Properties

Label 729.2.e.q.82.2
Level $729$
Weight $2$
Character 729.82
Analytic conductor $5.821$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,2,Mod(82,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(18))
 
chi = DirichletCharacter(H, H._module([8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.82");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 729.e (of order \(9\), degree \(6\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(5.82109430735\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(2\) over \(\Q(\zeta_{9})\)
Coefficient field: \(\Q(\zeta_{36})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - x^{6} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{4}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{9}]$

Embedding invariants

Embedding label 82.2
Root \(0.984808 + 0.173648i\) of defining polynomial
Character \(\chi\) \(=\) 729.82
Dual form 729.2.e.q.649.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.118782 + 0.673648i) q^{2} +(1.43969 - 0.524005i) q^{4} +(0.802823 + 0.673648i) q^{5} +(0.113341 + 0.0412527i) q^{7} +(1.20805 + 2.09240i) q^{8} +(-0.358441 + 0.620838i) q^{10} +(-4.16247 + 3.49273i) q^{11} +(-0.794263 + 4.50449i) q^{13} +(-0.0143269 + 0.0812519i) q^{14} +(1.08125 - 0.907278i) q^{16} +(-2.38917 + 4.13816i) q^{17} +(0.294263 + 0.509678i) q^{19} +(1.50881 + 0.549163i) q^{20} +(-2.84730 - 2.38917i) q^{22} +(7.32580 - 2.66637i) q^{23} +(-0.677519 - 3.84240i) q^{25} -3.12879 q^{26} +0.184793 q^{28} +(0.880352 + 4.99273i) q^{29} +(8.23055 - 2.99568i) q^{31} +(4.44129 + 3.72668i) q^{32} +(-3.07145 - 1.11792i) q^{34} +(0.0632028 + 0.109470i) q^{35} +(1.09240 - 1.89209i) q^{37} +(-0.308391 + 0.258770i) q^{38} +(-0.439693 + 2.49362i) q^{40} +(1.31250 - 7.44356i) q^{41} +(-1.00000 + 0.839100i) q^{43} +(-4.16247 + 7.20961i) q^{44} +(2.66637 + 4.61830i) q^{46} +(-2.27038 - 0.826352i) q^{47} +(-5.35117 - 4.49016i) q^{49} +(2.50795 - 0.912818i) q^{50} +(1.21688 + 6.90128i) q^{52} -3.04628 q^{53} -5.69459 q^{55} +(0.0506039 + 0.286989i) q^{56} +(-3.25877 + 1.18610i) q^{58} +(-0.0336295 - 0.0282185i) q^{59} +(9.59627 + 3.49276i) q^{61} +(2.99568 + 5.18866i) q^{62} +(-0.571452 + 0.989783i) q^{64} +(-3.67209 + 3.08125i) q^{65} +(-0.322948 + 1.83153i) q^{67} +(-1.27125 + 7.20961i) q^{68} +(-0.0662372 + 0.0555796i) q^{70} +(3.25519 - 5.63816i) q^{71} +(-6.11721 - 10.5953i) q^{73} +(1.40436 + 0.511144i) q^{74} +(0.690722 + 0.579585i) q^{76} +(-0.615862 + 0.224155i) q^{77} +(0.121959 + 0.691663i) q^{79} +1.47924 q^{80} +5.17024 q^{82} +(1.17674 + 6.67365i) q^{83} +(-4.70574 + 1.71275i) q^{85} +(-0.684040 - 0.573978i) q^{86} +(-12.3366 - 4.49016i) q^{88} +(-3.42782 - 5.93717i) q^{89} +(-0.275845 + 0.477777i) q^{91} +(9.14971 - 7.67752i) q^{92} +(0.286989 - 1.62760i) q^{94} +(-0.107103 + 0.607411i) q^{95} +(-6.91534 + 5.80266i) q^{97} +(2.38917 - 4.13816i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{4} - 12 q^{7} + 12 q^{10} - 30 q^{13} + 18 q^{16} + 24 q^{19} - 30 q^{22} + 42 q^{25} - 12 q^{28} + 24 q^{31} - 36 q^{34} + 6 q^{37} + 6 q^{40} - 12 q^{43} - 6 q^{46} - 12 q^{49} - 18 q^{52}+ \cdots + 6 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/729\mathbb{Z}\right)^\times\).

\(n\) \(2\)
\(\chi(n)\) \(e\left(\frac{4}{9}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.118782 + 0.673648i 0.0839918 + 0.476341i 0.997570 + 0.0696772i \(0.0221969\pi\)
−0.913578 + 0.406664i \(0.866692\pi\)
\(3\) 0 0
\(4\) 1.43969 0.524005i 0.719846 0.262003i
\(5\) 0.802823 + 0.673648i 0.359033 + 0.301265i 0.804405 0.594081i \(-0.202484\pi\)
−0.445372 + 0.895346i \(0.646929\pi\)
\(6\) 0 0
\(7\) 0.113341 + 0.0412527i 0.0428388 + 0.0155920i 0.363351 0.931652i \(-0.381633\pi\)
−0.320512 + 0.947244i \(0.603855\pi\)
\(8\) 1.20805 + 2.09240i 0.427109 + 0.739774i
\(9\) 0 0
\(10\) −0.358441 + 0.620838i −0.113349 + 0.196326i
\(11\) −4.16247 + 3.49273i −1.25503 + 1.05310i −0.258839 + 0.965921i \(0.583340\pi\)
−0.996193 + 0.0871759i \(0.972216\pi\)
\(12\) 0 0
\(13\) −0.794263 + 4.50449i −0.220289 + 1.24932i 0.651200 + 0.758906i \(0.274266\pi\)
−0.871489 + 0.490415i \(0.836845\pi\)
\(14\) −0.0143269 + 0.0812519i −0.00382903 + 0.0217155i
\(15\) 0 0
\(16\) 1.08125 0.907278i 0.270313 0.226820i
\(17\) −2.38917 + 4.13816i −0.579458 + 1.00365i 0.416084 + 0.909326i \(0.363402\pi\)
−0.995542 + 0.0943239i \(0.969931\pi\)
\(18\) 0 0
\(19\) 0.294263 + 0.509678i 0.0675085 + 0.116928i 0.897804 0.440395i \(-0.145162\pi\)
−0.830295 + 0.557323i \(0.811828\pi\)
\(20\) 1.50881 + 0.549163i 0.337381 + 0.122797i
\(21\) 0 0
\(22\) −2.84730 2.38917i −0.607046 0.509372i
\(23\) 7.32580 2.66637i 1.52754 0.555977i 0.564519 0.825420i \(-0.309062\pi\)
0.963016 + 0.269443i \(0.0868394\pi\)
\(24\) 0 0
\(25\) −0.677519 3.84240i −0.135504 0.768480i
\(26\) −3.12879 −0.613605
\(27\) 0 0
\(28\) 0.184793 0.0349225
\(29\) 0.880352 + 4.99273i 0.163477 + 0.927126i 0.950621 + 0.310356i \(0.100448\pi\)
−0.787143 + 0.616770i \(0.788441\pi\)
\(30\) 0 0
\(31\) 8.23055 2.99568i 1.47825 0.538039i 0.527924 0.849292i \(-0.322971\pi\)
0.950327 + 0.311253i \(0.100749\pi\)
\(32\) 4.44129 + 3.72668i 0.785116 + 0.658790i
\(33\) 0 0
\(34\) −3.07145 1.11792i −0.526750 0.191721i
\(35\) 0.0632028 + 0.109470i 0.0106832 + 0.0185039i
\(36\) 0 0
\(37\) 1.09240 1.89209i 0.179589 0.311057i −0.762151 0.647399i \(-0.775857\pi\)
0.941740 + 0.336342i \(0.109190\pi\)
\(38\) −0.308391 + 0.258770i −0.0500276 + 0.0419781i
\(39\) 0 0
\(40\) −0.439693 + 2.49362i −0.0695215 + 0.394276i
\(41\) 1.31250 7.44356i 0.204978 1.16249i −0.692496 0.721422i \(-0.743489\pi\)
0.897474 0.441067i \(-0.145400\pi\)
\(42\) 0 0
\(43\) −1.00000 + 0.839100i −0.152499 + 0.127961i −0.715845 0.698259i \(-0.753958\pi\)
0.563346 + 0.826221i \(0.309514\pi\)
\(44\) −4.16247 + 7.20961i −0.627516 + 1.08689i
\(45\) 0 0
\(46\) 2.66637 + 4.61830i 0.393135 + 0.680931i
\(47\) −2.27038 0.826352i −0.331169 0.120536i 0.171084 0.985257i \(-0.445273\pi\)
−0.502253 + 0.864721i \(0.667495\pi\)
\(48\) 0 0
\(49\) −5.35117 4.49016i −0.764452 0.641452i
\(50\) 2.50795 0.912818i 0.354677 0.129092i
\(51\) 0 0
\(52\) 1.21688 + 6.90128i 0.168751 + 0.957035i
\(53\) −3.04628 −0.418439 −0.209219 0.977869i \(-0.567092\pi\)
−0.209219 + 0.977869i \(0.567092\pi\)
\(54\) 0 0
\(55\) −5.69459 −0.767859
\(56\) 0.0506039 + 0.286989i 0.00676223 + 0.0383505i
\(57\) 0 0
\(58\) −3.25877 + 1.18610i −0.427898 + 0.155742i
\(59\) −0.0336295 0.0282185i −0.00437819 0.00367373i 0.640596 0.767878i \(-0.278687\pi\)
−0.644974 + 0.764204i \(0.723132\pi\)
\(60\) 0 0
\(61\) 9.59627 + 3.49276i 1.22868 + 0.447202i 0.873144 0.487463i \(-0.162077\pi\)
0.355532 + 0.934664i \(0.384300\pi\)
\(62\) 2.99568 + 5.18866i 0.380451 + 0.658961i
\(63\) 0 0
\(64\) −0.571452 + 0.989783i −0.0714315 + 0.123723i
\(65\) −3.67209 + 3.08125i −0.455467 + 0.382182i
\(66\) 0 0
\(67\) −0.322948 + 1.83153i −0.0394544 + 0.223757i −0.998159 0.0606455i \(-0.980684\pi\)
0.958705 + 0.284403i \(0.0917952\pi\)
\(68\) −1.27125 + 7.20961i −0.154162 + 0.874293i
\(69\) 0 0
\(70\) −0.0662372 + 0.0555796i −0.00791686 + 0.00664303i
\(71\) 3.25519 5.63816i 0.386320 0.669126i −0.605631 0.795745i \(-0.707079\pi\)
0.991951 + 0.126619i \(0.0404127\pi\)
\(72\) 0 0
\(73\) −6.11721 10.5953i −0.715965 1.24009i −0.962586 0.270976i \(-0.912653\pi\)
0.246621 0.969112i \(-0.420680\pi\)
\(74\) 1.40436 + 0.511144i 0.163253 + 0.0594193i
\(75\) 0 0
\(76\) 0.690722 + 0.579585i 0.0792313 + 0.0664829i
\(77\) −0.615862 + 0.224155i −0.0701840 + 0.0255449i
\(78\) 0 0
\(79\) 0.121959 + 0.691663i 0.0137215 + 0.0778182i 0.990900 0.134603i \(-0.0429761\pi\)
−0.977178 + 0.212422i \(0.931865\pi\)
\(80\) 1.47924 0.165384
\(81\) 0 0
\(82\) 5.17024 0.570958
\(83\) 1.17674 + 6.67365i 0.129164 + 0.732528i 0.978747 + 0.205072i \(0.0657429\pi\)
−0.849582 + 0.527456i \(0.823146\pi\)
\(84\) 0 0
\(85\) −4.70574 + 1.71275i −0.510409 + 0.185774i
\(86\) −0.684040 0.573978i −0.0737620 0.0618936i
\(87\) 0 0
\(88\) −12.3366 4.49016i −1.31509 0.478653i
\(89\) −3.42782 5.93717i −0.363349 0.629338i 0.625161 0.780496i \(-0.285033\pi\)
−0.988510 + 0.151157i \(0.951700\pi\)
\(90\) 0 0
\(91\) −0.275845 + 0.477777i −0.0289164 + 0.0500846i
\(92\) 9.14971 7.67752i 0.953923 0.800437i
\(93\) 0 0
\(94\) 0.286989 1.62760i 0.0296007 0.167874i
\(95\) −0.107103 + 0.607411i −0.0109885 + 0.0623191i
\(96\) 0 0
\(97\) −6.91534 + 5.80266i −0.702147 + 0.589171i −0.922384 0.386275i \(-0.873761\pi\)
0.220237 + 0.975446i \(0.429317\pi\)
\(98\) 2.38917 4.13816i 0.241342 0.418017i
\(99\) 0 0
\(100\) −2.98886 5.17685i −0.298886 0.517685i
\(101\) −12.2086 4.44356i −1.21480 0.442151i −0.346434 0.938074i \(-0.612607\pi\)
−0.868366 + 0.495923i \(0.834830\pi\)
\(102\) 0 0
\(103\) 6.94949 + 5.83132i 0.684754 + 0.574577i 0.917391 0.397987i \(-0.130291\pi\)
−0.232637 + 0.972564i \(0.574735\pi\)
\(104\) −10.3847 + 3.77972i −1.01830 + 0.370632i
\(105\) 0 0
\(106\) −0.361844 2.05212i −0.0351454 0.199320i
\(107\) 11.3865 1.10077 0.550386 0.834911i \(-0.314481\pi\)
0.550386 + 0.834911i \(0.314481\pi\)
\(108\) 0 0
\(109\) 2.89899 0.277672 0.138836 0.990315i \(-0.455664\pi\)
0.138836 + 0.990315i \(0.455664\pi\)
\(110\) −0.676417 3.83615i −0.0644938 0.365763i
\(111\) 0 0
\(112\) 0.159978 0.0582271i 0.0151165 0.00550194i
\(113\) −8.87089 7.44356i −0.834503 0.700232i 0.121817 0.992553i \(-0.461128\pi\)
−0.956320 + 0.292321i \(0.905572\pi\)
\(114\) 0 0
\(115\) 7.67752 + 2.79439i 0.715932 + 0.260578i
\(116\) 3.88365 + 6.72668i 0.360588 + 0.624557i
\(117\) 0 0
\(118\) 0.0150147 0.0260063i 0.00138222 0.00239407i
\(119\) −0.441500 + 0.370462i −0.0404722 + 0.0339602i
\(120\) 0 0
\(121\) 3.21688 18.2438i 0.292444 1.65853i
\(122\) −1.21302 + 6.87939i −0.109822 + 0.622830i
\(123\) 0 0
\(124\) 10.2797 8.62571i 0.923146 0.774611i
\(125\) 4.66452 8.07919i 0.417208 0.722625i
\(126\) 0 0
\(127\) 7.70961 + 13.3534i 0.684117 + 1.18493i 0.973713 + 0.227777i \(0.0731456\pi\)
−0.289596 + 0.957149i \(0.593521\pi\)
\(128\) 10.1614 + 3.69846i 0.898153 + 0.326901i
\(129\) 0 0
\(130\) −2.51186 2.10770i −0.220305 0.184858i
\(131\) −12.5506 + 4.56805i −1.09655 + 0.399112i −0.826044 0.563606i \(-0.809414\pi\)
−0.270508 + 0.962718i \(0.587192\pi\)
\(132\) 0 0
\(133\) 0.0123264 + 0.0699065i 0.00106883 + 0.00606166i
\(134\) −1.27217 −0.109899
\(135\) 0 0
\(136\) −11.5449 −0.989965
\(137\) −3.40760 19.3255i −0.291131 1.65109i −0.682524 0.730863i \(-0.739118\pi\)
0.391393 0.920224i \(-0.371993\pi\)
\(138\) 0 0
\(139\) −15.3229 + 5.57710i −1.29968 + 0.473043i −0.896891 0.442252i \(-0.854180\pi\)
−0.402784 + 0.915295i \(0.631958\pi\)
\(140\) 0.148356 + 0.124485i 0.0125383 + 0.0105209i
\(141\) 0 0
\(142\) 4.18479 + 1.52314i 0.351180 + 0.127819i
\(143\) −12.4269 21.5239i −1.03919 1.79992i
\(144\) 0 0
\(145\) −2.65657 + 4.60132i −0.220616 + 0.382119i
\(146\) 6.41090 5.37939i 0.530570 0.445201i
\(147\) 0 0
\(148\) 0.581252 3.29644i 0.0477786 0.270966i
\(149\) 1.91841 10.8799i 0.157162 0.891312i −0.799620 0.600507i \(-0.794966\pi\)
0.956782 0.290806i \(-0.0939233\pi\)
\(150\) 0 0
\(151\) −5.20961 + 4.37138i −0.423952 + 0.355738i −0.829664 0.558263i \(-0.811468\pi\)
0.405712 + 0.914001i \(0.367024\pi\)
\(152\) −0.710966 + 1.23143i −0.0576670 + 0.0998821i
\(153\) 0 0
\(154\) −0.224155 0.388249i −0.0180630 0.0312860i
\(155\) 8.62571 + 3.13950i 0.692833 + 0.252171i
\(156\) 0 0
\(157\) 12.9363 + 10.8548i 1.03243 + 0.866310i 0.991138 0.132837i \(-0.0424087\pi\)
0.0412904 + 0.999147i \(0.486853\pi\)
\(158\) −0.451451 + 0.164315i −0.0359155 + 0.0130722i
\(159\) 0 0
\(160\) 1.05509 + 5.98373i 0.0834124 + 0.473055i
\(161\) 0.940307 0.0741066
\(162\) 0 0
\(163\) 8.41147 0.658838 0.329419 0.944184i \(-0.393147\pi\)
0.329419 + 0.944184i \(0.393147\pi\)
\(164\) −2.01087 11.4042i −0.157022 0.890518i
\(165\) 0 0
\(166\) −4.35591 + 1.58542i −0.338085 + 0.123053i
\(167\) −2.01087 1.68732i −0.155606 0.130569i 0.561661 0.827368i \(-0.310163\pi\)
−0.717267 + 0.696799i \(0.754607\pi\)
\(168\) 0 0
\(169\) −7.44356 2.70924i −0.572582 0.208403i
\(170\) −1.71275 2.96657i −0.131362 0.227525i
\(171\) 0 0
\(172\) −1.00000 + 1.73205i −0.0762493 + 0.132068i
\(173\) 10.0377 8.42262i 0.763151 0.640360i −0.175794 0.984427i \(-0.556249\pi\)
0.938945 + 0.344067i \(0.111805\pi\)
\(174\) 0 0
\(175\) 0.0817187 0.463450i 0.00617736 0.0350335i
\(176\) −1.33180 + 7.55303i −0.100388 + 0.569331i
\(177\) 0 0
\(178\) 3.59240 3.01438i 0.269261 0.225937i
\(179\) 11.0494 19.1382i 0.825872 1.43045i −0.0753784 0.997155i \(-0.524016\pi\)
0.901251 0.433298i \(-0.142650\pi\)
\(180\) 0 0
\(181\) 1.02956 + 1.78325i 0.0765268 + 0.132548i 0.901749 0.432260i \(-0.142284\pi\)
−0.825222 + 0.564808i \(0.808950\pi\)
\(182\) −0.354619 0.129071i −0.0262861 0.00956736i
\(183\) 0 0
\(184\) 14.4290 + 12.1074i 1.06372 + 0.892568i
\(185\) 2.15160 0.783119i 0.158189 0.0575760i
\(186\) 0 0
\(187\) −4.50862 25.5696i −0.329703 1.86984i
\(188\) −3.70167 −0.269972
\(189\) 0 0
\(190\) −0.421903 −0.0306081
\(191\) −0.685768 3.88919i −0.0496205 0.281412i 0.949894 0.312572i \(-0.101191\pi\)
−0.999514 + 0.0311609i \(0.990080\pi\)
\(192\) 0 0
\(193\) 7.93717 2.88889i 0.571330 0.207947i −0.0401684 0.999193i \(-0.512789\pi\)
0.611498 + 0.791246i \(0.290567\pi\)
\(194\) −4.73037 3.96926i −0.339621 0.284976i
\(195\) 0 0
\(196\) −10.0569 3.66041i −0.718350 0.261458i
\(197\) 1.14749 + 1.98751i 0.0817553 + 0.141604i 0.904004 0.427524i \(-0.140614\pi\)
−0.822249 + 0.569128i \(0.807281\pi\)
\(198\) 0 0
\(199\) 11.7515 20.3542i 0.833042 1.44287i −0.0625736 0.998040i \(-0.519931\pi\)
0.895615 0.444830i \(-0.146736\pi\)
\(200\) 7.22135 6.05943i 0.510626 0.428466i
\(201\) 0 0
\(202\) 1.54323 8.75211i 0.108582 0.615796i
\(203\) −0.106183 + 0.602196i −0.00745262 + 0.0422659i
\(204\) 0 0
\(205\) 6.06805 5.09170i 0.423811 0.355620i
\(206\) −3.10278 + 5.37417i −0.216181 + 0.374436i
\(207\) 0 0
\(208\) 3.22803 + 5.59110i 0.223823 + 0.387673i
\(209\) −3.00503 1.09374i −0.207862 0.0756556i
\(210\) 0 0
\(211\) −1.27719 1.07169i −0.0879253 0.0737781i 0.597766 0.801671i \(-0.296055\pi\)
−0.685691 + 0.727893i \(0.740500\pi\)
\(212\) −4.38571 + 1.59627i −0.301212 + 0.109632i
\(213\) 0 0
\(214\) 1.35251 + 7.67047i 0.0924557 + 0.524343i
\(215\) −1.36808 −0.0933023
\(216\) 0 0
\(217\) 1.05644 0.0717156
\(218\) 0.344348 + 1.95290i 0.0233222 + 0.132267i
\(219\) 0 0
\(220\) −8.19846 + 2.98400i −0.552740 + 0.201181i
\(221\) −16.7427 14.0488i −1.12623 0.945021i
\(222\) 0 0
\(223\) 9.20961 + 3.35202i 0.616721 + 0.224468i 0.631441 0.775424i \(-0.282464\pi\)
−0.0147205 + 0.999892i \(0.504686\pi\)
\(224\) 0.349643 + 0.605600i 0.0233615 + 0.0404634i
\(225\) 0 0
\(226\) 3.96064 6.86002i 0.263458 0.456322i
\(227\) −11.8589 + 9.95084i −0.787106 + 0.660460i −0.945027 0.326991i \(-0.893965\pi\)
0.157921 + 0.987452i \(0.449521\pi\)
\(228\) 0 0
\(229\) −1.95424 + 11.0830i −0.129140 + 0.732388i 0.849623 + 0.527391i \(0.176830\pi\)
−0.978763 + 0.204997i \(0.934281\pi\)
\(230\) −0.970481 + 5.50387i −0.0639916 + 0.362914i
\(231\) 0 0
\(232\) −9.38326 + 7.87349i −0.616041 + 0.516920i
\(233\) 2.61738 4.53343i 0.171470 0.296995i −0.767464 0.641092i \(-0.778482\pi\)
0.938934 + 0.344097i \(0.111815\pi\)
\(234\) 0 0
\(235\) −1.26604 2.19285i −0.0825876 0.143046i
\(236\) −0.0632028 0.0230039i −0.00411415 0.00149743i
\(237\) 0 0
\(238\) −0.302004 0.253411i −0.0195760 0.0164262i
\(239\) −9.68804 + 3.52616i −0.626667 + 0.228088i −0.635780 0.771870i \(-0.719321\pi\)
0.00911276 + 0.999958i \(0.497099\pi\)
\(240\) 0 0
\(241\) 1.86571 + 10.5810i 0.120181 + 0.681582i 0.984054 + 0.177871i \(0.0569211\pi\)
−0.863873 + 0.503710i \(0.831968\pi\)
\(242\) 12.6720 0.814590
\(243\) 0 0
\(244\) 15.6459 1.00163
\(245\) −1.27125 7.20961i −0.0812171 0.460605i
\(246\) 0 0
\(247\) −2.52956 + 0.920686i −0.160952 + 0.0585818i
\(248\) 16.2110 + 13.6027i 1.02940 + 0.863770i
\(249\) 0 0
\(250\) 5.99660 + 2.18258i 0.379258 + 0.138039i
\(251\) 7.53644 + 13.0535i 0.475696 + 0.823930i 0.999612 0.0278401i \(-0.00886291\pi\)
−0.523916 + 0.851770i \(0.675530\pi\)
\(252\) 0 0
\(253\) −21.1805 + 36.6857i −1.33161 + 2.30641i
\(254\) −8.07975 + 6.77972i −0.506969 + 0.425397i
\(255\) 0 0
\(256\) −1.68139 + 9.53563i −0.105087 + 0.595977i
\(257\) 0.576937 3.27197i 0.0359884 0.204100i −0.961512 0.274763i \(-0.911400\pi\)
0.997500 + 0.0706633i \(0.0225116\pi\)
\(258\) 0 0
\(259\) 0.201867 0.169386i 0.0125434 0.0105251i
\(260\) −3.67209 + 6.36025i −0.227734 + 0.394446i
\(261\) 0 0
\(262\) −4.56805 7.91209i −0.282215 0.488811i
\(263\) 8.30564 + 3.02300i 0.512147 + 0.186406i 0.585150 0.810925i \(-0.301036\pi\)
−0.0730022 + 0.997332i \(0.523258\pi\)
\(264\) 0 0
\(265\) −2.44562 2.05212i −0.150233 0.126061i
\(266\) −0.0456282 + 0.0166073i −0.00279765 + 0.00101826i
\(267\) 0 0
\(268\) 0.494785 + 2.80607i 0.0302238 + 0.171408i
\(269\) −8.09267 −0.493419 −0.246709 0.969090i \(-0.579349\pi\)
−0.246709 + 0.969090i \(0.579349\pi\)
\(270\) 0 0
\(271\) −19.0000 −1.15417 −0.577084 0.816685i \(-0.695809\pi\)
−0.577084 + 0.816685i \(0.695809\pi\)
\(272\) 1.17117 + 6.64203i 0.0710125 + 0.402732i
\(273\) 0 0
\(274\) 12.6138 4.59105i 0.762028 0.277356i
\(275\) 16.2406 + 13.6275i 0.979345 + 0.821768i
\(276\) 0 0
\(277\) 3.97431 + 1.44653i 0.238793 + 0.0869135i 0.458645 0.888620i \(-0.348335\pi\)
−0.219852 + 0.975533i \(0.570557\pi\)
\(278\) −5.57710 9.65982i −0.334492 0.579357i
\(279\) 0 0
\(280\) −0.152704 + 0.264490i −0.00912579 + 0.0158063i
\(281\) −5.59375 + 4.69372i −0.333695 + 0.280004i −0.794204 0.607652i \(-0.792112\pi\)
0.460508 + 0.887655i \(0.347667\pi\)
\(282\) 0 0
\(283\) 2.78194 15.7771i 0.165369 0.937854i −0.783314 0.621626i \(-0.786472\pi\)
0.948683 0.316228i \(-0.102416\pi\)
\(284\) 1.73205 9.82295i 0.102778 0.582885i
\(285\) 0 0
\(286\) 13.0235 10.9280i 0.770094 0.646186i
\(287\) 0.455827 0.789515i 0.0269066 0.0466036i
\(288\) 0 0
\(289\) −2.91622 5.05104i −0.171542 0.297120i
\(290\) −3.41523 1.24304i −0.200549 0.0729939i
\(291\) 0 0
\(292\) −14.3589 12.0486i −0.840292 0.705088i
\(293\) 16.9187 6.15792i 0.988403 0.359749i 0.203302 0.979116i \(-0.434833\pi\)
0.785102 + 0.619367i \(0.212611\pi\)
\(294\) 0 0
\(295\) −0.00798918 0.0453089i −0.000465148 0.00263799i
\(296\) 5.27866 0.306816
\(297\) 0 0
\(298\) 7.55707 0.437769
\(299\) 6.19204 + 35.1168i 0.358095 + 2.03086i
\(300\) 0 0
\(301\) −0.147956 + 0.0538515i −0.00852804 + 0.00310395i
\(302\) −3.56358 2.99020i −0.205061 0.172067i
\(303\) 0 0
\(304\) 0.780592 + 0.284112i 0.0447700 + 0.0162950i
\(305\) 5.35121 + 9.26857i 0.306409 + 0.530717i
\(306\) 0 0
\(307\) 6.75537 11.7006i 0.385549 0.667791i −0.606296 0.795239i \(-0.707345\pi\)
0.991845 + 0.127448i \(0.0406787\pi\)
\(308\) −0.769193 + 0.645430i −0.0438288 + 0.0367768i
\(309\) 0 0
\(310\) −1.09034 + 6.18361i −0.0619270 + 0.351205i
\(311\) −2.85170 + 16.1728i −0.161705 + 0.917074i 0.790692 + 0.612214i \(0.209721\pi\)
−0.952397 + 0.304860i \(0.901390\pi\)
\(312\) 0 0
\(313\) −14.9875 + 12.5760i −0.847144 + 0.710838i −0.959159 0.282868i \(-0.908714\pi\)
0.112015 + 0.993707i \(0.464270\pi\)
\(314\) −5.77574 + 10.0039i −0.325944 + 0.564551i
\(315\) 0 0
\(316\) 0.538019 + 0.931876i 0.0302659 + 0.0524221i
\(317\) −22.9084 8.33796i −1.28666 0.468307i −0.394032 0.919097i \(-0.628920\pi\)
−0.892630 + 0.450790i \(0.851142\pi\)
\(318\) 0 0
\(319\) −21.1027 17.7072i −1.18152 0.991415i
\(320\) −1.12554 + 0.409663i −0.0629196 + 0.0229009i
\(321\) 0 0
\(322\) 0.111692 + 0.633436i 0.00622435 + 0.0353000i
\(323\) −2.81217 −0.156473
\(324\) 0 0
\(325\) 17.8462 0.989927
\(326\) 0.999135 + 5.66637i 0.0553370 + 0.313831i
\(327\) 0 0
\(328\) 17.1604 6.24589i 0.947527 0.344872i
\(329\) −0.223238 0.187319i −0.0123075 0.0103272i
\(330\) 0 0
\(331\) −26.7802 9.74719i −1.47197 0.535754i −0.523337 0.852126i \(-0.675313\pi\)
−0.948635 + 0.316372i \(0.897535\pi\)
\(332\) 5.19118 + 8.99138i 0.284903 + 0.493466i
\(333\) 0 0
\(334\) 0.897804 1.55504i 0.0491256 0.0850881i
\(335\) −1.49308 + 1.25284i −0.0815755 + 0.0684500i
\(336\) 0 0
\(337\) −3.02956 + 17.1815i −0.165031 + 0.935936i 0.784002 + 0.620758i \(0.213175\pi\)
−0.949033 + 0.315178i \(0.897936\pi\)
\(338\) 0.940908 5.33615i 0.0511786 0.290248i
\(339\) 0 0
\(340\) −5.87733 + 4.93166i −0.318743 + 0.267457i
\(341\) −23.7963 + 41.2165i −1.28864 + 2.23200i
\(342\) 0 0
\(343\) −0.843426 1.46086i −0.0455407 0.0788788i
\(344\) −2.96377 1.07873i −0.159796 0.0581610i
\(345\) 0 0
\(346\) 6.86618 + 5.76141i 0.369128 + 0.309735i
\(347\) 23.6699 8.61515i 1.27067 0.462486i 0.383333 0.923610i \(-0.374776\pi\)
0.887335 + 0.461125i \(0.152554\pi\)
\(348\) 0 0
\(349\) −2.05809 11.6720i −0.110167 0.624787i −0.989030 0.147713i \(-0.952809\pi\)
0.878863 0.477074i \(-0.158302\pi\)
\(350\) 0.321909 0.0172068
\(351\) 0 0
\(352\) −31.5030 −1.67912
\(353\) 1.45821 + 8.26991i 0.0776126 + 0.440163i 0.998708 + 0.0508251i \(0.0161851\pi\)
−0.921095 + 0.389338i \(0.872704\pi\)
\(354\) 0 0
\(355\) 6.41147 2.33359i 0.340286 0.123854i
\(356\) −8.04612 6.75150i −0.426444 0.357829i
\(357\) 0 0
\(358\) 14.2049 + 5.17015i 0.750750 + 0.273251i
\(359\) 1.32012 + 2.28652i 0.0696735 + 0.120678i 0.898758 0.438446i \(-0.144471\pi\)
−0.829084 + 0.559124i \(0.811138\pi\)
\(360\) 0 0
\(361\) 9.32682 16.1545i 0.490885 0.850238i
\(362\) −1.07899 + 0.905382i −0.0567106 + 0.0475858i
\(363\) 0 0
\(364\) −0.146774 + 0.832396i −0.00769304 + 0.0436294i
\(365\) 2.22648 12.6270i 0.116539 0.660928i
\(366\) 0 0
\(367\) 7.04576 5.91209i 0.367786 0.308609i −0.440099 0.897949i \(-0.645057\pi\)
0.807885 + 0.589340i \(0.200612\pi\)
\(368\) 5.50190 9.52956i 0.286806 0.496763i
\(369\) 0 0
\(370\) 0.783119 + 1.35640i 0.0407124 + 0.0705159i
\(371\) −0.345268 0.125667i −0.0179254 0.00652432i
\(372\) 0 0
\(373\) −20.5232 17.2210i −1.06265 0.891671i −0.0682855 0.997666i \(-0.521753\pi\)
−0.994367 + 0.105995i \(0.966197\pi\)
\(374\) 16.6894 6.07444i 0.862988 0.314102i
\(375\) 0 0
\(376\) −1.01367 5.74881i −0.0522761 0.296472i
\(377\) −23.1889 −1.19429
\(378\) 0 0
\(379\) −27.1242 −1.39328 −0.696639 0.717422i \(-0.745322\pi\)
−0.696639 + 0.717422i \(0.745322\pi\)
\(380\) 0.164091 + 0.930608i 0.00841770 + 0.0477392i
\(381\) 0 0
\(382\) 2.53849 0.923933i 0.129880 0.0472725i
\(383\) 26.3725 + 22.1291i 1.34757 + 1.13075i 0.979611 + 0.200904i \(0.0643878\pi\)
0.367959 + 0.929842i \(0.380057\pi\)
\(384\) 0 0
\(385\) −0.645430 0.234917i −0.0328941 0.0119725i
\(386\) 2.88889 + 5.00371i 0.147041 + 0.254682i
\(387\) 0 0
\(388\) −6.91534 + 11.9777i −0.351073 + 0.608077i
\(389\) 0.579585 0.486329i 0.0293861 0.0246579i −0.627976 0.778232i \(-0.716117\pi\)
0.657362 + 0.753575i \(0.271672\pi\)
\(390\) 0 0
\(391\) −6.46868 + 36.6857i −0.327135 + 1.85528i
\(392\) 2.93075 16.6211i 0.148025 0.839491i
\(393\) 0 0
\(394\) −1.20258 + 1.00909i −0.0605852 + 0.0508370i
\(395\) −0.368026 + 0.637441i −0.0185174 + 0.0320731i
\(396\) 0 0
\(397\) −3.50387 6.06888i −0.175854 0.304588i 0.764602 0.644502i \(-0.222935\pi\)
−0.940457 + 0.339914i \(0.889602\pi\)
\(398\) 15.1074 + 5.49866i 0.757267 + 0.275623i
\(399\) 0 0
\(400\) −4.21869 3.53990i −0.210935 0.176995i
\(401\) 8.88084 3.23236i 0.443488 0.161417i −0.110617 0.993863i \(-0.535283\pi\)
0.554105 + 0.832447i \(0.313060\pi\)
\(402\) 0 0
\(403\) 6.95677 + 39.4538i 0.346541 + 1.96533i
\(404\) −19.9051 −0.990314
\(405\) 0 0
\(406\) −0.418281 −0.0207590
\(407\) 2.06147 + 11.6912i 0.102183 + 0.579511i
\(408\) 0 0
\(409\) −5.18479 + 1.88711i −0.256371 + 0.0933116i −0.467009 0.884253i \(-0.654668\pi\)
0.210637 + 0.977564i \(0.432446\pi\)
\(410\) 4.15079 + 3.48293i 0.204993 + 0.172009i
\(411\) 0 0
\(412\) 13.0608 + 4.75373i 0.643458 + 0.234200i
\(413\) −0.00264750 0.00458561i −0.000130275 0.000225643i
\(414\) 0 0
\(415\) −3.55097 + 6.15047i −0.174310 + 0.301915i
\(416\) −20.3143 + 17.0458i −0.995993 + 0.835737i
\(417\) 0 0
\(418\) 0.379852 2.15425i 0.0185792 0.105368i
\(419\) −0.0809857 + 0.459293i −0.00395641 + 0.0224379i −0.986722 0.162418i \(-0.948071\pi\)
0.982766 + 0.184856i \(0.0591818\pi\)
\(420\) 0 0
\(421\) −1.84936 + 1.55179i −0.0901321 + 0.0756298i −0.686740 0.726903i \(-0.740959\pi\)
0.596608 + 0.802533i \(0.296515\pi\)
\(422\) 0.570234 0.987674i 0.0277585 0.0480792i
\(423\) 0 0
\(424\) −3.68004 6.37402i −0.178719 0.309550i
\(425\) 17.5191 + 6.37645i 0.849804 + 0.309303i
\(426\) 0 0
\(427\) 0.943563 + 0.791743i 0.0456622 + 0.0383151i
\(428\) 16.3930 5.96657i 0.792386 0.288405i
\(429\) 0 0
\(430\) −0.162504 0.921605i −0.00783663 0.0444437i
\(431\) 12.0992 0.582796 0.291398 0.956602i \(-0.405880\pi\)
0.291398 + 0.956602i \(0.405880\pi\)
\(432\) 0 0
\(433\) 33.3509 1.60274 0.801371 0.598167i \(-0.204104\pi\)
0.801371 + 0.598167i \(0.204104\pi\)
\(434\) 0.125486 + 0.711667i 0.00602352 + 0.0341611i
\(435\) 0 0
\(436\) 4.17365 1.51908i 0.199881 0.0727509i
\(437\) 3.51471 + 2.94919i 0.168131 + 0.141079i
\(438\) 0 0
\(439\) 8.49912 + 3.09343i 0.405641 + 0.147641i 0.536779 0.843723i \(-0.319641\pi\)
−0.131138 + 0.991364i \(0.541863\pi\)
\(440\) −6.87933 11.9153i −0.327959 0.568042i
\(441\) 0 0
\(442\) 7.47519 12.9474i 0.355558 0.615845i
\(443\) 3.58288 3.00640i 0.170228 0.142838i −0.553694 0.832720i \(-0.686782\pi\)
0.723922 + 0.689882i \(0.242338\pi\)
\(444\) 0 0
\(445\) 1.24763 7.07564i 0.0591432 0.335417i
\(446\) −1.16415 + 6.60220i −0.0551239 + 0.312623i
\(447\) 0 0
\(448\) −0.105600 + 0.0886089i −0.00498913 + 0.00418638i
\(449\) −13.3534 + 23.1288i −0.630187 + 1.09152i 0.357326 + 0.933980i \(0.383689\pi\)
−0.987513 + 0.157537i \(0.949645\pi\)
\(450\) 0 0
\(451\) 20.5351 + 35.5678i 0.966959 + 1.67482i
\(452\) −16.6718 6.06805i −0.784177 0.285417i
\(453\) 0 0
\(454\) −8.11200 6.80677i −0.380715 0.319458i
\(455\) −0.543308 + 0.197748i −0.0254707 + 0.00927056i
\(456\) 0 0
\(457\) −0.114218 0.647763i −0.00534290 0.0303011i 0.982020 0.188778i \(-0.0604527\pi\)
−0.987363 + 0.158477i \(0.949342\pi\)
\(458\) −7.69820 −0.359713
\(459\) 0 0
\(460\) 12.5175 0.583633
\(461\) −3.59516 20.3892i −0.167443 0.949619i −0.946509 0.322677i \(-0.895417\pi\)
0.779066 0.626942i \(-0.215694\pi\)
\(462\) 0 0
\(463\) 23.3268 8.49027i 1.08409 0.394576i 0.262661 0.964888i \(-0.415400\pi\)
0.821428 + 0.570312i \(0.193178\pi\)
\(464\) 5.48167 + 4.59967i 0.254480 + 0.213534i
\(465\) 0 0
\(466\) 3.36484 + 1.22470i 0.155873 + 0.0567332i
\(467\) 13.3365 + 23.0994i 0.617138 + 1.06891i 0.990005 + 0.141029i \(0.0450412\pi\)
−0.372868 + 0.927884i \(0.621625\pi\)
\(468\) 0 0
\(469\) −0.112159 + 0.194265i −0.00517901 + 0.00897031i
\(470\) 1.32683 1.11334i 0.0612020 0.0513546i
\(471\) 0 0
\(472\) 0.0184183 0.104455i 0.000847772 0.00480795i
\(473\) 1.23172 6.98545i 0.0566347 0.321191i
\(474\) 0 0
\(475\) 1.75902 1.47599i 0.0807093 0.0677232i
\(476\) −0.441500 + 0.764700i −0.0202361 + 0.0350500i
\(477\) 0 0
\(478\) −3.52616 6.10749i −0.161283 0.279350i
\(479\) −3.03195 1.10354i −0.138533 0.0504221i 0.271823 0.962347i \(-0.412373\pi\)
−0.410356 + 0.911925i \(0.634596\pi\)
\(480\) 0 0
\(481\) 7.65523 + 6.42350i 0.349048 + 0.292886i
\(482\) −6.90625 + 2.51367i −0.314571 + 0.114495i
\(483\) 0 0
\(484\) −4.92855 27.9512i −0.224025 1.27051i
\(485\) −9.46075 −0.429590
\(486\) 0 0
\(487\) −7.77930 −0.352514 −0.176257 0.984344i \(-0.556399\pi\)
−0.176257 + 0.984344i \(0.556399\pi\)
\(488\) 4.28450 + 24.2986i 0.193950 + 1.09995i
\(489\) 0 0
\(490\) 4.70574 1.71275i 0.212584 0.0773741i
\(491\) −13.0580 10.9569i −0.589297 0.494479i 0.298688 0.954351i \(-0.403451\pi\)
−0.887985 + 0.459872i \(0.847895\pi\)
\(492\) 0 0
\(493\) −22.7640 8.28541i −1.02524 0.373156i
\(494\) −0.920686 1.59467i −0.0414236 0.0717478i
\(495\) 0 0
\(496\) 6.18139 10.7065i 0.277553 0.480735i
\(497\) 0.601535 0.504748i 0.0269825 0.0226410i
\(498\) 0 0
\(499\) 1.37716 7.81028i 0.0616503 0.349636i −0.938342 0.345708i \(-0.887639\pi\)
0.999992 0.00392784i \(-0.00125027\pi\)
\(500\) 2.48194 14.0758i 0.110996 0.629488i
\(501\) 0 0
\(502\) −7.89827 + 6.62744i −0.352517 + 0.295797i
\(503\) 12.4748 21.6070i 0.556224 0.963409i −0.441583 0.897220i \(-0.645583\pi\)
0.997807 0.0661881i \(-0.0210837\pi\)
\(504\) 0 0
\(505\) −6.80793 11.7917i −0.302949 0.524723i
\(506\) −27.2291 9.91060i −1.21048 0.440580i
\(507\) 0 0
\(508\) 18.0967 + 15.1850i 0.802913 + 0.673724i
\(509\) −38.0284 + 13.8412i −1.68558 + 0.613501i −0.994058 0.108855i \(-0.965281\pi\)
−0.691521 + 0.722356i \(0.743059\pi\)
\(510\) 0 0
\(511\) −0.256244 1.45323i −0.0113356 0.0642873i
\(512\) 15.0038 0.663080
\(513\) 0 0
\(514\) 2.27269 0.100244
\(515\) 1.65095 + 9.36303i 0.0727497 + 0.412584i
\(516\) 0 0
\(517\) 12.3366 4.49016i 0.542564 0.197477i
\(518\) 0.138085 + 0.115867i 0.00606710 + 0.00509090i
\(519\) 0 0
\(520\) −10.8833 3.96118i −0.477262 0.173709i
\(521\) 12.6837 + 21.9688i 0.555684 + 0.962473i 0.997850 + 0.0655394i \(0.0208768\pi\)
−0.442166 + 0.896933i \(0.645790\pi\)
\(522\) 0 0
\(523\) −6.36097 + 11.0175i −0.278146 + 0.481762i −0.970924 0.239388i \(-0.923053\pi\)
0.692778 + 0.721151i \(0.256386\pi\)
\(524\) −15.6753 + 13.1532i −0.684780 + 0.574599i
\(525\) 0 0
\(526\) −1.04988 + 5.95416i −0.0457769 + 0.259614i
\(527\) −7.26758 + 41.2165i −0.316581 + 1.79542i
\(528\) 0 0
\(529\) 28.9388 24.2825i 1.25821 1.05576i
\(530\) 1.09191 1.89124i 0.0474296 0.0821504i
\(531\) 0 0
\(532\) 0.0543776 + 0.0941848i 0.00235757 + 0.00408343i
\(533\) 32.4870 + 11.8243i 1.40717 + 0.512167i
\(534\) 0 0
\(535\) 9.14131 + 7.67047i 0.395213 + 0.331623i
\(536\) −4.22242 + 1.53684i −0.182381 + 0.0663812i
\(537\) 0 0
\(538\) −0.961266 5.45161i −0.0414431 0.235036i
\(539\) 37.9570 1.63492
\(540\) 0 0
\(541\) 2.09327 0.0899969 0.0449984 0.998987i \(-0.485672\pi\)
0.0449984 + 0.998987i \(0.485672\pi\)
\(542\) −2.25686 12.7993i −0.0969406 0.549778i
\(543\) 0 0
\(544\) −26.0326 + 9.47508i −1.11614 + 0.406241i
\(545\) 2.32737 + 1.95290i 0.0996936 + 0.0836529i
\(546\) 0 0
\(547\) −3.24288 1.18031i −0.138655 0.0504665i 0.271760 0.962365i \(-0.412394\pi\)
−0.410416 + 0.911899i \(0.634616\pi\)
\(548\) −15.0326 26.0371i −0.642159 1.11225i
\(549\) 0 0
\(550\) −7.25103 + 12.5592i −0.309185 + 0.535524i
\(551\) −2.28563 + 1.91787i −0.0973711 + 0.0817040i
\(552\) 0 0
\(553\) −0.0147100 + 0.0834248i −0.000625535 + 0.00354758i
\(554\) −0.502374 + 2.84911i −0.0213438 + 0.121047i
\(555\) 0 0
\(556\) −19.1379 + 16.0586i −0.811628 + 0.681037i
\(557\) −5.55017 + 9.61318i −0.235168 + 0.407323i −0.959322 0.282316i \(-0.908897\pi\)
0.724153 + 0.689639i \(0.242231\pi\)
\(558\) 0 0
\(559\) −2.98545 5.17095i −0.126271 0.218708i
\(560\) 0.167658 + 0.0610226i 0.00708485 + 0.00257868i
\(561\) 0 0
\(562\) −3.82635 3.21069i −0.161405 0.135435i
\(563\) 22.8446 8.31474i 0.962784 0.350425i 0.187660 0.982234i \(-0.439910\pi\)
0.775124 + 0.631810i \(0.217688\pi\)
\(564\) 0 0
\(565\) −2.10741 11.9517i −0.0886594 0.502813i
\(566\) 10.9587 0.460628
\(567\) 0 0
\(568\) 15.7297 0.660002
\(569\) −7.42588 42.1143i −0.311309 1.76552i −0.592208 0.805785i \(-0.701744\pi\)
0.280899 0.959737i \(-0.409367\pi\)
\(570\) 0 0
\(571\) −16.9410 + 6.16603i −0.708960 + 0.258040i −0.671232 0.741248i \(-0.734234\pi\)
−0.0377286 + 0.999288i \(0.512012\pi\)
\(572\) −29.1695 24.4761i −1.21964 1.02340i
\(573\) 0 0
\(574\) 0.586000 + 0.213286i 0.0244592 + 0.00890240i
\(575\) −15.2086 26.3421i −0.634244 1.09854i
\(576\) 0 0
\(577\) −12.6382 + 21.8899i −0.526133 + 0.911290i 0.473403 + 0.880846i \(0.343025\pi\)
−0.999536 + 0.0304438i \(0.990308\pi\)
\(578\) 3.05623 2.56448i 0.127122 0.106668i
\(579\) 0 0
\(580\) −1.41353 + 8.01655i −0.0586938 + 0.332869i
\(581\) −0.141933 + 0.804940i −0.00588836 + 0.0333946i
\(582\) 0 0
\(583\) 12.6800 10.6398i 0.525154 0.440656i
\(584\) 14.7797 25.5993i 0.611590 1.05930i
\(585\) 0 0
\(586\) 6.15792 + 10.6658i 0.254381 + 0.440601i
\(587\) 26.8426 + 9.76991i 1.10791 + 0.403248i 0.830228 0.557424i \(-0.188210\pi\)
0.277686 + 0.960672i \(0.410433\pi\)
\(588\) 0 0
\(589\) 3.94878 + 3.31342i 0.162707 + 0.136527i
\(590\) 0.0295733 0.0107638i 0.00121751 0.000443138i
\(591\) 0 0
\(592\) −0.535492 3.03693i −0.0220086 0.124817i
\(593\) −20.6009 −0.845977 −0.422989 0.906135i \(-0.639019\pi\)
−0.422989 + 0.906135i \(0.639019\pi\)
\(594\) 0 0
\(595\) −0.604007 −0.0247619
\(596\) −2.93918 16.6689i −0.120393 0.682785i
\(597\) 0 0
\(598\) −22.9209 + 8.34251i −0.937304 + 0.341151i
\(599\) 11.0883 + 9.30423i 0.453057 + 0.380160i 0.840569 0.541705i \(-0.182221\pi\)
−0.387512 + 0.921865i \(0.626665\pi\)
\(600\) 0 0
\(601\) 12.5496 + 4.56769i 0.511910 + 0.186320i 0.585043 0.811002i \(-0.301078\pi\)
−0.0731331 + 0.997322i \(0.523300\pi\)
\(602\) −0.0538515 0.0932736i −0.00219483 0.00380155i
\(603\) 0 0
\(604\) −5.20961 + 9.02330i −0.211976 + 0.367153i
\(605\) 14.8725 12.4795i 0.604654 0.507365i
\(606\) 0 0
\(607\) 5.42009 30.7389i 0.219995 1.24765i −0.652031 0.758192i \(-0.726083\pi\)
0.872026 0.489460i \(-0.162806\pi\)
\(608\) −0.592503 + 3.36025i −0.0240292 + 0.136276i
\(609\) 0 0
\(610\) −5.60813 + 4.70578i −0.227066 + 0.190531i
\(611\) 5.52557 9.57057i 0.223541 0.387184i
\(612\) 0 0
\(613\) −15.0326 26.0372i −0.607159 1.05163i −0.991706 0.128525i \(-0.958976\pi\)
0.384547 0.923105i \(-0.374358\pi\)
\(614\) 8.68453 + 3.16091i 0.350479 + 0.127564i
\(615\) 0 0
\(616\) −1.21301 1.01784i −0.0488736 0.0410098i
\(617\) −39.6115 + 14.4174i −1.59470 + 0.580423i −0.978333 0.207037i \(-0.933618\pi\)
−0.616366 + 0.787460i \(0.711396\pi\)
\(618\) 0 0
\(619\) 2.01620 + 11.4344i 0.0810378 + 0.459588i 0.998141 + 0.0609394i \(0.0194096\pi\)
−0.917104 + 0.398649i \(0.869479\pi\)
\(620\) 14.0635 0.564803
\(621\) 0 0
\(622\) −11.2335 −0.450422
\(623\) −0.143588 0.814330i −0.00575275 0.0326254i
\(624\) 0 0
\(625\) −9.14455 + 3.32834i −0.365782 + 0.133134i
\(626\) −10.2521 8.60250i −0.409755 0.343825i
\(627\) 0 0
\(628\) 24.3123 + 8.84894i 0.970165 + 0.353111i
\(629\) 5.21983 + 9.04101i 0.208128 + 0.360489i
\(630\) 0 0
\(631\) 14.6552 25.3836i 0.583415 1.01051i −0.411655 0.911340i \(-0.635049\pi\)
0.995071 0.0991657i \(-0.0316174\pi\)
\(632\) −1.29990 + 1.09075i −0.0517073 + 0.0433876i
\(633\) 0 0
\(634\) 2.89574 16.4226i 0.115005 0.652224i
\(635\) −2.80607 + 15.9140i −0.111355 + 0.631528i
\(636\) 0 0
\(637\) 24.4761 20.5379i 0.969779 0.813741i
\(638\) 9.42182 16.3191i 0.373014 0.646078i
\(639\) 0 0
\(640\) 5.66637 + 9.81445i 0.223983 + 0.387950i
\(641\) −29.2224 10.6361i −1.15422 0.420101i −0.307189 0.951649i \(-0.599388\pi\)
−0.847028 + 0.531548i \(0.821610\pi\)
\(642\) 0 0
\(643\) 32.2290 + 27.0433i 1.27099 + 1.06648i 0.994420 + 0.105489i \(0.0336408\pi\)
0.276566 + 0.960995i \(0.410804\pi\)
\(644\) 1.35375 0.492726i 0.0533454 0.0194161i
\(645\) 0 0
\(646\) −0.334036 1.89441i −0.0131425 0.0745347i
\(647\) −4.66717 −0.183485 −0.0917427 0.995783i \(-0.529244\pi\)
−0.0917427 + 0.995783i \(0.529244\pi\)
\(648\) 0 0
\(649\) 0.238541 0.00936356
\(650\) 2.11981 + 12.0220i 0.0831458 + 0.471543i
\(651\) 0 0
\(652\) 12.1099 4.40766i 0.474262 0.172617i
\(653\) −2.39322 2.00815i −0.0936540 0.0785850i 0.594759 0.803904i \(-0.297248\pi\)
−0.688413 + 0.725319i \(0.741692\pi\)
\(654\) 0 0
\(655\) −13.1532 4.78736i −0.513937 0.187058i
\(656\) −5.33424 9.23917i −0.208267 0.360729i
\(657\) 0 0
\(658\) 0.0996702 0.172634i 0.00388555 0.00672997i
\(659\) 28.6724 24.0590i 1.11692 0.937206i 0.118474 0.992957i \(-0.462200\pi\)
0.998445 + 0.0557508i \(0.0177552\pi\)
\(660\) 0 0
\(661\) 4.60173 26.0977i 0.178987 1.01508i −0.754455 0.656352i \(-0.772099\pi\)
0.933441 0.358731i \(-0.116790\pi\)
\(662\) 3.38516 19.1982i 0.131568 0.746160i
\(663\) 0 0
\(664\) −12.5424 + 10.5243i −0.486738 + 0.408422i
\(665\) −0.0371965 + 0.0644262i −0.00144242 + 0.00249834i
\(666\) 0 0
\(667\) 19.7618 + 34.2284i 0.765179 + 1.32533i
\(668\) −3.77920 1.37551i −0.146221 0.0532203i
\(669\) 0 0
\(670\) −1.02133 0.856994i −0.0394572 0.0331085i
\(671\) −52.1434 + 18.9786i −2.01297 + 0.732662i
\(672\) 0 0
\(673\) 0.298849 + 1.69485i 0.0115198 + 0.0653318i 0.990026 0.140887i \(-0.0449953\pi\)
−0.978506 + 0.206219i \(0.933884\pi\)
\(674\) −11.9341 −0.459686
\(675\) 0 0
\(676\) −12.1361 −0.466773
\(677\) −4.91063 27.8496i −0.188731 1.07035i −0.921067 0.389403i \(-0.872681\pi\)
0.732337 0.680943i \(-0.238430\pi\)
\(678\) 0 0
\(679\) −1.02317 + 0.372402i −0.0392655 + 0.0142915i
\(680\) −9.26849 7.77719i −0.355430 0.298242i
\(681\) 0 0
\(682\) −30.5920 11.1346i −1.17143 0.426365i
\(683\) −12.3569 21.4029i −0.472825 0.818958i 0.526691 0.850057i \(-0.323433\pi\)
−0.999516 + 0.0310993i \(0.990099\pi\)
\(684\) 0 0
\(685\) 10.2829 17.8105i 0.392888 0.680502i
\(686\) 0.883919 0.741696i 0.0337482 0.0283181i
\(687\) 0 0
\(688\) −0.319955 + 1.81456i −0.0121982 + 0.0691793i
\(689\) 2.41955 13.7219i 0.0921774 0.522764i
\(690\) 0 0
\(691\) −33.5317 + 28.1364i −1.27561 + 1.07036i −0.281771 + 0.959482i \(0.590922\pi\)
−0.993834 + 0.110878i \(0.964634\pi\)
\(692\) 10.0377 17.3858i 0.381576 0.660908i
\(693\) 0 0
\(694\) 8.61515 + 14.9219i 0.327027 + 0.566427i
\(695\) −16.0586 5.84486i −0.609138 0.221708i
\(696\) 0 0
\(697\) 27.6668 + 23.2152i 1.04796 + 0.879340i
\(698\) 7.61835 2.77285i 0.288359 0.104954i
\(699\) 0 0
\(700\) −0.125200 0.710047i −0.00473213 0.0268372i
\(701\) 14.6504 0.553338 0.276669 0.960965i \(-0.410769\pi\)
0.276669 + 0.960965i \(0.410769\pi\)
\(702\) 0 0
\(703\) 1.28581 0.0484951
\(704\) −1.07839 6.11587i −0.0406434 0.230500i
\(705\) 0 0
\(706\) −5.39780 + 1.96464i −0.203149 + 0.0739402i
\(707\) −1.20042 1.00727i −0.0451465 0.0378824i
\(708\) 0 0
\(709\) −4.76769 1.73530i −0.179054 0.0651705i 0.250937 0.968003i \(-0.419261\pi\)
−0.429992 + 0.902833i \(0.641483\pi\)
\(710\) 2.33359 + 4.04189i 0.0875779 + 0.151689i
\(711\) 0 0
\(712\) 8.28194 14.3447i 0.310379 0.537592i
\(713\) 52.3078 43.8915i 1.95894 1.64375i
\(714\) 0 0
\(715\) 4.52300 25.6512i 0.169151 0.959302i
\(716\) 5.87927 33.3430i 0.219719 1.24609i
\(717\) 0 0
\(718\) −1.38350 + 1.16090i −0.0516319 + 0.0433243i
\(719\) −2.66858 + 4.62212i −0.0995213 + 0.172376i −0.911487 0.411330i \(-0.865064\pi\)
0.811965 + 0.583706i \(0.198398\pi\)
\(720\) 0 0
\(721\) 0.547104 + 0.947611i 0.0203752 + 0.0352909i
\(722\) 11.9903 + 4.36412i 0.446234 + 0.162416i
\(723\) 0 0
\(724\) 2.41669 + 2.02784i 0.0898155 + 0.0753642i
\(725\) 18.5876 6.76533i 0.690326 0.251258i
\(726\) 0 0
\(727\) 6.44578 + 36.5559i 0.239061 + 1.35578i 0.833890 + 0.551930i \(0.186108\pi\)
−0.594830 + 0.803852i \(0.702780\pi\)
\(728\) −1.33293 −0.0494017
\(729\) 0 0
\(730\) 8.77063 0.324616
\(731\) −1.08316 6.14290i −0.0400621 0.227203i
\(732\) 0 0
\(733\) −28.1403 + 10.2422i −1.03938 + 0.378305i −0.804647 0.593754i \(-0.797645\pi\)
−0.234738 + 0.972059i \(0.575423\pi\)
\(734\) 4.81958 + 4.04411i 0.177894 + 0.149271i
\(735\) 0 0
\(736\) 42.4727 + 15.4588i 1.56557 + 0.569819i
\(737\) −5.05277 8.75166i −0.186121 0.322371i
\(738\) 0 0
\(739\) 14.3050 24.7770i 0.526218 0.911436i −0.473316 0.880893i \(-0.656943\pi\)
0.999533 0.0305431i \(-0.00972368\pi\)
\(740\) 2.68729 2.25490i 0.0987866 0.0828918i
\(741\) 0 0
\(742\) 0.0436438 0.247516i 0.00160221 0.00908660i
\(743\) −8.62052 + 48.8894i −0.316256 + 1.79358i 0.248831 + 0.968547i \(0.419954\pi\)
−0.565087 + 0.825031i \(0.691157\pi\)
\(744\) 0 0
\(745\) 8.86934 7.44226i 0.324947 0.272663i
\(746\) 9.16312 15.8710i 0.335486 0.581078i
\(747\) 0 0
\(748\) −19.8897 34.4499i −0.727238 1.25961i
\(749\) 1.29055 + 0.469722i 0.0471557 + 0.0171633i
\(750\) 0 0
\(751\) −24.2251 20.3273i −0.883986 0.741752i 0.0830087 0.996549i \(-0.473547\pi\)
−0.966995 + 0.254796i \(0.917992\pi\)
\(752\) −3.20459 + 1.16637i −0.116859 + 0.0425333i
\(753\) 0 0
\(754\) −2.75443 15.6212i −0.100311 0.568889i
\(755\) −7.12716 −0.259384
\(756\) 0 0
\(757\) 3.04189 0.110559 0.0552797 0.998471i \(-0.482395\pi\)
0.0552797 + 0.998471i \(0.482395\pi\)
\(758\) −3.22188 18.2722i −0.117024 0.663676i
\(759\) 0 0
\(760\) −1.40033 + 0.509678i −0.0507953 + 0.0184880i
\(761\) −29.0548 24.3799i −1.05323 0.883769i −0.0598048 0.998210i \(-0.519048\pi\)
−0.993430 + 0.114441i \(0.963492\pi\)
\(762\) 0 0
\(763\) 0.328573 + 0.119591i 0.0118952 + 0.00432948i
\(764\) −3.02525 5.23989i −0.109450 0.189572i
\(765\) 0 0
\(766\) −11.7747 + 20.3943i −0.425436 + 0.736877i
\(767\) 0.153821 0.129071i 0.00555414 0.00466048i
\(768\) 0 0
\(769\) −3.54030 + 20.0780i −0.127666 + 0.724032i 0.852022 + 0.523506i \(0.175376\pi\)
−0.979688 + 0.200526i \(0.935735\pi\)
\(770\) 0.0815859 0.462697i 0.00294015 0.0166744i
\(771\) 0 0
\(772\) 9.91329 8.31823i 0.356787 0.299380i
\(773\) 12.2332 21.1885i 0.439997 0.762097i −0.557692 0.830048i \(-0.688313\pi\)
0.997689 + 0.0679509i \(0.0216461\pi\)
\(774\) 0 0
\(775\) −17.0869 29.5954i −0.613781 1.06310i
\(776\) −20.4955 7.45976i −0.735746 0.267790i
\(777\) 0 0
\(778\) 0.396459 + 0.332669i 0.0142138 + 0.0119268i
\(779\) 4.18004 1.52141i 0.149766 0.0545102i
\(780\) 0 0
\(781\) 6.14290 + 34.8381i 0.219810 + 1.24661i
\(782\) −25.4816 −0.911221
\(783\) 0 0
\(784\) −9.85978 −0.352135
\(785\) 3.07321 + 17.4290i 0.109687 + 0.622068i
\(786\) 0 0
\(787\) −35.3089 + 12.8514i −1.25863 + 0.458102i −0.883307 0.468794i \(-0.844689\pi\)
−0.375318 + 0.926896i \(0.622466\pi\)
\(788\) 2.69350 + 2.26011i 0.0959520 + 0.0805133i
\(789\) 0 0
\(790\) −0.473126 0.172204i −0.0168331 0.00612673i
\(791\) −0.698367 1.20961i −0.0248311 0.0430087i
\(792\) 0 0
\(793\) −23.3550 + 40.4521i −0.829362 + 1.43650i
\(794\) 3.67209 3.08125i 0.130318 0.109350i
\(795\) 0 0
\(796\) 6.25284 35.4616i 0.221626 1.25690i
\(797\) −0.400247 + 2.26991i −0.0141775 + 0.0804045i −0.991076 0.133301i \(-0.957442\pi\)
0.976898 + 0.213706i \(0.0685534\pi\)
\(798\) 0 0
\(799\) 8.84389 7.42091i 0.312874 0.262533i
\(800\) 11.3103 19.5901i 0.399881 0.692614i
\(801\) 0 0
\(802\) 3.23236 + 5.59862i 0.114139 + 0.197694i
\(803\) 62.4693 + 22.7369i 2.20449 + 0.802369i
\(804\) 0 0
\(805\) 0.754900 + 0.633436i 0.0266067 + 0.0223257i
\(806\) −25.7516 + 9.37283i −0.907062 + 0.330144i
\(807\) 0 0
\(808\) −5.45084 30.9132i −0.191760 1.08752i
\(809\) 28.8614 1.01471 0.507356 0.861736i \(-0.330623\pi\)
0.507356 + 0.861736i \(0.330623\pi\)
\(810\) 0 0
\(811\) −51.8631 −1.82116 −0.910580 0.413334i \(-0.864364\pi\)
−0.910580 + 0.413334i \(0.864364\pi\)
\(812\) 0.162683 + 0.922618i 0.00570904 + 0.0323776i
\(813\) 0 0
\(814\) −7.63088 + 2.77741i −0.267462 + 0.0973483i
\(815\) 6.75292 + 5.66637i 0.236545 + 0.198484i
\(816\) 0 0
\(817\) −0.721934 0.262762i −0.0252573 0.00919289i
\(818\) −1.88711 3.26857i −0.0659813 0.114283i
\(819\) 0 0
\(820\) 6.06805 10.5102i 0.211905 0.367031i
\(821\) −14.1267 + 11.8537i −0.493025 + 0.413697i −0.855109 0.518449i \(-0.826510\pi\)
0.362084 + 0.932145i \(0.382065\pi\)
\(822\) 0 0
\(823\) −6.03714 + 34.2383i −0.210442 + 1.19347i 0.678202 + 0.734875i \(0.262759\pi\)
−0.888644 + 0.458598i \(0.848352\pi\)
\(824\) −3.80612 + 21.5856i −0.132593 + 0.751970i
\(825\) 0 0
\(826\) 0.00277461 0.00232818i 9.65411e−5 8.10076e-5i
\(827\) −16.3886 + 28.3859i −0.569889 + 0.987076i 0.426688 + 0.904399i \(0.359680\pi\)
−0.996576 + 0.0826770i \(0.973653\pi\)
\(828\) 0 0
\(829\) −2.67634 4.63555i −0.0929530 0.160999i 0.815799 0.578335i \(-0.196297\pi\)
−0.908752 + 0.417336i \(0.862964\pi\)
\(830\) −4.56504 1.66154i −0.158455 0.0576729i
\(831\) 0 0
\(832\) −4.00459 3.36025i −0.138834 0.116496i
\(833\) 31.3658 11.4162i 1.08676 0.395549i
\(834\) 0 0
\(835\) −0.477711 2.70924i −0.0165319 0.0937570i
\(836\) −4.89944 −0.169451
\(837\) 0 0
\(838\) −0.319022 −0.0110204
\(839\) −0.944364 5.35575i −0.0326031 0.184901i 0.964157 0.265332i \(-0.0854815\pi\)
−0.996760 + 0.0804308i \(0.974370\pi\)
\(840\) 0 0
\(841\) 3.09879 1.12787i 0.106855 0.0388920i
\(842\) −1.26503 1.06149i −0.0435959 0.0365813i
\(843\) 0 0
\(844\) −2.40033 0.873649i −0.0826228 0.0300722i
\(845\) −4.15079 7.18938i −0.142791 0.247322i
\(846\) 0 0
\(847\) 1.11721 1.93507i 0.0383878 0.0664897i
\(848\) −3.29380 + 2.76382i −0.113109 + 0.0949101i
\(849\) 0 0
\(850\) −2.21452 + 12.5592i −0.0759573 + 0.430775i
\(851\) 2.95767 16.7738i 0.101388 0.574998i
\(852\) 0 0
\(853\) −36.0938 + 30.2863i −1.23583 + 1.03698i −0.237990 + 0.971268i \(0.576488\pi\)
−0.997838 + 0.0657152i \(0.979067\pi\)
\(854\) −0.421278 + 0.729675i −0.0144158 + 0.0249690i
\(855\) 0 0
\(856\) 13.7554 + 23.8250i 0.470149 + 0.814322i
\(857\) −44.1242 16.0599i −1.50725 0.548596i −0.549327 0.835607i \(-0.685116\pi\)
−0.957927 + 0.287012i \(0.907338\pi\)
\(858\) 0 0
\(859\) 5.48751 + 4.60457i 0.187231 + 0.157106i 0.731585 0.681750i \(-0.238781\pi\)
−0.544354 + 0.838856i \(0.683225\pi\)
\(860\) −1.96962 + 0.716881i −0.0671633 + 0.0244455i
\(861\) 0 0
\(862\) 1.43717 + 8.15058i 0.0489501 + 0.277610i
\(863\) 35.4309 1.20608 0.603041 0.797710i \(-0.293955\pi\)
0.603041 + 0.797710i \(0.293955\pi\)
\(864\) 0 0
\(865\) 13.7324 0.466914
\(866\) 3.96150 + 22.4668i 0.134617 + 0.763452i
\(867\) 0 0
\(868\) 1.52094 0.553579i 0.0516242 0.0187897i
\(869\) −2.92344 2.45306i −0.0991710 0.0832143i
\(870\) 0 0
\(871\) −7.99360 2.90943i −0.270853 0.0985824i
\(872\) 3.50211 + 6.06583i 0.118596 + 0.205415i
\(873\) 0 0
\(874\) −1.56923 + 2.71799i −0.0530800 + 0.0919373i
\(875\) 0.861969 0.723278i 0.0291399 0.0244513i
\(876\) 0 0
\(877\) 1.41921 8.04877i 0.0479235 0.271788i −0.951425 0.307881i \(-0.900380\pi\)
0.999348 + 0.0360932i \(0.0114913\pi\)
\(878\) −1.07434 + 6.09286i −0.0362571 + 0.205624i
\(879\) 0 0
\(880\) −6.15729 + 5.16658i −0.207562 + 0.174165i
\(881\) −16.6153 + 28.7786i −0.559785 + 0.969575i 0.437729 + 0.899107i \(0.355783\pi\)
−0.997514 + 0.0704686i \(0.977551\pi\)
\(882\) 0 0
\(883\) −16.5239 28.6203i −0.556075 0.963150i −0.997819 0.0660087i \(-0.978973\pi\)
0.441744 0.897141i \(-0.354360\pi\)
\(884\) −31.4659 11.4526i −1.05831 0.385194i
\(885\) 0 0
\(886\) 2.45084 + 2.05650i 0.0823375 + 0.0690893i
\(887\) −46.7471 + 17.0145i −1.56961 + 0.571293i −0.972913 0.231171i \(-0.925744\pi\)
−0.596701 + 0.802464i \(0.703522\pi\)
\(888\) 0 0
\(889\) 0.322948 + 1.83153i 0.0108313 + 0.0614276i
\(890\) 4.91469 0.164741
\(891\) 0 0
\(892\) 15.0155 0.502756
\(893\) −0.246916 1.40033i −0.00826273 0.0468602i
\(894\) 0 0
\(895\) 21.7631 7.92112i 0.727460 0.264774i
\(896\) 0.999135 + 0.838374i 0.0333787 + 0.0280081i
\(897\) 0 0
\(898\) −17.1668 6.24822i −0.572865 0.208506i
\(899\) 22.2024 + 38.4556i 0.740491 + 1.28257i
\(900\) 0 0
\(901\) 7.27807 12.6060i 0.242468 0.419966i
\(902\) −21.5210 + 18.0582i −0.716570 + 0.601274i
\(903\) 0 0
\(904\) 4.85844 27.5536i 0.161589 0.916419i
\(905\) −0.374730 + 2.12520i −0.0124565 + 0.0706441i
\(906\) 0 0
\(907\) 26.4657 22.2074i 0.878779 0.737383i −0.0871488 0.996195i \(-0.527776\pi\)
0.965928 + 0.258812i \(0.0833311\pi\)
\(908\) −11.8589 + 20.5403i −0.393553 + 0.681654i
\(909\) 0 0
\(910\) −0.197748 0.342509i −0.00655528 0.0113541i
\(911\) −12.8145 4.66410i −0.424563 0.154528i 0.120897 0.992665i \(-0.461423\pi\)
−0.545460 + 0.838137i \(0.683645\pi\)
\(912\) 0 0
\(913\) −28.2074 23.6688i −0.933528 0.783323i
\(914\) 0.422797 0.153886i 0.0139849 0.00509009i
\(915\) 0 0
\(916\) 2.99407 + 16.9802i 0.0989269 + 0.561042i
\(917\) −1.61094 −0.0531979
\(918\) 0 0
\(919\) 32.7701 1.08099 0.540493 0.841348i \(-0.318238\pi\)
0.540493 + 0.841348i \(0.318238\pi\)
\(920\) 3.42782 + 19.4402i 0.113012 + 0.640923i
\(921\) 0 0
\(922\) 13.3081 4.84375i 0.438279 0.159520i
\(923\) 22.8115 + 19.1411i 0.750851 + 0.630039i
\(924\) 0 0
\(925\) −8.01027 2.91550i −0.263376 0.0958610i
\(926\) 8.49027 + 14.7056i 0.279008 + 0.483255i
\(927\) 0 0
\(928\) −14.6964 + 25.4549i −0.482433 + 0.835599i
\(929\) −4.23735 + 3.55556i −0.139023 + 0.116654i −0.709647 0.704557i \(-0.751146\pi\)
0.570624 + 0.821211i \(0.306701\pi\)
\(930\) 0 0
\(931\) 0.713888 4.04866i 0.0233967 0.132690i
\(932\) 1.39268 7.89827i 0.0456187 0.258716i
\(933\) 0 0
\(934\) −13.9767 + 11.7279i −0.457333 + 0.383748i
\(935\) 13.6053 23.5651i 0.444942 0.770662i
\(936\) 0 0
\(937\) 0.497007 + 0.860841i 0.0162365 + 0.0281225i 0.874029 0.485873i \(-0.161498\pi\)
−0.857793 + 0.513995i \(0.828165\pi\)
\(938\) −0.144189 0.0524803i −0.00470792 0.00171354i
\(939\) 0 0
\(940\) −2.97178 2.49362i −0.0969288 0.0813329i
\(941\) 10.7662 3.91859i 0.350969 0.127742i −0.160519 0.987033i \(-0.551317\pi\)
0.511488 + 0.859291i \(0.329095\pi\)
\(942\) 0 0
\(943\) −10.2322 58.0297i −0.333206 1.88971i
\(944\) −0.0619640 −0.00201676
\(945\) 0 0
\(946\) 4.85204 0.157754
\(947\) 7.93312 + 44.9910i 0.257792 + 1.46201i 0.788803 + 0.614646i \(0.210701\pi\)
−0.531012 + 0.847365i \(0.678188\pi\)
\(948\) 0 0
\(949\) 52.5852 19.1394i 1.70699 0.621293i
\(950\) 1.20324 + 1.00964i 0.0390383 + 0.0327570i
\(951\) 0 0
\(952\) −1.30851 0.476257i −0.0424089 0.0154356i
\(953\) −7.25265 12.5620i −0.234936 0.406922i 0.724318 0.689466i \(-0.242155\pi\)
−0.959254 + 0.282545i \(0.908822\pi\)
\(954\) 0 0
\(955\) 2.06939 3.58429i 0.0669640 0.115985i
\(956\) −12.1001 + 10.1532i −0.391344 + 0.328377i
\(957\) 0 0
\(958\) 0.383256 2.17355i 0.0123824 0.0702242i
\(959\) 0.411007 2.33094i 0.0132721 0.0752699i
\(960\) 0 0
\(961\) 35.0205 29.3857i 1.12969 0.947926i
\(962\) −3.41787 + 5.91993i −0.110197 + 0.190866i
\(963\) 0 0
\(964\) 8.23055 + 14.2557i 0.265088 + 0.459146i
\(965\) 8.31823 + 3.02759i 0.267773 + 0.0974616i
\(966\) 0 0
\(967\) −19.1793 16.0934i −0.616766 0.517528i 0.280019 0.959994i \(-0.409659\pi\)
−0.896785 + 0.442467i \(0.854104\pi\)
\(968\) 42.0595 15.3084i 1.35184 0.492031i
\(969\) 0 0
\(970\) −1.12377 6.37322i −0.0360821 0.204632i
\(971\) −27.0907 −0.869383 −0.434692 0.900579i \(-0.643143\pi\)
−0.434692 + 0.900579i \(0.643143\pi\)
\(972\) 0 0
\(973\) −1.96679 −0.0630522
\(974\) −0.924044 5.24051i −0.0296083 0.167917i
\(975\) 0 0
\(976\) 13.5449 4.92993i 0.433561 0.157803i
\(977\) 1.89473 + 1.58987i 0.0606179 + 0.0508644i 0.672593 0.740012i \(-0.265180\pi\)
−0.611975 + 0.790877i \(0.709625\pi\)
\(978\) 0 0
\(979\) 35.0051 + 12.7408i 1.11877 + 0.407198i
\(980\) −5.60808 9.71348i −0.179144 0.310286i
\(981\) 0 0
\(982\) 5.83006 10.0980i 0.186045 0.322239i
\(983\) −14.6376 + 12.2824i −0.466867 + 0.391748i −0.845650 0.533738i \(-0.820787\pi\)
0.378783 + 0.925485i \(0.376343\pi\)
\(984\) 0 0
\(985\) −0.417652 + 2.36862i −0.0133075 + 0.0754706i
\(986\) 2.87749 16.3191i 0.0916381 0.519705i
\(987\) 0 0
\(988\) −3.15935 + 2.65101i −0.100512 + 0.0843398i
\(989\) −5.08845 + 8.81345i −0.161803 + 0.280251i
\(990\) 0 0
\(991\) 19.1582 + 33.1830i 0.608581 + 1.05409i 0.991475 + 0.130301i \(0.0415943\pi\)
−0.382894 + 0.923792i \(0.625072\pi\)
\(992\) 47.7182 + 17.3680i 1.51505 + 0.551434i
\(993\) 0 0
\(994\) 0.411474 + 0.345268i 0.0130512 + 0.0109512i
\(995\) 23.1459 8.42443i 0.733775 0.267072i
\(996\) 0 0
\(997\) 7.18463 + 40.7461i 0.227540 + 1.29044i 0.857770 + 0.514033i \(0.171849\pi\)
−0.630231 + 0.776408i \(0.717040\pi\)
\(998\) 5.42497 0.171724
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.2.e.q.82.2 12
3.2 odd 2 inner 729.2.e.q.82.1 12
9.2 odd 6 729.2.e.r.325.1 12
9.4 even 3 729.2.e.m.568.1 12
9.5 odd 6 729.2.e.m.568.2 12
9.7 even 3 729.2.e.r.325.2 12
27.2 odd 18 inner 729.2.e.q.649.1 12
27.4 even 9 729.2.c.c.487.3 12
27.5 odd 18 729.2.a.c.1.3 6
27.7 even 9 729.2.e.r.406.2 12
27.11 odd 18 729.2.e.m.163.2 12
27.13 even 9 729.2.c.c.244.3 12
27.14 odd 18 729.2.c.c.244.4 12
27.16 even 9 729.2.e.m.163.1 12
27.20 odd 18 729.2.e.r.406.1 12
27.22 even 9 729.2.a.c.1.4 yes 6
27.23 odd 18 729.2.c.c.487.4 12
27.25 even 9 inner 729.2.e.q.649.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.2.a.c.1.3 6 27.5 odd 18
729.2.a.c.1.4 yes 6 27.22 even 9
729.2.c.c.244.3 12 27.13 even 9
729.2.c.c.244.4 12 27.14 odd 18
729.2.c.c.487.3 12 27.4 even 9
729.2.c.c.487.4 12 27.23 odd 18
729.2.e.m.163.1 12 27.16 even 9
729.2.e.m.163.2 12 27.11 odd 18
729.2.e.m.568.1 12 9.4 even 3
729.2.e.m.568.2 12 9.5 odd 6
729.2.e.q.82.1 12 3.2 odd 2 inner
729.2.e.q.82.2 12 1.1 even 1 trivial
729.2.e.q.649.1 12 27.2 odd 18 inner
729.2.e.q.649.2 12 27.25 even 9 inner
729.2.e.r.325.1 12 9.2 odd 6
729.2.e.r.325.2 12 9.7 even 3
729.2.e.r.406.1 12 27.20 odd 18
729.2.e.r.406.2 12 27.7 even 9