Properties

Label 729.2.c.d.487.1
Level $729$
Weight $2$
Character 729.487
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(244,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.244");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 18x^{10} + 105x^{8} + 266x^{6} + 306x^{4} + 132x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{3} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 487.1
Root \(1.22778i\) of defining polynomial
Character \(\chi\) \(=\) 729.487
Dual form 729.2.c.d.244.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.22889 + 2.12851i) q^{2} +(-2.02036 - 3.49937i) q^{4} +(-1.54013 - 2.66759i) q^{5} +(1.32933 - 2.30247i) q^{7} +5.01568 q^{8} +7.57064 q^{10} +(-1.71717 + 2.97423i) q^{11} +(1.67198 + 2.89595i) q^{13} +(3.26722 + 5.65899i) q^{14} +(-2.12302 + 3.67717i) q^{16} -2.57282 q^{17} -2.09676 q^{19} +(-6.22325 + 10.7790i) q^{20} +(-4.22044 - 7.31002i) q^{22} +(0.267222 + 0.462842i) q^{23} +(-2.24401 + 3.88674i) q^{25} -8.21874 q^{26} -10.7430 q^{28} +(1.26545 - 2.19182i) q^{29} +(-3.85735 - 6.68113i) q^{31} +(-0.202245 - 0.350299i) q^{32} +(3.16172 - 5.47626i) q^{34} -8.18939 q^{35} -10.2957 q^{37} +(2.57670 - 4.46298i) q^{38} +(-7.72481 - 13.3798i) q^{40} +(-2.44250 - 4.23054i) q^{41} +(-1.37075 + 2.37420i) q^{43} +13.8772 q^{44} -1.31355 q^{46} +(-2.82900 + 4.89997i) q^{47} +(-0.0342555 - 0.0593322i) q^{49} +(-5.51530 - 9.55279i) q^{50} +(6.75601 - 11.7018i) q^{52} -6.42657 q^{53} +10.5787 q^{55} +(6.66751 - 11.5485i) q^{56} +(3.11020 + 5.38703i) q^{58} +(0.827475 + 1.43323i) q^{59} +(-7.18610 + 12.4467i) q^{61} +18.9611 q^{62} -7.49791 q^{64} +(5.15013 - 8.92029i) q^{65} +(2.93949 + 5.09135i) q^{67} +(5.19803 + 9.00325i) q^{68} +(10.0639 - 17.4312i) q^{70} -14.8163 q^{71} +1.88140 q^{73} +(12.6523 - 21.9144i) q^{74} +(4.23623 + 7.33736i) q^{76} +(4.56538 + 7.90748i) q^{77} +(-8.59674 + 14.8900i) q^{79} +13.0789 q^{80} +12.0063 q^{82} +(1.98439 - 3.43707i) q^{83} +(3.96248 + 6.86321i) q^{85} +(-3.36900 - 5.83528i) q^{86} +(-8.61278 + 14.9178i) q^{88} -5.09880 q^{89} +8.89047 q^{91} +(1.07977 - 1.87022i) q^{92} +(-6.95308 - 12.0431i) q^{94} +(3.22929 + 5.59330i) q^{95} +(5.31594 - 9.20748i) q^{97} +0.168385 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 3 q^{2} - 9 q^{4} - 3 q^{5} - 6 q^{7} - 12 q^{8} + 12 q^{10} - 6 q^{11} - 6 q^{13} + 24 q^{14} - 15 q^{16} + 18 q^{17} + 24 q^{19} - 21 q^{20} - 3 q^{22} - 12 q^{23} - 9 q^{25} - 48 q^{26} + 6 q^{28}+ \cdots - 36 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.22889 + 2.12851i −0.868960 + 1.50508i −0.00589892 + 0.999983i \(0.501878\pi\)
−0.863061 + 0.505100i \(0.831456\pi\)
\(3\) 0 0
\(4\) −2.02036 3.49937i −1.01018 1.74969i
\(5\) −1.54013 2.66759i −0.688768 1.19298i −0.972237 0.233999i \(-0.924819\pi\)
0.283469 0.958981i \(-0.408515\pi\)
\(6\) 0 0
\(7\) 1.32933 2.30247i 0.502441 0.870253i −0.497555 0.867432i \(-0.665769\pi\)
0.999996 0.00282076i \(-0.000897877\pi\)
\(8\) 5.01568 1.77331
\(9\) 0 0
\(10\) 7.57064 2.39405
\(11\) −1.71717 + 2.97423i −0.517746 + 0.896763i 0.482041 + 0.876149i \(0.339896\pi\)
−0.999788 + 0.0206144i \(0.993438\pi\)
\(12\) 0 0
\(13\) 1.67198 + 2.89595i 0.463723 + 0.803192i 0.999143 0.0413939i \(-0.0131799\pi\)
−0.535420 + 0.844586i \(0.679847\pi\)
\(14\) 3.26722 + 5.65899i 0.873202 + 1.51243i
\(15\) 0 0
\(16\) −2.12302 + 3.67717i −0.530754 + 0.919293i
\(17\) −2.57282 −0.624000 −0.312000 0.950082i \(-0.600999\pi\)
−0.312000 + 0.950082i \(0.600999\pi\)
\(18\) 0 0
\(19\) −2.09676 −0.481030 −0.240515 0.970645i \(-0.577316\pi\)
−0.240515 + 0.970645i \(0.577316\pi\)
\(20\) −6.22325 + 10.7790i −1.39156 + 2.41026i
\(21\) 0 0
\(22\) −4.22044 7.31002i −0.899802 1.55850i
\(23\) 0.267222 + 0.462842i 0.0557196 + 0.0965093i 0.892540 0.450969i \(-0.148921\pi\)
−0.836820 + 0.547478i \(0.815588\pi\)
\(24\) 0 0
\(25\) −2.24401 + 3.88674i −0.448802 + 0.777348i
\(26\) −8.21874 −1.61183
\(27\) 0 0
\(28\) −10.7430 −2.03023
\(29\) 1.26545 2.19182i 0.234988 0.407010i −0.724281 0.689504i \(-0.757828\pi\)
0.959269 + 0.282494i \(0.0911617\pi\)
\(30\) 0 0
\(31\) −3.85735 6.68113i −0.692801 1.19997i −0.970917 0.239418i \(-0.923043\pi\)
0.278116 0.960548i \(-0.410290\pi\)
\(32\) −0.202245 0.350299i −0.0357522 0.0619247i
\(33\) 0 0
\(34\) 3.16172 5.47626i 0.542231 0.939171i
\(35\) −8.18939 −1.38426
\(36\) 0 0
\(37\) −10.2957 −1.69260 −0.846298 0.532709i \(-0.821174\pi\)
−0.846298 + 0.532709i \(0.821174\pi\)
\(38\) 2.57670 4.46298i 0.417996 0.723991i
\(39\) 0 0
\(40\) −7.72481 13.3798i −1.22140 2.11553i
\(41\) −2.44250 4.23054i −0.381455 0.660699i 0.609816 0.792543i \(-0.291244\pi\)
−0.991270 + 0.131844i \(0.957910\pi\)
\(42\) 0 0
\(43\) −1.37075 + 2.37420i −0.209037 + 0.362062i −0.951411 0.307923i \(-0.900366\pi\)
0.742375 + 0.669985i \(0.233699\pi\)
\(44\) 13.8772 2.09207
\(45\) 0 0
\(46\) −1.31355 −0.193673
\(47\) −2.82900 + 4.89997i −0.412652 + 0.714734i −0.995179 0.0980775i \(-0.968731\pi\)
0.582527 + 0.812811i \(0.302064\pi\)
\(48\) 0 0
\(49\) −0.0342555 0.0593322i −0.00489364 0.00847603i
\(50\) −5.51530 9.55279i −0.779982 1.35097i
\(51\) 0 0
\(52\) 6.75601 11.7018i 0.936890 1.62274i
\(53\) −6.42657 −0.882758 −0.441379 0.897321i \(-0.645511\pi\)
−0.441379 + 0.897321i \(0.645511\pi\)
\(54\) 0 0
\(55\) 10.5787 1.42643
\(56\) 6.66751 11.5485i 0.890984 1.54323i
\(57\) 0 0
\(58\) 3.11020 + 5.38703i 0.408390 + 0.707351i
\(59\) 0.827475 + 1.43323i 0.107728 + 0.186590i 0.914850 0.403795i \(-0.132309\pi\)
−0.807121 + 0.590385i \(0.798976\pi\)
\(60\) 0 0
\(61\) −7.18610 + 12.4467i −0.920086 + 1.59364i −0.120808 + 0.992676i \(0.538548\pi\)
−0.799279 + 0.600960i \(0.794785\pi\)
\(62\) 18.9611 2.40806
\(63\) 0 0
\(64\) −7.49791 −0.937239
\(65\) 5.15013 8.92029i 0.638795 1.10643i
\(66\) 0 0
\(67\) 2.93949 + 5.09135i 0.359116 + 0.622007i 0.987813 0.155643i \(-0.0497449\pi\)
−0.628697 + 0.777650i \(0.716412\pi\)
\(68\) 5.19803 + 9.00325i 0.630354 + 1.09180i
\(69\) 0 0
\(70\) 10.0639 17.4312i 1.20287 2.08343i
\(71\) −14.8163 −1.75837 −0.879184 0.476483i \(-0.841911\pi\)
−0.879184 + 0.476483i \(0.841911\pi\)
\(72\) 0 0
\(73\) 1.88140 0.220201 0.110101 0.993920i \(-0.464883\pi\)
0.110101 + 0.993920i \(0.464883\pi\)
\(74\) 12.6523 21.9144i 1.47080 2.54750i
\(75\) 0 0
\(76\) 4.23623 + 7.33736i 0.485928 + 0.841653i
\(77\) 4.56538 + 7.90748i 0.520274 + 0.901141i
\(78\) 0 0
\(79\) −8.59674 + 14.8900i −0.967209 + 1.67526i −0.263651 + 0.964618i \(0.584927\pi\)
−0.703558 + 0.710637i \(0.748407\pi\)
\(80\) 13.0789 1.46227
\(81\) 0 0
\(82\) 12.0063 1.32588
\(83\) 1.98439 3.43707i 0.217815 0.377267i −0.736324 0.676629i \(-0.763440\pi\)
0.954140 + 0.299361i \(0.0967736\pi\)
\(84\) 0 0
\(85\) 3.96248 + 6.86321i 0.429791 + 0.744420i
\(86\) −3.36900 5.83528i −0.363289 0.629235i
\(87\) 0 0
\(88\) −8.61278 + 14.9178i −0.918126 + 1.59024i
\(89\) −5.09880 −0.540471 −0.270236 0.962794i \(-0.587102\pi\)
−0.270236 + 0.962794i \(0.587102\pi\)
\(90\) 0 0
\(91\) 8.89047 0.931974
\(92\) 1.07977 1.87022i 0.112574 0.194984i
\(93\) 0 0
\(94\) −6.95308 12.0431i −0.717156 1.24215i
\(95\) 3.22929 + 5.59330i 0.331318 + 0.573860i
\(96\) 0 0
\(97\) 5.31594 9.20748i 0.539752 0.934878i −0.459165 0.888351i \(-0.651851\pi\)
0.998917 0.0465267i \(-0.0148153\pi\)
\(98\) 0.168385 0.0170095
\(99\) 0 0
\(100\) 18.1349 1.81349
\(101\) 2.82904 4.90005i 0.281500 0.487573i −0.690254 0.723567i \(-0.742501\pi\)
0.971755 + 0.235994i \(0.0758346\pi\)
\(102\) 0 0
\(103\) −5.18527 8.98115i −0.510920 0.884939i −0.999920 0.0126554i \(-0.995972\pi\)
0.489000 0.872284i \(-0.337362\pi\)
\(104\) 8.38611 + 14.5252i 0.822326 + 1.42431i
\(105\) 0 0
\(106\) 7.89758 13.6790i 0.767081 1.32862i
\(107\) 14.2457 1.37719 0.688594 0.725147i \(-0.258228\pi\)
0.688594 + 0.725147i \(0.258228\pi\)
\(108\) 0 0
\(109\) 5.76064 0.551769 0.275884 0.961191i \(-0.411029\pi\)
0.275884 + 0.961191i \(0.411029\pi\)
\(110\) −13.0001 + 22.5168i −1.23951 + 2.14689i
\(111\) 0 0
\(112\) 5.64439 + 9.77638i 0.533345 + 0.923781i
\(113\) −5.70835 9.88715i −0.536996 0.930104i −0.999064 0.0432598i \(-0.986226\pi\)
0.462068 0.886845i \(-0.347108\pi\)
\(114\) 0 0
\(115\) 0.823114 1.42568i 0.0767558 0.132945i
\(116\) −10.2267 −0.949521
\(117\) 0 0
\(118\) −4.06752 −0.374445
\(119\) −3.42013 + 5.92384i −0.313523 + 0.543038i
\(120\) 0 0
\(121\) −0.397348 0.688227i −0.0361225 0.0625661i
\(122\) −17.6619 30.5914i −1.59904 2.76961i
\(123\) 0 0
\(124\) −15.5865 + 26.9966i −1.39971 + 2.42437i
\(125\) −1.57703 −0.141054
\(126\) 0 0
\(127\) 2.59019 0.229843 0.114921 0.993375i \(-0.463338\pi\)
0.114921 + 0.993375i \(0.463338\pi\)
\(128\) 9.61864 16.6600i 0.850175 1.47255i
\(129\) 0 0
\(130\) 12.6579 + 21.9242i 1.11017 + 1.92288i
\(131\) −2.20549 3.82003i −0.192695 0.333757i 0.753448 0.657508i \(-0.228389\pi\)
−0.946142 + 0.323751i \(0.895056\pi\)
\(132\) 0 0
\(133\) −2.78730 + 4.82774i −0.241689 + 0.418618i
\(134\) −14.4493 −1.24823
\(135\) 0 0
\(136\) −12.9044 −1.10655
\(137\) 9.08384 15.7337i 0.776085 1.34422i −0.158098 0.987423i \(-0.550536\pi\)
0.934183 0.356795i \(-0.116131\pi\)
\(138\) 0 0
\(139\) −0.978972 1.69563i −0.0830353 0.143821i 0.821517 0.570184i \(-0.193128\pi\)
−0.904552 + 0.426363i \(0.859795\pi\)
\(140\) 16.5456 + 28.6578i 1.39836 + 2.42202i
\(141\) 0 0
\(142\) 18.2076 31.5365i 1.52795 2.64649i
\(143\) −11.4843 −0.960364
\(144\) 0 0
\(145\) −7.79582 −0.647407
\(146\) −2.31204 + 4.00457i −0.191346 + 0.331421i
\(147\) 0 0
\(148\) 20.8010 + 36.0284i 1.70983 + 2.96151i
\(149\) 3.65759 + 6.33514i 0.299642 + 0.518995i 0.976054 0.217528i \(-0.0697995\pi\)
−0.676412 + 0.736523i \(0.736466\pi\)
\(150\) 0 0
\(151\) −2.42549 + 4.20108i −0.197384 + 0.341879i −0.947679 0.319224i \(-0.896578\pi\)
0.750296 + 0.661103i \(0.229911\pi\)
\(152\) −10.5167 −0.853017
\(153\) 0 0
\(154\) −22.4415 −1.80839
\(155\) −11.8817 + 20.5796i −0.954357 + 1.65300i
\(156\) 0 0
\(157\) −0.738351 1.27886i −0.0589269 0.102064i 0.835057 0.550163i \(-0.185435\pi\)
−0.893984 + 0.448099i \(0.852101\pi\)
\(158\) −21.1290 36.5965i −1.68093 2.91146i
\(159\) 0 0
\(160\) −0.622969 + 1.07901i −0.0492500 + 0.0853035i
\(161\) 1.42091 0.111983
\(162\) 0 0
\(163\) −17.2536 −1.35141 −0.675703 0.737174i \(-0.736160\pi\)
−0.675703 + 0.737174i \(0.736160\pi\)
\(164\) −9.86949 + 17.0945i −0.770678 + 1.33485i
\(165\) 0 0
\(166\) 4.87722 + 8.44759i 0.378546 + 0.655660i
\(167\) 3.42018 + 5.92393i 0.264662 + 0.458407i 0.967475 0.252967i \(-0.0814064\pi\)
−0.702813 + 0.711374i \(0.748073\pi\)
\(168\) 0 0
\(169\) 0.908979 1.57440i 0.0699214 0.121107i
\(170\) −19.4779 −1.49388
\(171\) 0 0
\(172\) 11.0776 0.844661
\(173\) −11.9837 + 20.7564i −0.911103 + 1.57808i −0.0985945 + 0.995128i \(0.531435\pi\)
−0.812509 + 0.582949i \(0.801899\pi\)
\(174\) 0 0
\(175\) 5.96608 + 10.3335i 0.450993 + 0.781143i
\(176\) −7.29116 12.6287i −0.549592 0.951921i
\(177\) 0 0
\(178\) 6.26588 10.8528i 0.469648 0.813454i
\(179\) 20.5722 1.53764 0.768820 0.639466i \(-0.220844\pi\)
0.768820 + 0.639466i \(0.220844\pi\)
\(180\) 0 0
\(181\) −15.4701 −1.14989 −0.574943 0.818194i \(-0.694976\pi\)
−0.574943 + 0.818194i \(0.694976\pi\)
\(182\) −10.9254 + 18.9234i −0.809848 + 1.40270i
\(183\) 0 0
\(184\) 1.34030 + 2.32147i 0.0988083 + 0.171141i
\(185\) 15.8567 + 27.4646i 1.16581 + 2.01924i
\(186\) 0 0
\(187\) 4.41797 7.65214i 0.323074 0.559580i
\(188\) 22.8624 1.66741
\(189\) 0 0
\(190\) −15.8738 −1.15161
\(191\) −5.47542 + 9.48371i −0.396188 + 0.686217i −0.993252 0.115976i \(-0.963000\pi\)
0.597064 + 0.802193i \(0.296334\pi\)
\(192\) 0 0
\(193\) −0.572426 0.991470i −0.0412041 0.0713676i 0.844688 0.535259i \(-0.179786\pi\)
−0.885892 + 0.463892i \(0.846453\pi\)
\(194\) 13.0655 + 22.6300i 0.938045 + 1.62474i
\(195\) 0 0
\(196\) −0.138417 + 0.239745i −0.00988693 + 0.0171247i
\(197\) 5.04195 0.359224 0.179612 0.983738i \(-0.442516\pi\)
0.179612 + 0.983738i \(0.442516\pi\)
\(198\) 0 0
\(199\) 13.7258 0.972997 0.486499 0.873681i \(-0.338274\pi\)
0.486499 + 0.873681i \(0.338274\pi\)
\(200\) −11.2552 + 19.4946i −0.795866 + 1.37848i
\(201\) 0 0
\(202\) 6.95320 + 12.0433i 0.489225 + 0.847363i
\(203\) −3.36440 5.82732i −0.236135 0.408997i
\(204\) 0 0
\(205\) −7.52355 + 13.0312i −0.525468 + 0.910137i
\(206\) 25.4886 1.77588
\(207\) 0 0
\(208\) −14.1985 −0.984492
\(209\) 3.60050 6.23625i 0.249052 0.431370i
\(210\) 0 0
\(211\) 2.91757 + 5.05337i 0.200854 + 0.347888i 0.948804 0.315866i \(-0.102295\pi\)
−0.747950 + 0.663755i \(0.768962\pi\)
\(212\) 12.9840 + 22.4890i 0.891746 + 1.54455i
\(213\) 0 0
\(214\) −17.5065 + 30.3222i −1.19672 + 2.07278i
\(215\) 8.44451 0.575911
\(216\) 0 0
\(217\) −20.5108 −1.39237
\(218\) −7.07922 + 12.2616i −0.479465 + 0.830458i
\(219\) 0 0
\(220\) −21.3728 37.0187i −1.44095 2.49580i
\(221\) −4.30170 7.45075i −0.289363 0.501192i
\(222\) 0 0
\(223\) −4.36434 + 7.55926i −0.292258 + 0.506205i −0.974343 0.225067i \(-0.927740\pi\)
0.682085 + 0.731272i \(0.261073\pi\)
\(224\) −1.07541 −0.0718536
\(225\) 0 0
\(226\) 28.0598 1.86651
\(227\) 12.1413 21.0293i 0.805844 1.39576i −0.109876 0.993945i \(-0.535045\pi\)
0.915720 0.401817i \(-0.131621\pi\)
\(228\) 0 0
\(229\) −9.07571 15.7196i −0.599740 1.03878i −0.992859 0.119293i \(-0.961937\pi\)
0.393119 0.919488i \(-0.371396\pi\)
\(230\) 2.02304 + 3.50401i 0.133395 + 0.231048i
\(231\) 0 0
\(232\) 6.34708 10.9935i 0.416706 0.721756i
\(233\) −10.5380 −0.690367 −0.345183 0.938535i \(-0.612183\pi\)
−0.345183 + 0.938535i \(0.612183\pi\)
\(234\) 0 0
\(235\) 17.4281 1.13688
\(236\) 3.34360 5.79129i 0.217650 0.376981i
\(237\) 0 0
\(238\) −8.40597 14.5596i −0.544878 0.943756i
\(239\) −4.76830 8.25894i −0.308436 0.534226i 0.669585 0.742736i \(-0.266472\pi\)
−0.978020 + 0.208509i \(0.933139\pi\)
\(240\) 0 0
\(241\) 3.51864 6.09446i 0.226656 0.392579i −0.730159 0.683277i \(-0.760554\pi\)
0.956815 + 0.290698i \(0.0938875\pi\)
\(242\) 1.95320 0.125556
\(243\) 0 0
\(244\) 58.0742 3.71782
\(245\) −0.105516 + 0.182759i −0.00674116 + 0.0116760i
\(246\) 0 0
\(247\) −3.50574 6.07212i −0.223065 0.386360i
\(248\) −19.3472 33.5104i −1.22855 2.12791i
\(249\) 0 0
\(250\) 1.93801 3.35673i 0.122570 0.212298i
\(251\) 15.5870 0.983843 0.491921 0.870640i \(-0.336295\pi\)
0.491921 + 0.870640i \(0.336295\pi\)
\(252\) 0 0
\(253\) −1.83546 −0.115395
\(254\) −3.18308 + 5.51325i −0.199724 + 0.345932i
\(255\) 0 0
\(256\) 16.1427 + 27.9599i 1.00892 + 1.74750i
\(257\) −6.09489 10.5567i −0.380189 0.658506i 0.610900 0.791708i \(-0.290808\pi\)
−0.991089 + 0.133201i \(0.957474\pi\)
\(258\) 0 0
\(259\) −13.6864 + 23.7055i −0.850430 + 1.47299i
\(260\) −41.6206 −2.58120
\(261\) 0 0
\(262\) 10.8413 0.669776
\(263\) 3.44482 5.96660i 0.212417 0.367916i −0.740054 0.672548i \(-0.765200\pi\)
0.952470 + 0.304632i \(0.0985333\pi\)
\(264\) 0 0
\(265\) 9.89777 + 17.1434i 0.608015 + 1.05311i
\(266\) −6.85059 11.8656i −0.420037 0.727525i
\(267\) 0 0
\(268\) 11.8777 20.5728i 0.725545 1.25668i
\(269\) 7.05875 0.430380 0.215190 0.976572i \(-0.430963\pi\)
0.215190 + 0.976572i \(0.430963\pi\)
\(270\) 0 0
\(271\) 23.7575 1.44316 0.721581 0.692330i \(-0.243416\pi\)
0.721581 + 0.692330i \(0.243416\pi\)
\(272\) 5.46213 9.46070i 0.331191 0.573639i
\(273\) 0 0
\(274\) 22.3262 + 38.6701i 1.34877 + 2.33614i
\(275\) −7.70669 13.3484i −0.464731 0.804938i
\(276\) 0 0
\(277\) 0.0522319 0.0904682i 0.00313831 0.00543571i −0.864452 0.502715i \(-0.832334\pi\)
0.867590 + 0.497280i \(0.165668\pi\)
\(278\) 4.81221 0.288617
\(279\) 0 0
\(280\) −41.0754 −2.45472
\(281\) −4.07610 + 7.06001i −0.243160 + 0.421165i −0.961613 0.274411i \(-0.911517\pi\)
0.718453 + 0.695576i \(0.244851\pi\)
\(282\) 0 0
\(283\) −11.8080 20.4520i −0.701912 1.21575i −0.967794 0.251742i \(-0.918996\pi\)
0.265882 0.964006i \(-0.414337\pi\)
\(284\) 29.9343 + 51.8477i 1.77627 + 3.07659i
\(285\) 0 0
\(286\) 14.1130 24.4444i 0.834518 1.44543i
\(287\) −12.9876 −0.766634
\(288\) 0 0
\(289\) −10.3806 −0.610624
\(290\) 9.58024 16.5935i 0.562571 0.974402i
\(291\) 0 0
\(292\) −3.80111 6.58372i −0.222443 0.385283i
\(293\) −10.8129 18.7285i −0.631695 1.09413i −0.987205 0.159455i \(-0.949026\pi\)
0.355510 0.934672i \(-0.384307\pi\)
\(294\) 0 0
\(295\) 2.54884 4.41472i 0.148399 0.257035i
\(296\) −51.6398 −3.00150
\(297\) 0 0
\(298\) −17.9792 −1.04151
\(299\) −0.893579 + 1.54772i −0.0516770 + 0.0895072i
\(300\) 0 0
\(301\) 3.64435 + 6.31221i 0.210057 + 0.363830i
\(302\) −5.96135 10.3254i −0.343037 0.594158i
\(303\) 0 0
\(304\) 4.45146 7.71016i 0.255309 0.442208i
\(305\) 44.2702 2.53490
\(306\) 0 0
\(307\) 16.3599 0.933711 0.466855 0.884334i \(-0.345387\pi\)
0.466855 + 0.884334i \(0.345387\pi\)
\(308\) 18.4475 31.9520i 1.05114 1.82063i
\(309\) 0 0
\(310\) −29.2026 50.5804i −1.65860 2.87277i
\(311\) −3.87743 6.71591i −0.219869 0.380824i 0.734899 0.678177i \(-0.237230\pi\)
−0.954768 + 0.297353i \(0.903896\pi\)
\(312\) 0 0
\(313\) −7.70903 + 13.3524i −0.435740 + 0.754724i −0.997356 0.0726744i \(-0.976847\pi\)
0.561616 + 0.827398i \(0.310180\pi\)
\(314\) 3.62942 0.204820
\(315\) 0 0
\(316\) 69.4742 3.90823
\(317\) 4.31810 7.47917i 0.242529 0.420072i −0.718905 0.695108i \(-0.755356\pi\)
0.961434 + 0.275036i \(0.0886898\pi\)
\(318\) 0 0
\(319\) 4.34598 + 7.52745i 0.243328 + 0.421456i
\(320\) 11.5478 + 20.0013i 0.645540 + 1.11811i
\(321\) 0 0
\(322\) −1.74615 + 3.02442i −0.0973090 + 0.168544i
\(323\) 5.39459 0.300163
\(324\) 0 0
\(325\) −15.0077 −0.832480
\(326\) 21.2029 36.7244i 1.17432 2.03398i
\(327\) 0 0
\(328\) −12.2508 21.2190i −0.676438 1.17163i
\(329\) 7.52136 + 13.0274i 0.414666 + 0.718223i
\(330\) 0 0
\(331\) −10.2723 + 17.7921i −0.564614 + 0.977941i 0.432471 + 0.901648i \(0.357642\pi\)
−0.997085 + 0.0762930i \(0.975692\pi\)
\(332\) −16.0368 −0.880133
\(333\) 0 0
\(334\) −16.8122 −0.919921
\(335\) 9.05441 15.6827i 0.494695 0.856837i
\(336\) 0 0
\(337\) −7.98910 13.8375i −0.435194 0.753778i 0.562117 0.827057i \(-0.309987\pi\)
−0.997311 + 0.0732792i \(0.976654\pi\)
\(338\) 2.23408 + 3.86954i 0.121518 + 0.210475i
\(339\) 0 0
\(340\) 16.0113 27.7324i 0.868335 1.50400i
\(341\) 26.4949 1.43478
\(342\) 0 0
\(343\) 18.4285 0.995047
\(344\) −6.87522 + 11.9082i −0.370687 + 0.642049i
\(345\) 0 0
\(346\) −29.4534 51.0148i −1.58342 2.74257i
\(347\) −4.90214 8.49075i −0.263161 0.455807i 0.703920 0.710280i \(-0.251432\pi\)
−0.967080 + 0.254472i \(0.918098\pi\)
\(348\) 0 0
\(349\) 4.71749 8.17093i 0.252521 0.437380i −0.711698 0.702486i \(-0.752074\pi\)
0.964219 + 0.265106i \(0.0854069\pi\)
\(350\) −29.3267 −1.56758
\(351\) 0 0
\(352\) 1.38916 0.0740424
\(353\) −1.69258 + 2.93164i −0.0900870 + 0.156035i −0.907548 0.419949i \(-0.862048\pi\)
0.817461 + 0.575985i \(0.195381\pi\)
\(354\) 0 0
\(355\) 22.8190 + 39.5237i 1.21111 + 2.09770i
\(356\) 10.3014 + 17.8426i 0.545975 + 0.945656i
\(357\) 0 0
\(358\) −25.2811 + 43.7881i −1.33615 + 2.31427i
\(359\) −35.2273 −1.85923 −0.929614 0.368535i \(-0.879859\pi\)
−0.929614 + 0.368535i \(0.879859\pi\)
\(360\) 0 0
\(361\) −14.6036 −0.768610
\(362\) 19.0112 32.9283i 0.999205 1.73067i
\(363\) 0 0
\(364\) −17.9620 31.1111i −0.941464 1.63066i
\(365\) −2.89760 5.01879i −0.151667 0.262696i
\(366\) 0 0
\(367\) 15.7727 27.3191i 0.823329 1.42605i −0.0798606 0.996806i \(-0.525448\pi\)
0.903190 0.429242i \(-0.141219\pi\)
\(368\) −2.26927 −0.118294
\(369\) 0 0
\(370\) −77.9447 −4.05215
\(371\) −8.54306 + 14.7970i −0.443534 + 0.768223i
\(372\) 0 0
\(373\) −7.22116 12.5074i −0.373897 0.647609i 0.616264 0.787540i \(-0.288645\pi\)
−0.990161 + 0.139931i \(0.955312\pi\)
\(374\) 10.8584 + 18.8074i 0.561476 + 0.972505i
\(375\) 0 0
\(376\) −14.1894 + 24.5767i −0.731760 + 1.26745i
\(377\) 8.46320 0.435877
\(378\) 0 0
\(379\) 1.00099 0.0514176 0.0257088 0.999669i \(-0.491816\pi\)
0.0257088 + 0.999669i \(0.491816\pi\)
\(380\) 13.0487 22.6010i 0.669384 1.15941i
\(381\) 0 0
\(382\) −13.4574 23.3090i −0.688543 1.19259i
\(383\) 2.05867 + 3.56572i 0.105193 + 0.182200i 0.913817 0.406126i \(-0.133121\pi\)
−0.808624 + 0.588326i \(0.799787\pi\)
\(384\) 0 0
\(385\) 14.0626 24.3571i 0.716696 1.24135i
\(386\) 2.81380 0.143219
\(387\) 0 0
\(388\) −42.9605 −2.18099
\(389\) −7.75996 + 13.4406i −0.393445 + 0.681468i −0.992901 0.118940i \(-0.962050\pi\)
0.599456 + 0.800408i \(0.295384\pi\)
\(390\) 0 0
\(391\) −0.687514 1.19081i −0.0347691 0.0602218i
\(392\) −0.171815 0.297591i −0.00867794 0.0150306i
\(393\) 0 0
\(394\) −6.19602 + 10.7318i −0.312151 + 0.540662i
\(395\) 52.9605 2.66473
\(396\) 0 0
\(397\) −1.54893 −0.0777384 −0.0388692 0.999244i \(-0.512376\pi\)
−0.0388692 + 0.999244i \(0.512376\pi\)
\(398\) −16.8676 + 29.2155i −0.845495 + 1.46444i
\(399\) 0 0
\(400\) −9.52814 16.5032i −0.476407 0.825161i
\(401\) 3.97369 + 6.88263i 0.198437 + 0.343702i 0.948022 0.318206i \(-0.103080\pi\)
−0.749585 + 0.661908i \(0.769747\pi\)
\(402\) 0 0
\(403\) 12.8988 22.3414i 0.642536 1.11290i
\(404\) −22.8628 −1.13747
\(405\) 0 0
\(406\) 16.5380 0.820766
\(407\) 17.6794 30.6216i 0.876336 1.51786i
\(408\) 0 0
\(409\) −13.2277 22.9110i −0.654068 1.13288i −0.982127 0.188221i \(-0.939728\pi\)
0.328059 0.944657i \(-0.393606\pi\)
\(410\) −18.4913 32.0279i −0.913221 1.58174i
\(411\) 0 0
\(412\) −20.9523 + 36.2904i −1.03224 + 1.78790i
\(413\) 4.39996 0.216508
\(414\) 0 0
\(415\) −12.2249 −0.600097
\(416\) 0.676299 1.17138i 0.0331583 0.0574319i
\(417\) 0 0
\(418\) 8.84927 + 15.3274i 0.432832 + 0.749687i
\(419\) 19.1700 + 33.2034i 0.936516 + 1.62209i 0.771909 + 0.635733i \(0.219302\pi\)
0.164607 + 0.986359i \(0.447364\pi\)
\(420\) 0 0
\(421\) −3.67225 + 6.36052i −0.178974 + 0.309993i −0.941530 0.336930i \(-0.890611\pi\)
0.762555 + 0.646923i \(0.223945\pi\)
\(422\) −14.3415 −0.698134
\(423\) 0 0
\(424\) −32.2337 −1.56540
\(425\) 5.77343 9.99987i 0.280052 0.485065i
\(426\) 0 0
\(427\) 19.1055 + 33.0916i 0.924578 + 1.60142i
\(428\) −28.7816 49.8512i −1.39121 2.40965i
\(429\) 0 0
\(430\) −10.3774 + 17.9742i −0.500443 + 0.866793i
\(431\) 15.8463 0.763289 0.381644 0.924309i \(-0.375358\pi\)
0.381644 + 0.924309i \(0.375358\pi\)
\(432\) 0 0
\(433\) −23.8507 −1.14619 −0.573097 0.819488i \(-0.694258\pi\)
−0.573097 + 0.819488i \(0.694258\pi\)
\(434\) 25.2056 43.6575i 1.20991 2.09562i
\(435\) 0 0
\(436\) −11.6386 20.1586i −0.557387 0.965423i
\(437\) −0.560301 0.970470i −0.0268028 0.0464239i
\(438\) 0 0
\(439\) 10.7350 18.5935i 0.512352 0.887420i −0.487545 0.873098i \(-0.662108\pi\)
0.999897 0.0143222i \(-0.00455904\pi\)
\(440\) 53.0593 2.52950
\(441\) 0 0
\(442\) 21.1453 1.00578
\(443\) 15.7740 27.3213i 0.749443 1.29807i −0.198646 0.980071i \(-0.563655\pi\)
0.948090 0.318003i \(-0.103012\pi\)
\(444\) 0 0
\(445\) 7.85282 + 13.6015i 0.372259 + 0.644772i
\(446\) −10.7266 18.5791i −0.507921 0.879744i
\(447\) 0 0
\(448\) −9.96723 + 17.2637i −0.470907 + 0.815635i
\(449\) −20.7898 −0.981130 −0.490565 0.871405i \(-0.663210\pi\)
−0.490565 + 0.871405i \(0.663210\pi\)
\(450\) 0 0
\(451\) 16.7768 0.789988
\(452\) −23.0659 + 39.9513i −1.08493 + 1.87915i
\(453\) 0 0
\(454\) 29.8407 + 51.6855i 1.40049 + 2.42572i
\(455\) −13.6925 23.7161i −0.641914 1.11183i
\(456\) 0 0
\(457\) 8.71387 15.0929i 0.407618 0.706014i −0.587005 0.809584i \(-0.699693\pi\)
0.994622 + 0.103569i \(0.0330263\pi\)
\(458\) 44.6124 2.08460
\(459\) 0 0
\(460\) −6.65196 −0.310149
\(461\) −15.5022 + 26.8507i −0.722011 + 1.25056i 0.238181 + 0.971221i \(0.423449\pi\)
−0.960193 + 0.279339i \(0.909885\pi\)
\(462\) 0 0
\(463\) −3.24398 5.61873i −0.150760 0.261125i 0.780747 0.624847i \(-0.214839\pi\)
−0.931507 + 0.363723i \(0.881506\pi\)
\(464\) 5.37313 + 9.30653i 0.249441 + 0.432045i
\(465\) 0 0
\(466\) 12.9501 22.4302i 0.599901 1.03906i
\(467\) −1.94390 −0.0899530 −0.0449765 0.998988i \(-0.514321\pi\)
−0.0449765 + 0.998988i \(0.514321\pi\)
\(468\) 0 0
\(469\) 15.6303 0.721738
\(470\) −21.4173 + 37.0959i −0.987907 + 1.71111i
\(471\) 0 0
\(472\) 4.15035 + 7.18862i 0.191035 + 0.330883i
\(473\) −4.70761 8.15381i −0.216456 0.374913i
\(474\) 0 0
\(475\) 4.70516 8.14957i 0.215887 0.373928i
\(476\) 27.6397 1.26686
\(477\) 0 0
\(478\) 23.4390 1.07207
\(479\) 0.664695 1.15129i 0.0303707 0.0526036i −0.850441 0.526071i \(-0.823665\pi\)
0.880811 + 0.473468i \(0.156998\pi\)
\(480\) 0 0
\(481\) −17.2141 29.8157i −0.784896 1.35948i
\(482\) 8.64808 + 14.9789i 0.393909 + 0.682271i
\(483\) 0 0
\(484\) −1.60558 + 2.78094i −0.0729807 + 0.126406i
\(485\) −32.7490 −1.48705
\(486\) 0 0
\(487\) 21.2040 0.960844 0.480422 0.877037i \(-0.340484\pi\)
0.480422 + 0.877037i \(0.340484\pi\)
\(488\) −36.0432 + 62.4287i −1.63160 + 2.82601i
\(489\) 0 0
\(490\) −0.259336 0.449183i −0.0117156 0.0202920i
\(491\) 13.5051 + 23.3915i 0.609475 + 1.05564i 0.991327 + 0.131419i \(0.0419532\pi\)
−0.381852 + 0.924224i \(0.624713\pi\)
\(492\) 0 0
\(493\) −3.25576 + 5.63915i −0.146632 + 0.253975i
\(494\) 17.2328 0.775338
\(495\) 0 0
\(496\) 32.7569 1.47083
\(497\) −19.6958 + 34.1141i −0.883476 + 1.53022i
\(498\) 0 0
\(499\) −7.51946 13.0241i −0.336617 0.583038i 0.647177 0.762340i \(-0.275949\pi\)
−0.983794 + 0.179302i \(0.942616\pi\)
\(500\) 3.18618 + 5.51863i 0.142490 + 0.246801i
\(501\) 0 0
\(502\) −19.1548 + 33.1771i −0.854920 + 1.48076i
\(503\) −4.60650 −0.205394 −0.102697 0.994713i \(-0.532747\pi\)
−0.102697 + 0.994713i \(0.532747\pi\)
\(504\) 0 0
\(505\) −17.4284 −0.775554
\(506\) 2.25559 3.90680i 0.100273 0.173678i
\(507\) 0 0
\(508\) −5.23314 9.06406i −0.232183 0.402153i
\(509\) 14.8983 + 25.8047i 0.660357 + 1.14377i 0.980522 + 0.196410i \(0.0629283\pi\)
−0.320165 + 0.947362i \(0.603738\pi\)
\(510\) 0 0
\(511\) 2.50101 4.33187i 0.110638 0.191631i
\(512\) −40.8760 −1.80648
\(513\) 0 0
\(514\) 29.9599 1.32147
\(515\) −15.9720 + 27.6643i −0.703810 + 1.21904i
\(516\) 0 0
\(517\) −9.71574 16.8282i −0.427298 0.740102i
\(518\) −33.6382 58.2631i −1.47798 2.55993i
\(519\) 0 0
\(520\) 25.8314 44.7413i 1.13278 1.96204i
\(521\) 11.7621 0.515306 0.257653 0.966237i \(-0.417051\pi\)
0.257653 + 0.966237i \(0.417051\pi\)
\(522\) 0 0
\(523\) 29.3853 1.28493 0.642464 0.766316i \(-0.277912\pi\)
0.642464 + 0.766316i \(0.277912\pi\)
\(524\) −8.91180 + 15.4357i −0.389314 + 0.674311i
\(525\) 0 0
\(526\) 8.46663 + 14.6646i 0.369163 + 0.639409i
\(527\) 9.92426 + 17.1893i 0.432308 + 0.748779i
\(528\) 0 0
\(529\) 11.3572 19.6712i 0.493791 0.855270i
\(530\) −48.6533 −2.11336
\(531\) 0 0
\(532\) 22.5254 0.976601
\(533\) 8.16762 14.1467i 0.353779 0.612763i
\(534\) 0 0
\(535\) −21.9403 38.0017i −0.948562 1.64296i
\(536\) 14.7436 + 25.5366i 0.636825 + 1.10301i
\(537\) 0 0
\(538\) −8.67446 + 15.0246i −0.373983 + 0.647757i
\(539\) 0.235290 0.0101347
\(540\) 0 0
\(541\) −22.9116 −0.985046 −0.492523 0.870300i \(-0.663925\pi\)
−0.492523 + 0.870300i \(0.663925\pi\)
\(542\) −29.1954 + 50.5679i −1.25405 + 2.17208i
\(543\) 0 0
\(544\) 0.520340 + 0.901256i 0.0223094 + 0.0386410i
\(545\) −8.87214 15.3670i −0.380041 0.658250i
\(546\) 0 0
\(547\) 6.87885 11.9145i 0.294118 0.509428i −0.680661 0.732598i \(-0.738307\pi\)
0.974779 + 0.223171i \(0.0716407\pi\)
\(548\) −73.4107 −3.13595
\(549\) 0 0
\(550\) 37.8829 1.61533
\(551\) −2.65334 + 4.59572i −0.113036 + 0.195784i
\(552\) 0 0
\(553\) 22.8559 + 39.5875i 0.971931 + 1.68343i
\(554\) 0.128375 + 0.222352i 0.00545413 + 0.00944682i
\(555\) 0 0
\(556\) −3.95576 + 6.85158i −0.167762 + 0.290572i
\(557\) −21.9041 −0.928105 −0.464053 0.885808i \(-0.653605\pi\)
−0.464053 + 0.885808i \(0.653605\pi\)
\(558\) 0 0
\(559\) −9.16742 −0.387741
\(560\) 17.3862 30.1138i 0.734702 1.27254i
\(561\) 0 0
\(562\) −10.0182 17.3520i −0.422592 0.731951i
\(563\) 7.28421 + 12.6166i 0.306993 + 0.531727i 0.977703 0.209992i \(-0.0673438\pi\)
−0.670710 + 0.741720i \(0.734011\pi\)
\(564\) 0 0
\(565\) −17.5832 + 30.4550i −0.739731 + 1.28125i
\(566\) 58.0431 2.43973
\(567\) 0 0
\(568\) −74.3137 −3.11813
\(569\) −11.1785 + 19.3618i −0.468628 + 0.811687i −0.999357 0.0358544i \(-0.988585\pi\)
0.530729 + 0.847541i \(0.321918\pi\)
\(570\) 0 0
\(571\) 7.71307 + 13.3594i 0.322782 + 0.559075i 0.981061 0.193699i \(-0.0620486\pi\)
−0.658279 + 0.752774i \(0.728715\pi\)
\(572\) 23.2024 + 40.1878i 0.970143 + 1.68034i
\(573\) 0 0
\(574\) 15.9604 27.6442i 0.666174 1.15385i
\(575\) −2.39860 −0.100028
\(576\) 0 0
\(577\) 32.8081 1.36582 0.682909 0.730503i \(-0.260714\pi\)
0.682909 + 0.730503i \(0.260714\pi\)
\(578\) 12.7567 22.0952i 0.530608 0.919040i
\(579\) 0 0
\(580\) 15.7504 + 27.2805i 0.654000 + 1.13276i
\(581\) −5.27584 9.13802i −0.218879 0.379109i
\(582\) 0 0
\(583\) 11.0355 19.1141i 0.457045 0.791625i
\(584\) 9.43650 0.390485
\(585\) 0 0
\(586\) 53.1515 2.19567
\(587\) 15.1171 26.1836i 0.623951 1.08071i −0.364792 0.931089i \(-0.618860\pi\)
0.988743 0.149625i \(-0.0478068\pi\)
\(588\) 0 0
\(589\) 8.08795 + 14.0087i 0.333258 + 0.577220i
\(590\) 6.26451 + 10.8505i 0.257906 + 0.446706i
\(591\) 0 0
\(592\) 21.8579 37.8589i 0.898353 1.55599i
\(593\) −41.1023 −1.68787 −0.843935 0.536446i \(-0.819766\pi\)
−0.843935 + 0.536446i \(0.819766\pi\)
\(594\) 0 0
\(595\) 21.0698 0.863778
\(596\) 14.7793 25.5986i 0.605386 1.04856i
\(597\) 0 0
\(598\) −2.19623 3.80398i −0.0898105 0.155556i
\(599\) 18.2753 + 31.6537i 0.746707 + 1.29333i 0.949393 + 0.314091i \(0.101700\pi\)
−0.202686 + 0.979244i \(0.564967\pi\)
\(600\) 0 0
\(601\) −1.97290 + 3.41717i −0.0804764 + 0.139389i −0.903455 0.428684i \(-0.858977\pi\)
0.822978 + 0.568073i \(0.192311\pi\)
\(602\) −17.9141 −0.730125
\(603\) 0 0
\(604\) 19.6015 0.797575
\(605\) −1.22394 + 2.11992i −0.0497601 + 0.0861870i
\(606\) 0 0
\(607\) −5.00576 8.67023i −0.203178 0.351914i 0.746373 0.665528i \(-0.231794\pi\)
−0.949551 + 0.313614i \(0.898460\pi\)
\(608\) 0.424060 + 0.734494i 0.0171979 + 0.0297877i
\(609\) 0 0
\(610\) −54.4034 + 94.2294i −2.20273 + 3.81524i
\(611\) −18.9201 −0.765425
\(612\) 0 0
\(613\) −18.7568 −0.757578 −0.378789 0.925483i \(-0.623659\pi\)
−0.378789 + 0.925483i \(0.623659\pi\)
\(614\) −20.1046 + 34.8223i −0.811357 + 1.40531i
\(615\) 0 0
\(616\) 22.8985 + 39.6614i 0.922608 + 1.59800i
\(617\) −11.5050 19.9273i −0.463175 0.802243i 0.535942 0.844255i \(-0.319957\pi\)
−0.999117 + 0.0420119i \(0.986623\pi\)
\(618\) 0 0
\(619\) −3.70701 + 6.42073i −0.148997 + 0.258071i −0.930857 0.365383i \(-0.880938\pi\)
0.781860 + 0.623454i \(0.214271\pi\)
\(620\) 96.0211 3.85630
\(621\) 0 0
\(622\) 19.0598 0.764229
\(623\) −6.77800 + 11.7398i −0.271555 + 0.470347i
\(624\) 0 0
\(625\) 13.6489 + 23.6406i 0.545956 + 0.945623i
\(626\) −18.9472 32.8175i −0.757281 1.31165i
\(627\) 0 0
\(628\) −2.98348 + 5.16754i −0.119054 + 0.206207i
\(629\) 26.4889 1.05618
\(630\) 0 0
\(631\) −30.9924 −1.23379 −0.616894 0.787046i \(-0.711609\pi\)
−0.616894 + 0.787046i \(0.711609\pi\)
\(632\) −43.1185 + 74.6835i −1.71516 + 2.97075i
\(633\) 0 0
\(634\) 10.6130 + 18.3822i 0.421496 + 0.730052i
\(635\) −3.98924 6.90957i −0.158308 0.274198i
\(636\) 0 0
\(637\) 0.114549 0.198404i 0.00453859 0.00786106i
\(638\) −21.3630 −0.845769
\(639\) 0 0
\(640\) −59.2559 −2.34229
\(641\) −17.6731 + 30.6106i −0.698044 + 1.20905i 0.271100 + 0.962551i \(0.412613\pi\)
−0.969144 + 0.246496i \(0.920721\pi\)
\(642\) 0 0
\(643\) 9.85047 + 17.0615i 0.388465 + 0.672840i 0.992243 0.124312i \(-0.0396723\pi\)
−0.603779 + 0.797152i \(0.706339\pi\)
\(644\) −2.87075 4.97229i −0.113124 0.195936i
\(645\) 0 0
\(646\) −6.62938 + 11.4824i −0.260830 + 0.451770i
\(647\) −46.8317 −1.84114 −0.920572 0.390572i \(-0.872277\pi\)
−0.920572 + 0.390572i \(0.872277\pi\)
\(648\) 0 0
\(649\) −5.68366 −0.223103
\(650\) 18.4429 31.9441i 0.723391 1.25295i
\(651\) 0 0
\(652\) 34.8586 + 60.3768i 1.36517 + 2.36454i
\(653\) 8.66336 + 15.0054i 0.339023 + 0.587206i 0.984249 0.176786i \(-0.0565701\pi\)
−0.645226 + 0.763992i \(0.723237\pi\)
\(654\) 0 0
\(655\) −6.79350 + 11.7667i −0.265444 + 0.459762i
\(656\) 20.7419 0.809835
\(657\) 0 0
\(658\) −36.9719 −1.44131
\(659\) 21.8671 37.8749i 0.851821 1.47540i −0.0277419 0.999615i \(-0.508832\pi\)
0.879563 0.475782i \(-0.157835\pi\)
\(660\) 0 0
\(661\) 4.54343 + 7.86945i 0.176719 + 0.306086i 0.940755 0.339088i \(-0.110118\pi\)
−0.764036 + 0.645174i \(0.776785\pi\)
\(662\) −25.2470 43.7292i −0.981254 1.69958i
\(663\) 0 0
\(664\) 9.95308 17.2392i 0.386254 0.669012i
\(665\) 17.1712 0.665871
\(666\) 0 0
\(667\) 1.35262 0.0523737
\(668\) 13.8200 23.9370i 0.534713 0.926150i
\(669\) 0 0
\(670\) 22.2538 + 38.5448i 0.859740 + 1.48911i
\(671\) −24.6795 42.7462i −0.952743 1.65020i
\(672\) 0 0
\(673\) −3.74834 + 6.49232i −0.144488 + 0.250261i −0.929182 0.369623i \(-0.879487\pi\)
0.784694 + 0.619884i \(0.212820\pi\)
\(674\) 39.2711 1.51266
\(675\) 0 0
\(676\) −7.34587 −0.282534
\(677\) 7.68128 13.3044i 0.295215 0.511328i −0.679820 0.733379i \(-0.737942\pi\)
0.975035 + 0.222051i \(0.0712753\pi\)
\(678\) 0 0
\(679\) −14.1333 24.4796i −0.542387 0.939441i
\(680\) 19.8745 + 34.4237i 0.762153 + 1.32009i
\(681\) 0 0
\(682\) −32.5595 + 56.3946i −1.24677 + 2.15946i
\(683\) −6.62157 −0.253367 −0.126684 0.991943i \(-0.540433\pi\)
−0.126684 + 0.991943i \(0.540433\pi\)
\(684\) 0 0
\(685\) −55.9612 −2.13817
\(686\) −22.6467 + 39.2253i −0.864656 + 1.49763i
\(687\) 0 0
\(688\) −5.82023 10.0809i −0.221894 0.384332i
\(689\) −10.7451 18.6110i −0.409355 0.709024i
\(690\) 0 0
\(691\) 9.32843 16.1573i 0.354870 0.614653i −0.632226 0.774784i \(-0.717858\pi\)
0.987096 + 0.160131i \(0.0511918\pi\)
\(692\) 96.8457 3.68152
\(693\) 0 0
\(694\) 24.0968 0.914704
\(695\) −3.01549 + 5.22298i −0.114384 + 0.198119i
\(696\) 0 0
\(697\) 6.28412 + 10.8844i 0.238028 + 0.412276i
\(698\) 11.5946 + 20.0824i 0.438862 + 0.760131i
\(699\) 0 0
\(700\) 24.1073 41.7551i 0.911170 1.57819i
\(701\) −24.8903 −0.940092 −0.470046 0.882642i \(-0.655763\pi\)
−0.470046 + 0.882642i \(0.655763\pi\)
\(702\) 0 0
\(703\) 21.5876 0.814190
\(704\) 12.8752 22.3005i 0.485252 0.840481i
\(705\) 0 0
\(706\) −4.16001 7.20535i −0.156564 0.271177i
\(707\) −7.52149 13.0276i −0.282875 0.489953i
\(708\) 0 0
\(709\) 13.0894 22.6715i 0.491582 0.851445i −0.508371 0.861138i \(-0.669752\pi\)
0.999953 + 0.00969346i \(0.00308557\pi\)
\(710\) −112.169 −4.20961
\(711\) 0 0
\(712\) −25.5739 −0.958424
\(713\) 2.06154 3.57069i 0.0772052 0.133723i
\(714\) 0 0
\(715\) 17.6873 + 30.6353i 0.661468 + 1.14570i
\(716\) −41.5634 71.9899i −1.55330 2.69039i
\(717\) 0 0
\(718\) 43.2907 74.9817i 1.61559 2.79829i
\(719\) −21.0290 −0.784251 −0.392125 0.919912i \(-0.628260\pi\)
−0.392125 + 0.919912i \(0.628260\pi\)
\(720\) 0 0
\(721\) −27.5718 −1.02683
\(722\) 17.9463 31.0838i 0.667891 1.15682i
\(723\) 0 0
\(724\) 31.2553 + 54.1358i 1.16159 + 2.01194i
\(725\) 5.67935 + 9.83692i 0.210926 + 0.365334i
\(726\) 0 0
\(727\) −20.6978 + 35.8497i −0.767640 + 1.32959i 0.171199 + 0.985236i \(0.445236\pi\)
−0.938839 + 0.344356i \(0.888097\pi\)
\(728\) 44.5918 1.65268
\(729\) 0 0
\(730\) 14.2434 0.527171
\(731\) 3.52668 6.10838i 0.130439 0.225927i
\(732\) 0 0
\(733\) −16.8134 29.1216i −0.621016 1.07563i −0.989297 0.145916i \(-0.953387\pi\)
0.368281 0.929714i \(-0.379946\pi\)
\(734\) 38.7660 + 67.1447i 1.43088 + 2.47836i
\(735\) 0 0
\(736\) 0.108089 0.187215i 0.00398421 0.00690085i
\(737\) −20.1904 −0.743724
\(738\) 0 0
\(739\) −12.9454 −0.476202 −0.238101 0.971240i \(-0.576525\pi\)
−0.238101 + 0.971240i \(0.576525\pi\)
\(740\) 64.0725 110.977i 2.35535 4.07959i
\(741\) 0 0
\(742\) −20.9970 36.3679i −0.770826 1.33511i
\(743\) −0.0439646 0.0761489i −0.00161290 0.00279363i 0.865218 0.501396i \(-0.167180\pi\)
−0.866831 + 0.498603i \(0.833847\pi\)
\(744\) 0 0
\(745\) 11.2664 19.5139i 0.412767 0.714934i
\(746\) 35.4962 1.29961
\(747\) 0 0
\(748\) −35.7036 −1.30545
\(749\) 18.9373 32.8004i 0.691955 1.19850i
\(750\) 0 0
\(751\) −24.9480 43.2112i −0.910366 1.57680i −0.813548 0.581498i \(-0.802467\pi\)
−0.0968179 0.995302i \(-0.530866\pi\)
\(752\) −12.0120 20.8054i −0.438033 0.758696i
\(753\) 0 0
\(754\) −10.4004 + 18.0140i −0.378759 + 0.656031i
\(755\) 14.9423 0.543806
\(756\) 0 0
\(757\) −11.8679 −0.431348 −0.215674 0.976465i \(-0.569195\pi\)
−0.215674 + 0.976465i \(0.569195\pi\)
\(758\) −1.23011 + 2.13062i −0.0446798 + 0.0773877i
\(759\) 0 0
\(760\) 16.1971 + 28.0542i 0.587530 + 1.01763i
\(761\) 1.89515 + 3.28250i 0.0686992 + 0.118990i 0.898329 0.439323i \(-0.144782\pi\)
−0.829630 + 0.558314i \(0.811448\pi\)
\(762\) 0 0
\(763\) 7.65781 13.2637i 0.277231 0.480179i
\(764\) 44.2494 1.60089
\(765\) 0 0
\(766\) −10.1196 −0.365634
\(767\) −2.76704 + 4.79265i −0.0999120 + 0.173053i
\(768\) 0 0
\(769\) −3.13475 5.42955i −0.113042 0.195795i 0.803953 0.594692i \(-0.202726\pi\)
−0.916995 + 0.398898i \(0.869393\pi\)
\(770\) 34.5629 + 59.8646i 1.24556 + 2.15737i
\(771\) 0 0
\(772\) −2.31302 + 4.00626i −0.0832473 + 0.144189i
\(773\) 1.29536 0.0465907 0.0232954 0.999729i \(-0.492584\pi\)
0.0232954 + 0.999729i \(0.492584\pi\)
\(774\) 0 0
\(775\) 34.6237 1.24372
\(776\) 26.6631 46.1818i 0.957148 1.65783i
\(777\) 0 0
\(778\) −19.0723 33.0343i −0.683777 1.18434i
\(779\) 5.12135 + 8.87044i 0.183491 + 0.317816i
\(780\) 0 0
\(781\) 25.4421 44.0669i 0.910388 1.57684i
\(782\) 3.37953 0.120852
\(783\) 0 0
\(784\) 0.290900 0.0103893
\(785\) −2.27432 + 3.93923i −0.0811738 + 0.140597i
\(786\) 0 0
\(787\) 6.19611 + 10.7320i 0.220867 + 0.382554i 0.955072 0.296375i \(-0.0957778\pi\)
−0.734204 + 0.678929i \(0.762445\pi\)
\(788\) −10.1866 17.6437i −0.362882 0.628529i
\(789\) 0 0
\(790\) −65.0828 + 112.727i −2.31554 + 4.01064i
\(791\) −30.3532 −1.07924
\(792\) 0 0
\(793\) −48.0600 −1.70666
\(794\) 1.90347 3.29690i 0.0675515 0.117003i
\(795\) 0 0
\(796\) −27.7311 48.0318i −0.982904 1.70244i
\(797\) 12.1914 + 21.1160i 0.431840 + 0.747968i 0.997032 0.0769910i \(-0.0245313\pi\)
−0.565192 + 0.824959i \(0.691198\pi\)
\(798\) 0 0
\(799\) 7.27850 12.6067i 0.257495 0.445994i
\(800\) 1.81536 0.0641827
\(801\) 0 0
\(802\) −19.5330 −0.689734
\(803\) −3.23068 + 5.59570i −0.114008 + 0.197468i
\(804\) 0 0
\(805\) −2.18839 3.79040i −0.0771305 0.133594i
\(806\) 31.7026 + 54.9104i 1.11668 + 1.93414i
\(807\) 0 0
\(808\) 14.1896 24.5771i 0.499188 0.864619i
\(809\) −24.1156 −0.847861 −0.423930 0.905695i \(-0.639350\pi\)
−0.423930 + 0.905695i \(0.639350\pi\)
\(810\) 0 0
\(811\) 48.1121 1.68944 0.844721 0.535206i \(-0.179766\pi\)
0.844721 + 0.535206i \(0.179766\pi\)
\(812\) −13.5946 + 23.5466i −0.477078 + 0.826324i
\(813\) 0 0
\(814\) 43.4523 + 75.2615i 1.52300 + 2.63791i
\(815\) 26.5728 + 46.0255i 0.930805 + 1.61220i
\(816\) 0 0
\(817\) 2.87413 4.97814i 0.100553 0.174163i
\(818\) 65.0218 2.27343
\(819\) 0 0
\(820\) 60.8013 2.12327
\(821\) −8.46941 + 14.6695i −0.295585 + 0.511968i −0.975121 0.221675i \(-0.928848\pi\)
0.679536 + 0.733642i \(0.262181\pi\)
\(822\) 0 0
\(823\) −5.77797 10.0077i −0.201407 0.348848i 0.747575 0.664178i \(-0.231218\pi\)
−0.948982 + 0.315330i \(0.897885\pi\)
\(824\) −26.0077 45.0466i −0.906020 1.56927i
\(825\) 0 0
\(826\) −5.40709 + 9.36535i −0.188137 + 0.325862i
\(827\) 10.2374 0.355988 0.177994 0.984032i \(-0.443039\pi\)
0.177994 + 0.984032i \(0.443039\pi\)
\(828\) 0 0
\(829\) 9.35244 0.324824 0.162412 0.986723i \(-0.448073\pi\)
0.162412 + 0.986723i \(0.448073\pi\)
\(830\) 15.0231 26.0208i 0.521460 0.903195i
\(831\) 0 0
\(832\) −12.5363 21.7136i −0.434620 0.752783i
\(833\) 0.0881331 + 0.152651i 0.00305363 + 0.00528904i
\(834\) 0 0
\(835\) 10.5351 18.2473i 0.364581 0.631472i
\(836\) −29.0973 −1.00635
\(837\) 0 0
\(838\) −94.2316 −3.25518
\(839\) 5.92256 10.2582i 0.204469 0.354151i −0.745494 0.666512i \(-0.767786\pi\)
0.949964 + 0.312361i \(0.101120\pi\)
\(840\) 0 0
\(841\) 11.2973 + 19.5675i 0.389562 + 0.674741i
\(842\) −9.02561 15.6328i −0.311043 0.538742i
\(843\) 0 0
\(844\) 11.7891 20.4193i 0.405797 0.702862i
\(845\) −5.59979 −0.192639
\(846\) 0 0
\(847\) −2.11283 −0.0725978
\(848\) 13.6437 23.6316i 0.468527 0.811513i
\(849\) 0 0
\(850\) 14.1899 + 24.5776i 0.486709 + 0.843004i
\(851\) −2.75123 4.76527i −0.0943109 0.163351i
\(852\) 0 0
\(853\) 18.6356 32.2779i 0.638072 1.10517i −0.347783 0.937575i \(-0.613065\pi\)
0.985855 0.167599i \(-0.0536012\pi\)
\(854\) −93.9144 −3.21368
\(855\) 0 0
\(856\) 71.4521 2.44218
\(857\) 20.7159 35.8810i 0.707642 1.22567i −0.258087 0.966122i \(-0.583092\pi\)
0.965729 0.259551i \(-0.0835746\pi\)
\(858\) 0 0
\(859\) 4.62925 + 8.01810i 0.157948 + 0.273574i 0.934129 0.356937i \(-0.116179\pi\)
−0.776180 + 0.630511i \(0.782845\pi\)
\(860\) −17.0610 29.5505i −0.581775 1.00766i
\(861\) 0 0
\(862\) −19.4734 + 33.7290i −0.663267 + 1.14881i
\(863\) 51.4748 1.75222 0.876110 0.482110i \(-0.160130\pi\)
0.876110 + 0.482110i \(0.160130\pi\)
\(864\) 0 0
\(865\) 73.8258 2.51015
\(866\) 29.3100 50.7665i 0.995996 1.72512i
\(867\) 0 0
\(868\) 41.4393 + 71.7750i 1.40654 + 2.43620i
\(869\) −29.5241 51.1373i −1.00154 1.73471i
\(870\) 0 0
\(871\) −9.82953 + 17.0252i −0.333061 + 0.576878i
\(872\) 28.8935 0.978458
\(873\) 0 0
\(874\) 2.75421 0.0931624
\(875\) −2.09640 + 3.63108i −0.0708714 + 0.122753i
\(876\) 0 0
\(877\) 12.4495 + 21.5632i 0.420390 + 0.728137i 0.995978 0.0896030i \(-0.0285598\pi\)
−0.575587 + 0.817740i \(0.695226\pi\)
\(878\) 26.3843 + 45.6989i 0.890427 + 1.54226i
\(879\) 0 0
\(880\) −22.4587 + 38.8996i −0.757082 + 1.31131i
\(881\) −1.43361 −0.0482997 −0.0241498 0.999708i \(-0.507688\pi\)
−0.0241498 + 0.999708i \(0.507688\pi\)
\(882\) 0 0
\(883\) 26.2046 0.881855 0.440928 0.897543i \(-0.354650\pi\)
0.440928 + 0.897543i \(0.354650\pi\)
\(884\) −17.3820 + 30.1065i −0.584619 + 1.01259i
\(885\) 0 0
\(886\) 38.7691 + 67.1500i 1.30247 + 2.25595i
\(887\) −21.6863 37.5617i −0.728154 1.26120i −0.957663 0.287893i \(-0.907045\pi\)
0.229509 0.973307i \(-0.426288\pi\)
\(888\) 0 0
\(889\) 3.44323 5.96385i 0.115482 0.200021i
\(890\) −38.6011 −1.29391
\(891\) 0 0
\(892\) 35.2702 1.18093
\(893\) 5.93174 10.2741i 0.198498 0.343809i
\(894\) 0 0
\(895\) −31.6839 54.8781i −1.05908 1.83437i
\(896\) −25.5728 44.2933i −0.854326 1.47974i
\(897\) 0 0
\(898\) 25.5484 44.2512i 0.852563 1.47668i
\(899\) −19.5251 −0.651198
\(900\) 0 0
\(901\) 16.5344 0.550841
\(902\) −20.6169 + 35.7095i −0.686467 + 1.18900i
\(903\) 0 0
\(904\) −28.6313 49.5908i −0.952261 1.64936i
\(905\) 23.8260 + 41.2679i 0.792004 + 1.37179i
\(906\) 0 0
\(907\) −11.9359 + 20.6736i −0.396325 + 0.686454i −0.993269 0.115828i \(-0.963048\pi\)
0.596945 + 0.802282i \(0.296381\pi\)
\(908\) −98.1191 −3.25620
\(909\) 0 0
\(910\) 67.3065 2.23119
\(911\) −2.16026 + 3.74168i −0.0715726 + 0.123967i −0.899591 0.436734i \(-0.856135\pi\)
0.828018 + 0.560701i \(0.189468\pi\)
\(912\) 0 0
\(913\) 6.81508 + 11.8041i 0.225546 + 0.390657i
\(914\) 21.4169 + 37.0951i 0.708406 + 1.22700i
\(915\) 0 0
\(916\) −36.6725 + 63.5186i −1.21169 + 2.09871i
\(917\) −11.7273 −0.387271
\(918\) 0 0
\(919\) 3.56151 0.117483 0.0587417 0.998273i \(-0.481291\pi\)
0.0587417 + 0.998273i \(0.481291\pi\)
\(920\) 4.12848 7.15074i 0.136112 0.235753i
\(921\) 0 0
\(922\) −38.1012 65.9933i −1.25480 2.17337i
\(923\) −24.7725 42.9072i −0.815396 1.41231i
\(924\) 0 0
\(925\) 23.1036 40.0166i 0.759641 1.31574i
\(926\) 15.9460 0.524019
\(927\) 0 0
\(928\) −1.02372 −0.0336053
\(929\) 16.6629 28.8610i 0.546692 0.946898i −0.451807 0.892116i \(-0.649220\pi\)
0.998498 0.0547818i \(-0.0174463\pi\)
\(930\) 0 0
\(931\) 0.0718256 + 0.124406i 0.00235399 + 0.00407723i
\(932\) 21.2906 + 36.8764i 0.697396 + 1.20793i
\(933\) 0 0
\(934\) 2.38885 4.13761i 0.0781655 0.135387i
\(935\) −27.2170 −0.890091
\(936\) 0 0
\(937\) 26.0594 0.851322 0.425661 0.904883i \(-0.360042\pi\)
0.425661 + 0.904883i \(0.360042\pi\)
\(938\) −19.2079 + 33.2691i −0.627161 + 1.08628i
\(939\) 0 0
\(940\) −35.2111 60.9875i −1.14846 1.98919i
\(941\) 11.9968 + 20.7790i 0.391084 + 0.677377i 0.992593 0.121489i \(-0.0387669\pi\)
−0.601509 + 0.798866i \(0.705434\pi\)
\(942\) 0 0
\(943\) 1.30538 2.26099i 0.0425091 0.0736279i
\(944\) −7.02697 −0.228708
\(945\) 0 0
\(946\) 23.1406 0.752366
\(947\) −14.9423 + 25.8809i −0.485561 + 0.841016i −0.999862 0.0165935i \(-0.994718\pi\)
0.514302 + 0.857609i \(0.328051\pi\)
\(948\) 0 0
\(949\) 3.14566 + 5.44844i 0.102112 + 0.176864i
\(950\) 11.5643 + 20.0299i 0.375195 + 0.649857i
\(951\) 0 0
\(952\) −17.1543 + 29.7121i −0.555974 + 0.962975i
\(953\) −10.1934 −0.330196 −0.165098 0.986277i \(-0.552794\pi\)
−0.165098 + 0.986277i \(0.552794\pi\)
\(954\) 0 0
\(955\) 33.7315 1.09153
\(956\) −19.2674 + 33.3721i −0.623153 + 1.07933i
\(957\) 0 0
\(958\) 1.63368 + 2.82962i 0.0527819 + 0.0914209i
\(959\) −24.1509 41.8306i −0.779874 1.35078i
\(960\) 0 0
\(961\) −14.2583 + 24.6961i −0.459945 + 0.796649i
\(962\) 84.6174 2.72817
\(963\) 0 0
\(964\) −28.4357 −0.915854
\(965\) −1.76322 + 3.05399i −0.0567601 + 0.0983114i
\(966\) 0 0
\(967\) 9.38330 + 16.2524i 0.301747 + 0.522641i 0.976532 0.215374i \(-0.0690970\pi\)
−0.674785 + 0.738014i \(0.735764\pi\)
\(968\) −1.99297 3.45193i −0.0640565 0.110949i
\(969\) 0 0
\(970\) 40.2450 69.7065i 1.29219 2.23814i
\(971\) −51.9535 −1.66727 −0.833633 0.552319i \(-0.813743\pi\)
−0.833633 + 0.552319i \(0.813743\pi\)
\(972\) 0 0
\(973\) −5.20552 −0.166881
\(974\) −26.0575 + 45.1328i −0.834935 + 1.44615i
\(975\) 0 0
\(976\) −30.5124 52.8491i −0.976679 1.69166i
\(977\) −16.2920 28.2186i −0.521229 0.902794i −0.999695 0.0246887i \(-0.992141\pi\)
0.478467 0.878106i \(-0.341193\pi\)
\(978\) 0 0
\(979\) 8.75550 15.1650i 0.279827 0.484675i
\(980\) 0.852722 0.0272392
\(981\) 0 0
\(982\) −66.3852 −2.11844
\(983\) −17.5397 + 30.3797i −0.559431 + 0.968962i 0.438114 + 0.898920i \(0.355647\pi\)
−0.997544 + 0.0700424i \(0.977687\pi\)
\(984\) 0 0
\(985\) −7.76526 13.4498i −0.247422 0.428547i
\(986\) −8.00198 13.8598i −0.254835 0.441387i
\(987\) 0 0
\(988\) −14.1658 + 24.5358i −0.450673 + 0.780588i
\(989\) −1.46517 −0.0465898
\(990\) 0 0
\(991\) −54.7635 −1.73962 −0.869810 0.493386i \(-0.835759\pi\)
−0.869810 + 0.493386i \(0.835759\pi\)
\(992\) −1.56026 + 2.70245i −0.0495384 + 0.0858030i
\(993\) 0 0
\(994\) −48.4080 83.8452i −1.53541 2.65941i
\(995\) −21.1396 36.6148i −0.670169 1.16077i
\(996\) 0 0
\(997\) −25.1650 + 43.5871i −0.796984 + 1.38042i 0.124587 + 0.992209i \(0.460239\pi\)
−0.921571 + 0.388209i \(0.873094\pi\)
\(998\) 36.9625 1.17003
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.c.d.487.1 12
3.2 odd 2 729.2.c.a.487.6 12
9.2 odd 6 729.2.a.e.1.1 yes 6
9.4 even 3 inner 729.2.c.d.244.1 12
9.5 odd 6 729.2.c.a.244.6 12
9.7 even 3 729.2.a.b.1.6 6
27.2 odd 18 729.2.e.l.325.1 12
27.4 even 9 729.2.e.j.163.1 12
27.5 odd 18 729.2.e.l.406.1 12
27.7 even 9 729.2.e.t.82.2 12
27.11 odd 18 729.2.e.u.568.2 12
27.13 even 9 729.2.e.t.649.2 12
27.14 odd 18 729.2.e.k.649.1 12
27.16 even 9 729.2.e.j.568.1 12
27.20 odd 18 729.2.e.k.82.1 12
27.22 even 9 729.2.e.s.406.2 12
27.23 odd 18 729.2.e.u.163.2 12
27.25 even 9 729.2.e.s.325.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.2.a.b.1.6 6 9.7 even 3
729.2.a.e.1.1 yes 6 9.2 odd 6
729.2.c.a.244.6 12 9.5 odd 6
729.2.c.a.487.6 12 3.2 odd 2
729.2.c.d.244.1 12 9.4 even 3 inner
729.2.c.d.487.1 12 1.1 even 1 trivial
729.2.e.j.163.1 12 27.4 even 9
729.2.e.j.568.1 12 27.16 even 9
729.2.e.k.82.1 12 27.20 odd 18
729.2.e.k.649.1 12 27.14 odd 18
729.2.e.l.325.1 12 27.2 odd 18
729.2.e.l.406.1 12 27.5 odd 18
729.2.e.s.325.2 12 27.25 even 9
729.2.e.s.406.2 12 27.22 even 9
729.2.e.t.82.2 12 27.7 even 9
729.2.e.t.649.2 12 27.13 even 9
729.2.e.u.163.2 12 27.23 odd 18
729.2.e.u.568.2 12 27.11 odd 18