 0.694238
\(69\) 0 0
\(70\) 1.21450 0.145161
\(71\) −6.08428 −0.722071 −0.361035 0.932552i \(-0.617577\pi\)
−0.361035 + 0.932552i \(0.617577\pi\)
\(72\) 0 0
\(73\) −0.546973 −0.0640183 −0.0320092 0.999488i \(-0.510191\pi\)
−0.0320092 + 0.999488i \(0.510191\pi\)
\(74\) −1.83834 −0.213702
\(75\) 0 0
\(76\) −0.762665 −0.0874836
\(77\) 6.88211 0.784289
\(78\) 0 0
\(79\) 0.489144 0.0550330 0.0275165 0.999621i \(-0.491240\pi\)
0.0275165 + 0.999621i \(0.491240\pi\)
\(80\) 6.63254 0.741540
\(81\) 0 0
\(82\) 1.52681 0.168608
\(83\) 4.61367 0.506416 0.253208 0.967412i \(-0.418514\pi\)
0.253208 + 0.967412i \(0.418514\pi\)
\(84\) 0 0
\(85\) −6.93973 −0.752719
\(86\) 3.45164 0.372200
\(87\) 0 0
\(88\) −8.29293 −0.884029
\(89\) −3.37307 −0.357544 −0.178772 0.983891i \(-0.557212\pi\)
−0.178772 + 0.983891i \(0.557212\pi\)
\(90\) 0 0
\(91\) 0.0238305 0.00249812
\(92\) 1.89023 0.197070
\(93\) 0 0
\(94\) 2.94894 0.304160
\(95\) 0.924513 0.0948531
\(96\) 0 0
\(97\) 9.94136 1.00939 0.504696 0.863297i \(-0.331605\pi\)
0.504696 + 0.863297i \(0.331605\pi\)
\(98\) 2.18476 0.220694
\(99\) 0 0
\(100\) 0.169851 0.0169851
\(101\) 13.7995 1.37310 0.686550 0.727082i \(-0.259124\pi\)
0.686550 + 0.727082i \(0.259124\pi\)
\(102\) 0 0
\(103\) 4.56512 0.449815 0.224907 0.974380i \(-0.427792\pi\)
0.224907 + 0.974380i \(0.427792\pi\)
\(104\) −0.0287158 −0.00281581
\(105\) 0 0
\(106\) 0.540345 0.0524829
\(107\) −11.2965 −1.09207 −0.546035 0.837762i \(-0.683864\pi\)
−0.546035 + 0.837762i \(0.683864\pi\)
\(108\) 0 0
\(109\) 14.5032 1.38915 0.694577 0.719419i \(-0.255592\pi\)
0.694577 + 0.719419i \(0.255592\pi\)
\(110\) 4.79972 0.457635
\(111\) 0 0
\(112\) −3.95113 −0.373347
\(113\) 12.5584 1.18140 0.590699 0.806892i \(-0.298852\pi\)
0.590699 + 0.806892i \(0.298852\pi\)
\(114\) 0 0
\(115\) −2.29136 −0.213670
\(116\) 14.2668 1.32464
\(117\) 0 0
\(118\) 1.53798 0.141582
\(119\) 4.13413 0.378975
\(120\) 0 0
\(121\) 16.1982 1.47256
\(122\) −2.87263 −0.260076
\(123\) 0 0
\(124\) −6.81554 −0.612054
\(125\) −11.2818 −1.00908
\(126\) 0 0
\(127\) −8.39499 −0.744935 −0.372467 0.928045i \(-0.621488\pi\)
−0.372467 + 0.928045i \(0.621488\pi\)
\(128\) 10.5727 0.934508
\(129\) 0 0
\(130\) 0.0166199 0.00145766
\(131\) −15.5349 −1.35729 −0.678645 0.734466i \(-0.737433\pi\)
−0.678645 + 0.734466i \(0.737433\pi\)
\(132\) 0 0
\(133\) −0.550750 −0.0477561
\(134\) 4.58126 0.395761
\(135\) 0 0
\(136\) −4.98162 −0.427170
\(137\) 12.0074 1.02586 0.512930 0.858430i \(-0.328560\pi\)
0.512930 + 0.858430i \(0.328560\pi\)
\(138\) 0 0
\(139\) 6.14512 0.521222 0.260611 0.965444i \(-0.416076\pi\)
0.260611 + 0.965444i \(0.416076\pi\)
\(140\) 5.34187 0.451470
\(141\) 0 0
\(142\) 2.52781 0.212129
\(143\) 0.0941785 0.00787561
\(144\) 0 0
\(145\) −17.2945 −1.43623
\(146\) 0.227249 0.0188072
\(147\) 0 0
\(148\) −8.08575 −0.664644
\(149\) 0.882820 0.0723235 0.0361617 0.999346i \(-0.488487\pi\)
0.0361617 + 0.999346i \(0.488487\pi\)
\(150\) 0 0
\(151\) 8.22547 0.669379 0.334690 0.942328i \(-0.391368\pi\)
0.334690 + 0.942328i \(0.391368\pi\)
\(152\) 0.663653 0.0538294
\(153\) 0 0
\(154\) −2.85929 −0.230408
\(155\) 8.26190 0.663612
\(156\) 0 0
\(157\) 12.5598 1.00238 0.501192 0.865336i \(-0.332895\pi\)
0.501192 + 0.865336i \(0.332895\pi\)
\(158\) −0.203223 −0.0161675
\(159\) 0 0
\(160\) −9.80056 −0.774802
\(161\) 1.36501 0.107578
\(162\) 0 0
\(163\) 3.31466 0.259624 0.129812 0.991539i \(-0.458563\pi\)
0.129812 + 0.991539i \(0.458563\pi\)
\(164\) 6.71554 0.524396
\(165\) 0 0
\(166\) −1.91682 −0.148774
\(167\) −20.5630 −1.59121 −0.795606 0.605815i \(-0.792847\pi\)
−0.795606 + 0.605815i \(0.792847\pi\)
\(168\) 0 0
\(169\) −12.9997 −0.999975
\(170\) 2.88322 0.221133
\(171\) 0 0
\(172\) 15.1817 1.15759
\(173\) 14.0333 1.06693 0.533465 0.845822i \(-0.320890\pi\)
0.533465 + 0.845822i \(0.320890\pi\)
\(174\) 0 0
\(175\) 0.122656 0.00927194
\(176\) −15.6149 −1.17702
\(177\) 0 0
\(178\) 1.40139 0.105039
\(179\) 10.1900 0.761636 0.380818 0.924650i \(-0.375642\pi\)
0.380818 + 0.924650i \(0.375642\pi\)
\(180\) 0 0
\(181\) 24.0547 1.78797 0.893987 0.448093i \(-0.147897\pi\)
0.893987 + 0.448093i \(0.147897\pi\)
\(182\) −0.00990079 −0.000733895 0
\(183\) 0 0
\(184\) −1.64483 −0.121258
\(185\) 9.80166 0.720633
\(186\) 0 0
\(187\) 16.3381 1.19476
\(188\) 12.9706 0.945981
\(189\) 0 0
\(190\) −0.384104 −0.0278658
\(191\) 10.9464 0.792052 0.396026 0.918239i \(-0.370389\pi\)
0.396026 + 0.918239i \(0.370389\pi\)
\(192\) 0 0
\(193\) −10.8060 −0.777830 −0.388915 0.921274i \(-0.627150\pi\)
−0.388915 + 0.921274i \(0.627150\pi\)
\(194\) −4.13030 −0.296538
\(195\) 0 0
\(196\) 9.60946 0.686390
\(197\) −22.0734 −1.57266 −0.786331 0.617806i \(-0.788022\pi\)
−0.786331 + 0.617806i \(0.788022\pi\)
\(198\) 0 0
\(199\) 12.8868 0.913518 0.456759 0.889590i \(-0.349010\pi\)
0.456759 + 0.889590i \(0.349010\pi\)
\(200\) −0.147801 −0.0104511
\(201\) 0 0
\(202\) −5.73322 −0.403388
\(203\) 10.3026 0.723103
\(204\) 0 0
\(205\) −8.14068 −0.568570
\(206\) −1.89665 −0.132146
\(207\) 0 0
\(208\) −0.0540694 −0.00374904
\(209\) −2.17657 −0.150557
\(210\) 0 0
\(211\) −23.9956 −1.65193 −0.825964 0.563723i \(-0.809368\pi\)
−0.825964 + 0.563723i \(0.809368\pi\)
\(212\) 2.37665 0.163229
\(213\) 0 0
\(214\) 4.69330 0.320827
\(215\) −18.4035 −1.25511
\(216\) 0 0
\(217\) −4.92177 −0.334112
\(218\) −6.02558 −0.408104
\(219\) 0 0
\(220\) 21.1111 1.42331
\(221\) 0.0565736 0.00380555
\(222\) 0 0
\(223\) 21.6622 1.45061 0.725303 0.688430i \(-0.241700\pi\)
0.725303 + 0.688430i \(0.241700\pi\)
\(224\) 5.83838 0.390093
\(225\) 0 0
\(226\) −5.21760 −0.347070
\(227\) 21.6419 1.43642 0.718211 0.695826i \(-0.244961\pi\)
0.718211 + 0.695826i \(0.244961\pi\)
\(228\) 0 0
\(229\) −10.8054 −0.714038 −0.357019 0.934097i \(-0.616207\pi\)
−0.357019 + 0.934097i \(0.616207\pi\)
\(230\) 0.951982 0.0627719
\(231\) 0 0
\(232\) −12.4147 −0.815062
\(233\) 7.63900 0.500447 0.250224 0.968188i \(-0.419496\pi\)
0.250224 + 0.968188i \(0.419496\pi\)
\(234\) 0 0
\(235\) −15.7232 −1.02567
\(236\) 6.76465 0.440341
\(237\) 0 0
\(238\) −1.71759 −0.111335
\(239\) −3.23149 −0.209028 −0.104514 0.994523i \(-0.533329\pi\)
−0.104514 + 0.994523i \(0.533329\pi\)
\(240\) 0 0
\(241\) −26.5449 −1.70991 −0.854955 0.518702i \(-0.826415\pi\)
−0.854955 + 0.518702i \(0.826415\pi\)
\(242\) −6.72979 −0.432608
\(243\) 0 0
\(244\) −12.6350 −0.808873
\(245\) −11.6487 −0.744210
\(246\) 0 0
\(247\) −0.00753676 −0.000479553 0
\(248\) 5.93073 0.376602
\(249\) 0 0
\(250\) 4.68722 0.296446
\(251\) −4.49930 −0.283993 −0.141997 0.989867i \(-0.545352\pi\)
−0.141997 + 0.989867i \(0.545352\pi\)
\(252\) 0 0
\(253\) 5.39452 0.339150
\(254\) 3.48783 0.218846
\(255\) 0 0
\(256\) 3.90761 0.244226
\(257\) 13.7354 0.856792 0.428396 0.903591i \(-0.359079\pi\)
0.428396 + 0.903591i \(0.359079\pi\)
\(258\) 0 0
\(259\) −5.83904 −0.362820
\(260\) 0.0731010 0.00453353
\(261\) 0 0
\(262\) 6.45423 0.398743
\(263\) −24.2026 −1.49239 −0.746197 0.665725i \(-0.768122\pi\)
−0.746197 + 0.665725i \(0.768122\pi\)
\(264\) 0 0
\(265\) −2.88101 −0.176979
\(266\) 0.228818 0.0140297
\(267\) 0 0
\(268\) 20.1502 1.23087
\(269\) 12.0062 0.732032 0.366016 0.930609i \(-0.380722\pi\)
0.366016 + 0.930609i \(0.380722\pi\)
\(270\) 0 0
\(271\) 3.71777 0.225839 0.112919 0.993604i \(-0.463980\pi\)
0.112919 + 0.993604i \(0.463980\pi\)
\(272\) −9.37997 −0.568744
\(273\) 0 0
\(274\) −4.98867 −0.301376
\(275\) 0.484739 0.0292308
\(276\) 0 0
\(277\) −23.4831 −1.41096 −0.705482 0.708728i \(-0.749269\pi\)
−0.705482 + 0.708728i \(0.749269\pi\)
\(278\) −2.55309 −0.153124
\(279\) 0 0
\(280\) −4.64837 −0.277793
\(281\) −20.3717 −1.21528 −0.607638 0.794214i \(-0.707883\pi\)
−0.607638 + 0.794214i \(0.707883\pi\)
\(282\) 0 0
\(283\) 11.5999 0.689545 0.344772 0.938686i \(-0.387956\pi\)
0.344772 + 0.938686i \(0.387956\pi\)
\(284\) 11.1183 0.659752
\(285\) 0 0
\(286\) −0.0391280 −0.00231369
\(287\) 4.84956 0.286260
\(288\) 0 0
\(289\) −7.18559 −0.422682
\(290\) 7.18526 0.421933
\(291\) 0 0
\(292\) 0.999532 0.0584932
\(293\) 31.5742 1.84458 0.922291 0.386496i \(-0.126315\pi\)
0.922291 + 0.386496i \(0.126315\pi\)
\(294\) 0 0
\(295\) −8.20020 −0.477434
\(296\) 7.03603 0.408961
\(297\) 0 0
\(298\) −0.366782 −0.0212471
\(299\) 0.0186795 0.00108026
\(300\) 0 0
\(301\) 10.9633 0.631915
\(302\) −3.41741 −0.196650
\(303\) 0 0
\(304\) 1.24960 0.0716697
\(305\) 15.3163 0.877010
\(306\) 0 0
\(307\) −8.12054 −0.463464 −0.231732 0.972780i \(-0.574439\pi\)
−0.231732 + 0.972780i \(0.574439\pi\)
\(308\) −12.5763 −0.716601
\(309\) 0 0
\(310\) −3.43254 −0.194955
\(311\) −23.8486 −1.35233 −0.676164 0.736751i \(-0.736359\pi\)
−0.676164 + 0.736751i \(0.736359\pi\)
\(312\) 0 0
\(313\) 26.9105 1.52107 0.760535 0.649297i \(-0.224937\pi\)
0.760535 + 0.649297i \(0.224937\pi\)
\(314\) −5.21818 −0.294479
\(315\) 0 0
\(316\) −0.893856 −0.0502833
\(317\) −8.33233 −0.467990 −0.233995 0.972238i \(-0.575180\pi\)
−0.233995 + 0.972238i \(0.575180\pi\)
\(318\) 0 0
\(319\) 40.7161 2.27967
\(320\) −9.19328 −0.513920
\(321\) 0 0
\(322\) −0.567114 −0.0316040
\(323\) −1.30748 −0.0727501
\(324\) 0 0
\(325\) 0.00167849 9.31061e−5 0
\(326\) −1.37713 −0.0762721
\(327\) 0 0
\(328\) −5.84371 −0.322665
\(329\) 9.36661 0.516398
\(330\) 0 0
\(331\) −6.42026 −0.352889 −0.176445 0.984311i \(-0.556460\pi\)
−0.176445 + 0.984311i \(0.556460\pi\)
\(332\) −8.43096 −0.462709
\(333\) 0 0
\(334\) 8.54322 0.467464
\(335\) −24.4264 −1.33456
\(336\) 0 0
\(337\) 7.47489 0.407183 0.203592 0.979056i \(-0.434739\pi\)
0.203592 + 0.979056i \(0.434739\pi\)
\(338\) 5.40093 0.293772
\(339\) 0 0
\(340\) 12.6816 0.687755
\(341\) −19.4509 −1.05333
\(342\) 0 0
\(343\) 16.1768 0.873464
\(344\) −13.2108 −0.712277
\(345\) 0 0
\(346\) −5.83035 −0.313442
\(347\) −31.4545 −1.68857 −0.844283 0.535898i \(-0.819973\pi\)
−0.844283 + 0.535898i \(0.819973\pi\)
\(348\) 0 0
\(349\) 11.8529 0.634474 0.317237 0.948346i \(-0.397245\pi\)
0.317237 + 0.948346i \(0.397245\pi\)
\(350\) −0.0509595 −0.00272390
\(351\) 0 0
\(352\) 23.0733 1.22981
\(353\) −8.20708 −0.436819 −0.218409 0.975857i \(-0.570087\pi\)
−0.218409 + 0.975857i \(0.570087\pi\)
\(354\) 0 0
\(355\) −13.4778 −0.715328
\(356\) 6.16390 0.326686
\(357\) 0 0
\(358\) −4.23360 −0.223753
\(359\) 17.7273 0.935611 0.467806 0.883831i \(-0.345045\pi\)
0.467806 + 0.883831i \(0.345045\pi\)
\(360\) 0 0
\(361\) −18.8258 −0.990832
\(362\) −9.99393 −0.525269
\(363\) 0 0
\(364\) −0.0435477 −0.00228252
\(365\) −1.21165 −0.0634205
\(366\) 0 0
\(367\) −20.3195 −1.06067 −0.530335 0.847788i \(-0.677934\pi\)
−0.530335 + 0.847788i \(0.677934\pi\)
\(368\) −3.09708 −0.161446
\(369\) 0 0
\(370\) −4.07226 −0.211707
\(371\) 1.71628 0.0891046
\(372\) 0 0
\(373\) −9.68144 −0.501286 −0.250643 0.968080i \(-0.580642\pi\)
−0.250643 + 0.968080i \(0.580642\pi\)
\(374\) −6.78793 −0.350996
\(375\) 0 0
\(376\) −11.2867 −0.582069
\(377\) 0.140987 0.00726119
\(378\) 0 0
\(379\) −4.12905 −0.212095 −0.106048 0.994361i \(-0.533820\pi\)
−0.106048 + 0.994361i \(0.533820\pi\)
\(380\) −1.68944 −0.0866667
\(381\) 0 0
\(382\) −4.54785 −0.232688
\(383\) 4.75018 0.242723 0.121362 0.992608i \(-0.461274\pi\)
0.121362 + 0.992608i \(0.461274\pi\)
\(384\) 0 0
\(385\) 15.2452 0.776966
\(386\) 4.48951 0.228510
\(387\) 0 0
\(388\) −18.1667 −0.922275
\(389\) −21.8133 −1.10598 −0.552990 0.833188i \(-0.686513\pi\)
−0.552990 + 0.833188i \(0.686513\pi\)
\(390\) 0 0
\(391\) 3.24052 0.163880
\(392\) −8.36193 −0.422341
\(393\) 0 0
\(394\) 9.17074 0.462015
\(395\) 1.08355 0.0545191
\(396\) 0 0
\(397\) −34.8490 −1.74902 −0.874512 0.485005i \(-0.838818\pi\)
−0.874512 + 0.485005i \(0.838818\pi\)
\(398\) −5.35401 −0.268373
\(399\) 0 0
\(400\) −0.278296 −0.0139148
\(401\) −18.8261 −0.940130 −0.470065 0.882632i \(-0.655769\pi\)
−0.470065 + 0.882632i \(0.655769\pi\)
\(402\) 0 0
\(403\) −0.0673522 −0.00335505
\(404\) −25.2170 −1.25459
\(405\) 0 0
\(406\) −4.28040 −0.212433
\(407\) −23.0759 −1.14383
\(408\) 0 0
\(409\) −6.35996 −0.314480 −0.157240 0.987560i \(-0.550260\pi\)
−0.157240 + 0.987560i \(0.550260\pi\)
\(410\) 3.38218 0.167034
\(411\) 0 0
\(412\) −8.34224 −0.410993
\(413\) 4.88502 0.240376
\(414\) 0 0
\(415\) 10.2201 0.501687
\(416\) 0.0798955 0.00391720
\(417\) 0 0
\(418\) 0.904291 0.0442303
\(419\) −24.3180 −1.18801 −0.594005 0.804461i \(-0.702454\pi\)
−0.594005 + 0.804461i \(0.702454\pi\)
\(420\) 0 0
\(421\) −7.99004 −0.389411 −0.194705 0.980862i \(-0.562375\pi\)
−0.194705 + 0.980862i \(0.562375\pi\)
\(422\) 9.96937 0.485302
\(423\) 0 0
\(424\) −2.06811 −0.100436
\(425\) 0.291185 0.0141246
\(426\) 0 0
\(427\) −9.12423 −0.441552
\(428\) 20.6430 0.997818
\(429\) 0 0
\(430\) 7.64603 0.368724
\(431\) 9.87124 0.475481 0.237740 0.971329i \(-0.423593\pi\)
0.237740 + 0.971329i \(0.423593\pi\)
\(432\) 0 0
\(433\) −6.10369 −0.293325 −0.146662 0.989187i \(-0.546853\pi\)
−0.146662 + 0.989187i \(0.546853\pi\)
\(434\) 2.04483 0.0981550
\(435\) 0 0
\(436\) −26.5029 −1.26926
\(437\) −0.431704 −0.0206512
\(438\) 0 0
\(439\) −15.1340 −0.722308 −0.361154 0.932506i \(-0.617617\pi\)
−0.361154 + 0.932506i \(0.617617\pi\)
\(440\) −18.3704 −0.875774
\(441\) 0 0
\(442\) −0.0235044 −0.00111799
\(443\) −0.722793 −0.0343410 −0.0171705 0.999853i \(-0.505466\pi\)
−0.0171705 + 0.999853i \(0.505466\pi\)
\(444\) 0 0
\(445\) −7.47197 −0.354205
\(446\) −8.99990 −0.426158
\(447\) 0 0
\(448\) 5.47661 0.258746
\(449\) 1.66845 0.0787389 0.0393695 0.999225i \(-0.487465\pi\)
0.0393695 + 0.999225i \(0.487465\pi\)
\(450\) 0 0
\(451\) 19.1655 0.902468
\(452\) −22.9491 −1.07944
\(453\) 0 0
\(454\) −8.99147 −0.421991
\(455\) 0.0527891 0.00247479
\(456\) 0 0
\(457\) 11.0834 0.518462 0.259231 0.965815i \(-0.416531\pi\)
0.259231 + 0.965815i \(0.416531\pi\)
\(458\) 4.48926 0.209769
\(459\) 0 0
\(460\) 4.18720 0.195229
\(461\) −21.8844 −1.01926 −0.509629 0.860394i \(-0.670217\pi\)
−0.509629 + 0.860394i \(0.670217\pi\)
\(462\) 0 0
\(463\) 24.8517 1.15496 0.577479 0.816406i \(-0.304037\pi\)
0.577479 + 0.816406i \(0.304037\pi\)
\(464\) −23.3758 −1.08519
\(465\) 0 0
\(466\) −3.17375 −0.147021
\(467\) −11.8355 −0.547683 −0.273842 0.961775i \(-0.588294\pi\)
−0.273842 + 0.961775i \(0.588294\pi\)
\(468\) 0 0
\(469\) 14.5513 0.671916
\(470\) 6.53246 0.301320
\(471\) 0 0
\(472\) −5.88644 −0.270945
\(473\) 43.3271 1.99218
\(474\) 0 0
\(475\) −0.0387919 −0.00177989
\(476\) −7.55465 −0.346267
\(477\) 0 0
\(478\) 1.34258 0.0614080
\(479\) 2.88735 0.131926 0.0659632 0.997822i \(-0.478988\pi\)
0.0659632 + 0.997822i \(0.478988\pi\)
\(480\) 0 0
\(481\) −0.0799046 −0.00364333
\(482\) 11.0285 0.502336
\(483\) 0 0
\(484\) −29.6003 −1.34547
\(485\) 22.0220 0.999966
\(486\) 0 0
\(487\) 8.75903 0.396910 0.198455 0.980110i \(-0.436408\pi\)
0.198455 + 0.980110i \(0.436408\pi\)
\(488\) 10.9947 0.497706
\(489\) 0 0
\(490\) 4.83966 0.218633
\(491\) −22.5730 −1.01871 −0.509354 0.860557i \(-0.670115\pi\)
−0.509354 + 0.860557i \(0.670115\pi\)
\(492\) 0 0
\(493\) 24.4584 1.10155
\(494\) 0.00313127 0.000140883 0
\(495\) 0 0
\(496\) 11.1671 0.501416
\(497\) 8.02899 0.360149
\(498\) 0 0
\(499\) −25.3328 −1.13405 −0.567026 0.823700i \(-0.691906\pi\)
−0.567026 + 0.823700i \(0.691906\pi\)
\(500\) 20.6163 0.921988
\(501\) 0 0
\(502\) 1.86931 0.0834312
\(503\) 3.74414 0.166943 0.0834714 0.996510i \(-0.473399\pi\)
0.0834714 + 0.996510i \(0.473399\pi\)
\(504\) 0 0
\(505\) 30.5684 1.36028
\(506\) −2.24124 −0.0996353
\(507\) 0 0
\(508\) 15.3409 0.680642
\(509\) 24.3499 1.07929 0.539645 0.841893i \(-0.318559\pi\)
0.539645 + 0.841893i \(0.318559\pi\)
\(510\) 0 0
\(511\) 0.721801 0.0319306
\(512\) −22.7690 −1.00626
\(513\) 0 0
\(514\) −5.70660 −0.251707
\(515\) 10.1126 0.445614
\(516\) 0 0
\(517\) 37.0169 1.62800
\(518\) 2.42592 0.106589
\(519\) 0 0
\(520\) −0.0636108 −0.00278952
\(521\) 19.6209 0.859608 0.429804 0.902922i \(-0.358583\pi\)
0.429804 + 0.902922i \(0.358583\pi\)
\(522\) 0 0
\(523\) 20.8154 0.910194 0.455097 0.890442i \(-0.349605\pi\)
0.455097 + 0.890442i \(0.349605\pi\)
\(524\) 28.3883 1.24015
\(525\) 0 0
\(526\) 10.0553 0.438434
\(527\) −11.6843 −0.508975
\(528\) 0 0
\(529\) −21.9300 −0.953480
\(530\) 1.19696 0.0519928
\(531\) 0 0
\(532\) 1.00643 0.0436345
\(533\) 0.0663640 0.00287454
\(534\) 0 0
\(535\) −25.0238 −1.08187
\(536\) −17.5343 −0.757365
\(537\) 0 0
\(538\) −4.98818 −0.215056
\(539\) 27.4245 1.18126
\(540\) 0 0
\(541\) −30.6272 −1.31676 −0.658382 0.752684i \(-0.728759\pi\)
−0.658382 + 0.752684i \(0.728759\pi\)
\(542\) −1.54461 −0.0663467
\(543\) 0 0
\(544\) 13.8603 0.594255
\(545\) 32.1273 1.37618
\(546\) 0 0
\(547\) 22.6477 0.968345 0.484172 0.874973i \(-0.339121\pi\)
0.484172 + 0.874973i \(0.339121\pi\)
\(548\) −21.9422 −0.937323
\(549\) 0 0
\(550\) −0.201393 −0.00858741
\(551\) −3.25836 −0.138811
\(552\) 0 0
\(553\) −0.645489 −0.0274490
\(554\) 9.75644 0.414512
\(555\) 0 0
\(556\) −11.2295 −0.476237
\(557\) 36.4518 1.54451 0.772256 0.635311i \(-0.219128\pi\)
0.772256 + 0.635311i \(0.219128\pi\)
\(558\) 0 0
\(559\) 0.150028 0.00634550
\(560\) −8.75249 −0.369860
\(561\) 0 0
\(562\) 8.46377 0.357023
\(563\) 26.5162 1.11753 0.558763 0.829327i \(-0.311276\pi\)
0.558763 + 0.829327i \(0.311276\pi\)
\(564\) 0 0
\(565\) 27.8193 1.17037
\(566\) −4.81938 −0.202574
\(567\) 0 0
\(568\) −9.67492 −0.405950
\(569\) 22.9674 0.962844 0.481422 0.876489i \(-0.340121\pi\)
0.481422 + 0.876489i \(0.340121\pi\)
\(570\) 0 0
\(571\) −4.79801 −0.200790 −0.100395 0.994948i \(-0.532011\pi\)
−0.100395 + 0.994948i \(0.532011\pi\)
\(572\) −0.172101 −0.00719589
\(573\) 0 0
\(574\) −2.01483 −0.0840973
\(575\) 0.0961436 0.00400947
\(576\) 0 0
\(577\) −4.31333 −0.179566 −0.0897831 0.995961i \(-0.528617\pi\)
−0.0897831 + 0.995961i \(0.528617\pi\)
\(578\) 2.98537 0.124175
\(579\) 0 0
\(580\) 31.6037 1.31227
\(581\) −6.08833 −0.252587
\(582\) 0 0
\(583\) 6.78274 0.280912
\(584\) −0.869769 −0.0359913
\(585\) 0 0
\(586\) −13.1180 −0.541899
\(587\) 41.8222 1.72619 0.863094 0.505044i \(-0.168524\pi\)
0.863094 + 0.505044i \(0.168524\pi\)
\(588\) 0 0
\(589\) 1.55658 0.0641379
\(590\) 3.40691 0.140260
\(591\) 0 0
\(592\) 13.2483 0.544500
\(593\) −31.5370 −1.29507 −0.647536 0.762035i \(-0.724200\pi\)
−0.647536 + 0.762035i \(0.724200\pi\)
\(594\) 0 0
\(595\) 9.15786 0.375436
\(596\) −1.61326 −0.0660815
\(597\) 0 0
\(598\) −0.00776070 −0.000317358 0
\(599\) −12.6303 −0.516060 −0.258030 0.966137i \(-0.583073\pi\)
−0.258030 + 0.966137i \(0.583073\pi\)
\(600\) 0 0
\(601\) 20.5430 0.837965 0.418983 0.907994i \(-0.362387\pi\)
0.418983 + 0.907994i \(0.362387\pi\)
\(602\) −4.55489 −0.185643
\(603\) 0 0
\(604\) −15.0311 −0.611608
\(605\) 35.8820 1.45881
\(606\) 0 0
\(607\) 12.9126 0.524105 0.262052 0.965054i \(-0.415601\pi\)
0.262052 + 0.965054i \(0.415601\pi\)
\(608\) −1.84647 −0.0748844
\(609\) 0 0
\(610\) −6.36342 −0.257647
\(611\) 0.128178 0.00518552
\(612\) 0 0
\(613\) −31.1598 −1.25853 −0.629265 0.777191i \(-0.716644\pi\)
−0.629265 + 0.777191i \(0.716644\pi\)
\(614\) 3.37381 0.136156
\(615\) 0 0
\(616\) 10.9436 0.440930
\(617\) −7.14078 −0.287477 −0.143739 0.989616i \(-0.545912\pi\)
−0.143739 + 0.989616i \(0.545912\pi\)
\(618\) 0 0
\(619\) −10.0309 −0.403176 −0.201588 0.979470i \(-0.564610\pi\)
−0.201588 + 0.979470i \(0.564610\pi\)
\(620\) −15.0977 −0.606338
\(621\) 0 0
\(622\) 9.90827 0.397285
\(623\) 4.45119 0.178333
\(624\) 0 0
\(625\) −24.5266 −0.981065
\(626\) −11.1804 −0.446858
\(627\) 0 0
\(628\) −22.9517 −0.915871
\(629\) −13.8619 −0.552708
\(630\) 0 0
\(631\) −7.07560 −0.281675 −0.140838 0.990033i \(-0.544980\pi\)
−0.140838 + 0.990033i \(0.544980\pi\)
\(632\) 0.777813 0.0309397
\(633\) 0 0
\(634\) 3.46180 0.137486
\(635\) −18.5965 −0.737978
\(636\) 0 0
\(637\) 0.0949621 0.00376254
\(638\) −16.9162 −0.669718
\(639\) 0 0
\(640\) 23.4206 0.925781
\(641\) −5.01121 −0.197931 −0.0989655 0.995091i \(-0.531553\pi\)
−0.0989655 + 0.995091i \(0.531553\pi\)
\(642\) 0 0
\(643\) 1.63840 0.0646123 0.0323062 0.999478i \(-0.489715\pi\)
0.0323062 + 0.999478i \(0.489715\pi\)
\(644\) −2.49440 −0.0982930
\(645\) 0 0
\(646\) 0.543213 0.0213724
\(647\) 34.4927 1.35605 0.678024 0.735040i \(-0.262836\pi\)
0.678024 + 0.735040i \(0.262836\pi\)
\(648\) 0 0
\(649\) 19.3056 0.757813
\(650\) −0.000697358 0 −2.73526e−5 0
\(651\) 0 0
\(652\) −6.05717 −0.237217
\(653\) 38.7606 1.51682 0.758410 0.651778i \(-0.225977\pi\)
0.758410 + 0.651778i \(0.225977\pi\)
\(654\) 0 0
\(655\) −34.4127 −1.34462
\(656\) −11.0032 −0.429604
\(657\) 0 0
\(658\) −3.89151 −0.151707
\(659\) 9.39192 0.365857 0.182929 0.983126i \(-0.441442\pi\)
0.182929 + 0.983126i \(0.441442\pi\)
\(660\) 0 0
\(661\) −24.1474 −0.939226 −0.469613 0.882872i \(-0.655607\pi\)
−0.469613 + 0.882872i \(0.655607\pi\)
\(662\) 2.66740 0.103671
\(663\) 0 0
\(664\) 7.33643 0.284709
\(665\) −1.22001 −0.0473101
\(666\) 0 0
\(667\) 8.07569 0.312692
\(668\) 37.5765 1.45388
\(669\) 0 0
\(670\) 10.1483 0.392065
\(671\) −36.0590 −1.39204
\(672\) 0 0
\(673\) −26.4661 −1.02019 −0.510097 0.860117i \(-0.670391\pi\)
−0.510097 + 0.860117i \(0.670391\pi\)
\(674\) −3.10557 −0.119622
\(675\) 0 0
\(676\) 23.7554 0.913671
\(677\) 31.0668 1.19400 0.596998 0.802243i \(-0.296360\pi\)
0.596998 + 0.802243i \(0.296360\pi\)
\(678\) 0 0
\(679\) −13.1189 −0.503457
\(680\) −11.0352 −0.423181
\(681\) 0 0
\(682\) 8.08119 0.309445
\(683\) 38.1361 1.45924 0.729619 0.683854i \(-0.239697\pi\)
0.729619 + 0.683854i \(0.239697\pi\)
\(684\) 0 0
\(685\) 26.5986 1.01628
\(686\) −6.72090 −0.256605
\(687\) 0 0
\(688\) −24.8748 −0.948342
\(689\) 0.0234864 0.000894762 0
\(690\) 0 0
\(691\) 32.9295 1.25270 0.626349 0.779543i \(-0.284548\pi\)
0.626349 + 0.779543i \(0.284548\pi\)
\(692\) −25.6442 −0.974847
\(693\) 0 0
\(694\) 13.0683 0.496065
\(695\) 13.6126 0.516355
\(696\) 0 0
\(697\) 11.5128 0.436080
\(698\) −4.92450 −0.186395
\(699\) 0 0
\(700\) −0.224140 −0.00847171
\(701\) −2.30710 −0.0871381 −0.0435690 0.999050i \(-0.513873\pi\)
−0.0435690 + 0.999050i \(0.513873\pi\)
\(702\) 0 0
\(703\) 1.84668 0.0696490
\(704\) 21.6436 0.815725
\(705\) 0 0
\(706\) 3.40977 0.128328
\(707\) −18.2102 −0.684865
\(708\) 0 0
\(709\) −11.1521 −0.418825 −0.209412 0.977827i \(-0.567155\pi\)
−0.209412 + 0.977827i \(0.567155\pi\)
\(710\) 5.59958 0.210148
\(711\) 0 0
\(712\) −5.36368 −0.201012
\(713\) −3.85791 −0.144480
\(714\) 0 0
\(715\) 0.208623 0.00780206
\(716\) −18.6211 −0.695902
\(717\) 0 0
\(718\) −7.36510 −0.274863
\(719\) −32.1700 −1.19974 −0.599869 0.800098i \(-0.704781\pi\)
−0.599869 + 0.800098i \(0.704781\pi\)
\(720\) 0 0
\(721\) −6.02426 −0.224355
\(722\) 7.82149 0.291086
\(723\) 0 0
\(724\) −43.9573 −1.63366
\(725\) 0.725662 0.0269504
\(726\) 0 0
\(727\) −5.36551 −0.198996 −0.0994979 0.995038i \(-0.531724\pi\)
−0.0994979 + 0.995038i \(0.531724\pi\)
\(728\) 0.0378942 0.00140445
\(729\) 0 0
\(730\) 0.503399 0.0186316
\(731\) 26.0269 0.962638
\(732\) 0 0
\(733\) −14.5964 −0.539129 −0.269564 0.962982i \(-0.586880\pi\)
−0.269564 + 0.962982i \(0.586880\pi\)
\(734\) 8.44208 0.311603
\(735\) 0 0
\(736\) 4.57639 0.168688
\(737\) 57.5068 2.11829
\(738\) 0 0
\(739\) −43.2165 −1.58975 −0.794873 0.606776i \(-0.792463\pi\)
−0.794873 + 0.606776i \(0.792463\pi\)
\(740\) −17.9114 −0.658438
\(741\) 0 0
\(742\) −0.713055 −0.0261771
\(743\) 8.11221 0.297608 0.148804 0.988867i \(-0.452458\pi\)
0.148804 + 0.988867i \(0.452458\pi\)
\(744\) 0 0
\(745\) 1.95561 0.0716481
\(746\) 4.02231 0.147267
\(747\) 0 0
\(748\) −29.8561 −1.09165
\(749\) 14.9071 0.544695
\(750\) 0 0
\(751\) 8.75545 0.319491 0.159746 0.987158i \(-0.448933\pi\)
0.159746 + 0.987158i \(0.448933\pi\)
\(752\) −21.2520 −0.774981
\(753\) 0 0
\(754\) −0.0585753 −0.00213319
\(755\) 18.2210 0.663129
\(756\) 0 0
\(757\) −32.1511 −1.16855 −0.584276 0.811555i \(-0.698622\pi\)
−0.584276 + 0.811555i \(0.698622\pi\)
\(758\) 1.71548 0.0623091
\(759\) 0 0
\(760\) 1.47012 0.0533267
\(761\) −24.5459 −0.889789 −0.444894 0.895583i \(-0.646759\pi\)
−0.444894 + 0.895583i \(0.646759\pi\)
\(762\) 0 0
\(763\) −19.1388 −0.692872
\(764\) −20.0033 −0.723693
\(765\) 0 0
\(766\) −1.97354 −0.0713069
\(767\) 0.0668492 0.00241379
\(768\) 0 0
\(769\) 31.4144 1.13283 0.566416 0.824119i \(-0.308330\pi\)
0.566416 + 0.824119i \(0.308330\pi\)
\(770\) −6.33385 −0.228256
\(771\) 0 0
\(772\) 19.7467 0.710699
\(773\) 28.7145 1.03279 0.516395 0.856351i \(-0.327274\pi\)
0.516395 + 0.856351i \(0.327274\pi\)
\(774\) 0 0
\(775\) −0.346663 −0.0124525
\(776\) 15.8083 0.567483
\(777\) 0 0
\(778\) 9.06270 0.324913
\(779\) −1.53374 −0.0549521
\(780\) 0 0
\(781\) 31.7306 1.13541
\(782\) −1.34633 −0.0481446
\(783\) 0 0
\(784\) −15.7448 −0.562315
\(785\) 27.8224 0.993022
\(786\) 0 0
\(787\) −38.8160 −1.38364 −0.691821 0.722069i \(-0.743191\pi\)
−0.691821 + 0.722069i \(0.743191\pi\)
\(788\) 40.3366 1.43693
\(789\) 0 0
\(790\) −0.450177 −0.0160166
\(791\) −16.5725 −0.589249
\(792\) 0 0
\(793\) −0.124861 −0.00443394
\(794\) 14.4786 0.513826
\(795\) 0 0
\(796\) −23.5491 −0.834676
\(797\) −4.03410 −0.142895 −0.0714476 0.997444i \(-0.522762\pi\)
−0.0714476 + 0.997444i \(0.522762\pi\)
\(798\) 0 0
\(799\) 22.2363 0.786664
\(800\) 0.411224 0.0145390
\(801\) 0 0
\(802\) 7.82160 0.276190
\(803\) 2.85257 0.100665
\(804\) 0 0
\(805\) 3.02374 0.106573
\(806\) 0.0279826 0.000985644 0
\(807\) 0 0
\(808\) 21.9433 0.771961
\(809\) −29.9454 −1.05283 −0.526413 0.850229i \(-0.676463\pi\)
−0.526413 + 0.850229i \(0.676463\pi\)
\(810\) 0 0
\(811\) 20.2173 0.709927 0.354963 0.934880i \(-0.384493\pi\)
0.354963 + 0.934880i \(0.384493\pi\)
\(812\) −18.8269 −0.660695
\(813\) 0 0
\(814\) 9.58727 0.336034
\(815\) 7.34259 0.257200
\(816\) 0 0
\(817\) −3.46731 −0.121306
\(818\) 2.64235 0.0923875
\(819\) 0 0
\(820\) 14.8762 0.519499
\(821\) 26.8736 0.937896 0.468948 0.883226i \(-0.344633\pi\)
0.468948 + 0.883226i \(0.344633\pi\)
\(822\) 0 0
\(823\) 23.0543 0.803623 0.401812 0.915722i \(-0.368381\pi\)
0.401812 + 0.915722i \(0.368381\pi\)
\(824\) 7.25923 0.252887
\(825\) 0 0
\(826\) −2.02956 −0.0706174
\(827\) −5.10953 −0.177676 −0.0888378 0.996046i \(-0.528315\pi\)
−0.0888378 + 0.996046i \(0.528315\pi\)
\(828\) 0 0
\(829\) −30.5982 −1.06272 −0.531360 0.847146i \(-0.678319\pi\)
−0.531360 + 0.847146i \(0.678319\pi\)
\(830\) −4.24612 −0.147385
\(831\) 0 0
\(832\) 0.0749449 0.00259825
\(833\) 16.4741 0.570792
\(834\) 0 0
\(835\) −45.5508 −1.57635
\(836\) 3.97744 0.137563
\(837\) 0 0
\(838\) 10.1033 0.349013
\(839\) −56.3087 −1.94399 −0.971996 0.234997i \(-0.924492\pi\)
−0.971996 + 0.234997i \(0.924492\pi\)
\(840\) 0 0
\(841\) 31.9527 1.10182
\(842\) 3.31959 0.114401
\(843\) 0 0
\(844\) 43.8493 1.50936
\(845\) −28.7967 −0.990637
\(846\) 0 0
\(847\) −21.3756 −0.734474
\(848\) −3.89408 −0.133723
\(849\) 0 0
\(850\) −0.120978 −0.00414950
\(851\) −4.57691 −0.156894
\(852\) 0 0
\(853\) −45.5450 −1.55943 −0.779715 0.626134i \(-0.784636\pi\)
−0.779715 + 0.626134i \(0.784636\pi\)
\(854\) 3.79081 0.129719
\(855\) 0 0
\(856\) −17.9631 −0.613966
\(857\) −17.4892 −0.597419 −0.298709 0.954344i \(-0.596556\pi\)
−0.298709 + 0.954344i \(0.596556\pi\)
\(858\) 0 0
\(859\) 18.3460 0.625958 0.312979 0.949760i \(-0.398673\pi\)
0.312979 + 0.949760i \(0.398673\pi\)
\(860\) 33.6303 1.14678
\(861\) 0 0
\(862\) −4.10117 −0.139686
\(863\) 4.65373 0.158415 0.0792073 0.996858i \(-0.474761\pi\)
0.0792073 + 0.996858i \(0.474761\pi\)
\(864\) 0 0
\(865\) 31.0863 1.05697
\(866\) 2.53588 0.0861726
\(867\) 0 0
\(868\) 8.99399 0.305276
\(869\) −2.55098 −0.0865360
\(870\) 0 0
\(871\) 0.199128 0.00674718
\(872\) 23.0622 0.780986
\(873\) 0 0
\(874\) 0.179358 0.00606688
\(875\) 14.8878 0.503301
\(876\) 0 0
\(877\) −3.66710 −0.123829 −0.0619145 0.998081i \(-0.519721\pi\)
−0.0619145 + 0.998081i \(0.519721\pi\)
\(878\) 6.28768 0.212199
\(879\) 0 0
\(880\) −34.5899 −1.16603
\(881\) 38.3008 1.29039 0.645193 0.764020i \(-0.276777\pi\)
0.645193 + 0.764020i \(0.276777\pi\)
\(882\) 0 0
\(883\) 22.6142 0.761027 0.380513 0.924775i \(-0.375747\pi\)
0.380513 + 0.924775i \(0.375747\pi\)
\(884\) −0.103382 −0.00347711
\(885\) 0 0
\(886\) 0.300296 0.0100887
\(887\) −1.89656 −0.0636802 −0.0318401 0.999493i \(-0.510137\pi\)
−0.0318401 + 0.999493i \(0.510137\pi\)
\(888\) 0 0
\(889\) 11.0783 0.371553
\(890\) 3.10435 0.104058
\(891\) 0 0
\(892\) −39.5852 −1.32541
\(893\) −2.96233 −0.0991306
\(894\) 0 0
\(895\) 22.5727 0.754523
\(896\) −13.9521 −0.466107
\(897\) 0 0
\(898\) −0.693184 −0.0231318
\(899\) −29.1183 −0.971150
\(900\) 0 0
\(901\) 4.07443 0.135739
\(902\) −7.96262 −0.265126
\(903\) 0 0
\(904\) 19.9698 0.664185
\(905\) 53.2857 1.77128
\(906\) 0 0
\(907\) 6.53094 0.216856 0.108428 0.994104i \(-0.465418\pi\)
0.108428 + 0.994104i \(0.465418\pi\)
\(908\) −39.5481 −1.31245
\(909\) 0 0
\(910\) −0.0219321 −0.000727042 0
\(911\) −43.0371 −1.42588 −0.712942 0.701223i \(-0.752638\pi\)
−0.712942 + 0.701223i \(0.752638\pi\)
\(912\) 0 0
\(913\) −24.0612 −0.796308
\(914\) −4.60480 −0.152313
\(915\) 0 0
\(916\) 19.7456 0.652412
\(917\) 20.5003 0.676980
\(918\) 0 0
\(919\) −16.7911 −0.553887 −0.276943 0.960886i \(-0.589321\pi\)
−0.276943 + 0.960886i \(0.589321\pi\)
\(920\) −3.64361 −0.120126
\(921\) 0 0
\(922\) 9.09222 0.299436
\(923\) 0.109873 0.00361652
\(924\) 0 0
\(925\) −0.411270 −0.0135225
\(926\) −10.3251 −0.339302
\(927\) 0 0
\(928\) 34.5412 1.13387
\(929\) −11.6000 −0.380584 −0.190292 0.981728i \(-0.560943\pi\)
−0.190292 + 0.981728i \(0.560943\pi\)
\(930\) 0 0
\(931\) −2.19468 −0.0719277
\(932\) −13.9594 −0.457256
\(933\) 0 0
\(934\) 4.91727 0.160898
\(935\) 36.1920 1.18360
\(936\) 0 0
\(937\) 47.7953 1.56140 0.780702 0.624904i \(-0.214862\pi\)
0.780702 + 0.624904i \(0.214862\pi\)
\(938\) −6.04557 −0.197395
\(939\) 0 0
\(940\) 28.7324 0.937147
\(941\) 11.2604 0.367077 0.183538 0.983013i \(-0.441245\pi\)
0.183538 + 0.983013i \(0.441245\pi\)
\(942\) 0 0
\(943\) 3.80131 0.123788
\(944\) −11.0837 −0.360743
\(945\) 0 0
\(946\) −18.0010 −0.585261
\(947\) 7.33189 0.238255 0.119127 0.992879i \(-0.461990\pi\)
0.119127 + 0.992879i \(0.461990\pi\)
\(948\) 0 0
\(949\) 0.00987752 0.000320638 0
\(950\) 0.0161167 0.000522895 0
\(951\) 0 0
\(952\) 6.57388 0.213061
\(953\) −24.8753 −0.805791 −0.402895 0.915246i \(-0.631996\pi\)
−0.402895 + 0.915246i \(0.631996\pi\)
\(954\) 0 0
\(955\) 24.2483 0.784655
\(956\) 5.90519 0.190987
\(957\) 0 0
\(958\) −1.19960 −0.0387572
\(959\) −15.8453 −0.511672
\(960\) 0 0
\(961\) −17.0896 −0.551277
\(962\) 0.0331976 0.00107034
\(963\) 0 0
\(964\) 48.5079 1.56233
\(965\) −23.9372 −0.770567
\(966\) 0 0
\(967\) −34.0300 −1.09433 −0.547165 0.837025i \(-0.684293\pi\)
−0.547165 + 0.837025i \(0.684293\pi\)
\(968\) 25.7575 0.827878
\(969\) 0 0
\(970\) −9.14938 −0.293769
\(971\) −34.2476 −1.09906 −0.549530 0.835474i \(-0.685193\pi\)
−0.549530 + 0.835474i \(0.685193\pi\)
\(972\) 0 0
\(973\) −8.10928 −0.259971
\(974\) −3.63908 −0.116604
\(975\) 0 0
\(976\) 20.7021 0.662657
\(977\) −23.4173 −0.749186 −0.374593 0.927189i \(-0.622218\pi\)
−0.374593 + 0.927189i \(0.622218\pi\)
\(978\) 0 0
\(979\) 17.5912 0.562216
\(980\) 21.2868 0.679980
\(981\) 0 0
\(982\) 9.37834 0.299275
\(983\) −33.2031 −1.05902 −0.529508 0.848305i \(-0.677623\pi\)
−0.529508 + 0.848305i \(0.677623\pi\)
\(984\) 0 0
\(985\) −48.8966 −1.55798
\(986\) −10.1617 −0.323613
\(987\) 0 0
\(988\) 0.0137726 0.000438165 0
\(989\) 8.59355 0.273259
\(990\) 0 0
\(991\) −28.1806 −0.895187 −0.447594 0.894237i \(-0.647719\pi\)
−0.447594 + 0.894237i \(0.647719\pi\)
\(992\) −16.5010 −0.523907
\(993\) 0 0
\(994\) −3.33577 −0.105804
\(995\) 28.5466 0.904988
\(996\) 0 0
\(997\) −44.9507 −1.42360 −0.711802 0.702381i \(-0.752120\pi\)
−0.711802 + 0.702381i \(0.752120\pi\)
\(998\) 10.5249 0.333161
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.a.a.1.4 6
3.2 odd 2 729.2.a.d.1.3 6
9.2 odd 6 729.2.c.b.244.4 12
9.4 even 3 729.2.c.e.487.3 12
9.5 odd 6 729.2.c.b.487.4 12
9.7 even 3 729.2.c.e.244.3 12
27.2 odd 18 243.2.e.b.190.2 12
27.4 even 9 27.2.e.a.16.2 12
27.5 odd 18 243.2.e.a.217.1 12
27.7 even 9 27.2.e.a.22.2 yes 12
27.11 odd 18 243.2.e.a.28.1 12
27.13 even 9 243.2.e.c.55.1 12
27.14 odd 18 243.2.e.b.55.2 12
27.16 even 9 243.2.e.d.28.2 12
27.20 odd 18 81.2.e.a.37.1 12
27.22 even 9 243.2.e.d.217.2 12
27.23 odd 18 81.2.e.a.46.1 12
27.25 even 9 243.2.e.c.190.1 12
108.7 odd 18 432.2.u.c.49.1 12
108.31 odd 18 432.2.u.c.97.1 12
135.4 even 18 675.2.l.c.151.1 12
135.7 odd 36 675.2.u.b.49.2 24
135.34 even 18 675.2.l.c.76.1 12
135.58 odd 36 675.2.u.b.124.2 24
135.88 odd 36 675.2.u.b.49.3 24
135.112 odd 36 675.2.u.b.124.3 24
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
27.2.e.a.16.2 12 27.4 even 9
27.2.e.a.22.2 yes 12 27.7 even 9
81.2.e.a.37.1 12 27.20 odd 18
81.2.e.a.46.1 12 27.23 odd 18
243.2.e.a.28.1 12 27.11 odd 18
243.2.e.a.217.1 12 27.5 odd 18
243.2.e.b.55.2 12 27.14 odd 18
243.2.e.b.190.2 12 27.2 odd 18
243.2.e.c.55.1 12 27.13 even 9
243.2.e.c.190.1 12 27.25 even 9
243.2.e.d.28.2 12 27.16 even 9
243.2.e.d.217.2 12 27.22 even 9
432.2.u.c.49.1 12 108.7 odd 18
432.2.u.c.97.1 12 108.31 odd 18
675.2.l.c.76.1 12 135.34 even 18
675.2.l.c.151.1 12 135.4 even 18
675.2.u.b.49.2 24 135.7 odd 36
675.2.u.b.49.3 24 135.88 odd 36
675.2.u.b.124.2 24 135.58 odd 36
675.2.u.b.124.3 24 135.112 odd 36
729.2.a.a.1.4 6 1.1 even 1 trivial
729.2.a.d.1.3 6 3.2 odd 2
729.2.c.b.244.4 12 9.2 odd 6
729.2.c.b.487.4 12 9.5 odd 6
729.2.c.e.244.3 12 9.7 even 3
729.2.c.e.487.3 12 9.4 even 3