Properties

Label 729.4.a.b.1.1
Level $729$
Weight $4$
Character 729.1
Self dual yes
Analytic conductor $43.012$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,4,Mod(1,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.0123923942\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 48 x^{10} + 269 x^{9} + 900 x^{8} - 4059 x^{7} - 8325 x^{6} + 23940 x^{5} + \cdots - 3392 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{5} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(5.67624\) of defining polynomial
Character \(\chi\) \(=\) 729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-4.67624 q^{2} +13.8672 q^{4} +4.95489 q^{5} +6.52395 q^{7} -27.4363 q^{8} -23.1702 q^{10} +57.3020 q^{11} -78.5988 q^{13} -30.5075 q^{14} +17.3611 q^{16} +78.3576 q^{17} +8.61844 q^{19} +68.7103 q^{20} -267.958 q^{22} -93.6380 q^{23} -100.449 q^{25} +367.547 q^{26} +90.4687 q^{28} -241.900 q^{29} -47.6877 q^{31} +138.306 q^{32} -366.418 q^{34} +32.3254 q^{35} -325.243 q^{37} -40.3018 q^{38} -135.944 q^{40} -208.403 q^{41} +445.599 q^{43} +794.617 q^{44} +437.873 q^{46} +24.6137 q^{47} -300.438 q^{49} +469.724 q^{50} -1089.94 q^{52} +208.946 q^{53} +283.925 q^{55} -178.993 q^{56} +1131.18 q^{58} -628.898 q^{59} +116.895 q^{61} +222.999 q^{62} -785.638 q^{64} -389.448 q^{65} +466.665 q^{67} +1086.60 q^{68} -151.161 q^{70} +372.746 q^{71} +90.8124 q^{73} +1520.91 q^{74} +119.513 q^{76} +373.835 q^{77} -301.801 q^{79} +86.0225 q^{80} +974.540 q^{82} +1073.01 q^{83} +388.253 q^{85} -2083.73 q^{86} -1572.15 q^{88} +1075.23 q^{89} -512.775 q^{91} -1298.49 q^{92} -115.099 q^{94} +42.7034 q^{95} -1589.67 q^{97} +1404.92 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 36 q^{4} + 12 q^{5} - 42 q^{7} + 21 q^{8} - 60 q^{10} + 42 q^{11} - 78 q^{13} - 312 q^{14} + 48 q^{16} - 18 q^{17} - 228 q^{19} - 69 q^{20} - 309 q^{22} - 114 q^{23} - 18 q^{25} + 30 q^{26}+ \cdots + 9567 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.67624 −1.65330 −0.826649 0.562717i \(-0.809756\pi\)
−0.826649 + 0.562717i \(0.809756\pi\)
\(3\) 0 0
\(4\) 13.8672 1.73340
\(5\) 4.95489 0.443179 0.221589 0.975140i \(-0.428876\pi\)
0.221589 + 0.975140i \(0.428876\pi\)
\(6\) 0 0
\(7\) 6.52395 0.352260 0.176130 0.984367i \(-0.443642\pi\)
0.176130 + 0.984367i \(0.443642\pi\)
\(8\) −27.4363 −1.21252
\(9\) 0 0
\(10\) −23.1702 −0.732707
\(11\) 57.3020 1.57065 0.785327 0.619081i \(-0.212495\pi\)
0.785327 + 0.619081i \(0.212495\pi\)
\(12\) 0 0
\(13\) −78.5988 −1.67688 −0.838438 0.544997i \(-0.816531\pi\)
−0.838438 + 0.544997i \(0.816531\pi\)
\(14\) −30.5075 −0.582391
\(15\) 0 0
\(16\) 17.3611 0.271268
\(17\) 78.3576 1.11791 0.558956 0.829197i \(-0.311202\pi\)
0.558956 + 0.829197i \(0.311202\pi\)
\(18\) 0 0
\(19\) 8.61844 0.104063 0.0520317 0.998645i \(-0.483430\pi\)
0.0520317 + 0.998645i \(0.483430\pi\)
\(20\) 68.7103 0.768205
\(21\) 0 0
\(22\) −267.958 −2.59676
\(23\) −93.6380 −0.848907 −0.424454 0.905450i \(-0.639534\pi\)
−0.424454 + 0.905450i \(0.639534\pi\)
\(24\) 0 0
\(25\) −100.449 −0.803593
\(26\) 367.547 2.77238
\(27\) 0 0
\(28\) 90.4687 0.610606
\(29\) −241.900 −1.54895 −0.774477 0.632602i \(-0.781987\pi\)
−0.774477 + 0.632602i \(0.781987\pi\)
\(30\) 0 0
\(31\) −47.6877 −0.276289 −0.138145 0.990412i \(-0.544114\pi\)
−0.138145 + 0.990412i \(0.544114\pi\)
\(32\) 138.306 0.764037
\(33\) 0 0
\(34\) −366.418 −1.84824
\(35\) 32.3254 0.156114
\(36\) 0 0
\(37\) −325.243 −1.44512 −0.722562 0.691306i \(-0.757036\pi\)
−0.722562 + 0.691306i \(0.757036\pi\)
\(38\) −40.3018 −0.172048
\(39\) 0 0
\(40\) −135.944 −0.537365
\(41\) −208.403 −0.793830 −0.396915 0.917855i \(-0.629919\pi\)
−0.396915 + 0.917855i \(0.629919\pi\)
\(42\) 0 0
\(43\) 445.599 1.58031 0.790153 0.612909i \(-0.210001\pi\)
0.790153 + 0.612909i \(0.210001\pi\)
\(44\) 794.617 2.72257
\(45\) 0 0
\(46\) 437.873 1.40350
\(47\) 24.6137 0.0763889 0.0381944 0.999270i \(-0.487839\pi\)
0.0381944 + 0.999270i \(0.487839\pi\)
\(48\) 0 0
\(49\) −300.438 −0.875913
\(50\) 469.724 1.32858
\(51\) 0 0
\(52\) −1089.94 −2.90669
\(53\) 208.946 0.541527 0.270763 0.962646i \(-0.412724\pi\)
0.270763 + 0.962646i \(0.412724\pi\)
\(54\) 0 0
\(55\) 283.925 0.696081
\(56\) −178.993 −0.427124
\(57\) 0 0
\(58\) 1131.18 2.56088
\(59\) −628.898 −1.38772 −0.693861 0.720109i \(-0.744092\pi\)
−0.693861 + 0.720109i \(0.744092\pi\)
\(60\) 0 0
\(61\) 116.895 0.245358 0.122679 0.992446i \(-0.460851\pi\)
0.122679 + 0.992446i \(0.460851\pi\)
\(62\) 222.999 0.456789
\(63\) 0 0
\(64\) −785.638 −1.53445
\(65\) −389.448 −0.743156
\(66\) 0 0
\(67\) 466.665 0.850928 0.425464 0.904975i \(-0.360111\pi\)
0.425464 + 0.904975i \(0.360111\pi\)
\(68\) 1086.60 1.93778
\(69\) 0 0
\(70\) −151.161 −0.258103
\(71\) 372.746 0.623054 0.311527 0.950237i \(-0.399160\pi\)
0.311527 + 0.950237i \(0.399160\pi\)
\(72\) 0 0
\(73\) 90.8124 0.145600 0.0727999 0.997347i \(-0.476807\pi\)
0.0727999 + 0.997347i \(0.476807\pi\)
\(74\) 1520.91 2.38922
\(75\) 0 0
\(76\) 119.513 0.180383
\(77\) 373.835 0.553279
\(78\) 0 0
\(79\) −301.801 −0.429813 −0.214907 0.976635i \(-0.568945\pi\)
−0.214907 + 0.976635i \(0.568945\pi\)
\(80\) 86.0225 0.120220
\(81\) 0 0
\(82\) 974.540 1.31244
\(83\) 1073.01 1.41901 0.709505 0.704700i \(-0.248918\pi\)
0.709505 + 0.704700i \(0.248918\pi\)
\(84\) 0 0
\(85\) 388.253 0.495435
\(86\) −2083.73 −2.61272
\(87\) 0 0
\(88\) −1572.15 −1.90446
\(89\) 1075.23 1.28061 0.640304 0.768122i \(-0.278808\pi\)
0.640304 + 0.768122i \(0.278808\pi\)
\(90\) 0 0
\(91\) −512.775 −0.590697
\(92\) −1298.49 −1.47149
\(93\) 0 0
\(94\) −115.099 −0.126294
\(95\) 42.7034 0.0461187
\(96\) 0 0
\(97\) −1589.67 −1.66399 −0.831993 0.554786i \(-0.812800\pi\)
−0.831993 + 0.554786i \(0.812800\pi\)
\(98\) 1404.92 1.44815
\(99\) 0 0
\(100\) −1392.94 −1.39294
\(101\) −709.897 −0.699380 −0.349690 0.936865i \(-0.613713\pi\)
−0.349690 + 0.936865i \(0.613713\pi\)
\(102\) 0 0
\(103\) 348.002 0.332909 0.166454 0.986049i \(-0.446768\pi\)
0.166454 + 0.986049i \(0.446768\pi\)
\(104\) 2156.46 2.03325
\(105\) 0 0
\(106\) −977.079 −0.895305
\(107\) 352.787 0.318741 0.159370 0.987219i \(-0.449054\pi\)
0.159370 + 0.987219i \(0.449054\pi\)
\(108\) 0 0
\(109\) −1340.07 −1.17757 −0.588786 0.808289i \(-0.700394\pi\)
−0.588786 + 0.808289i \(0.700394\pi\)
\(110\) −1327.70 −1.15083
\(111\) 0 0
\(112\) 113.263 0.0955568
\(113\) −187.760 −0.156310 −0.0781549 0.996941i \(-0.524903\pi\)
−0.0781549 + 0.996941i \(0.524903\pi\)
\(114\) 0 0
\(115\) −463.966 −0.376218
\(116\) −3354.47 −2.68495
\(117\) 0 0
\(118\) 2940.88 2.29432
\(119\) 511.201 0.393796
\(120\) 0 0
\(121\) 1952.52 1.46695
\(122\) −546.628 −0.405651
\(123\) 0 0
\(124\) −661.294 −0.478919
\(125\) −1117.08 −0.799314
\(126\) 0 0
\(127\) 2397.26 1.67498 0.837488 0.546455i \(-0.184023\pi\)
0.837488 + 0.546455i \(0.184023\pi\)
\(128\) 2567.39 1.77287
\(129\) 0 0
\(130\) 1821.15 1.22866
\(131\) −2006.77 −1.33842 −0.669208 0.743075i \(-0.733366\pi\)
−0.669208 + 0.743075i \(0.733366\pi\)
\(132\) 0 0
\(133\) 56.2262 0.0366574
\(134\) −2182.23 −1.40684
\(135\) 0 0
\(136\) −2149.84 −1.35550
\(137\) −1930.91 −1.20415 −0.602075 0.798440i \(-0.705659\pi\)
−0.602075 + 0.798440i \(0.705659\pi\)
\(138\) 0 0
\(139\) −3111.97 −1.89895 −0.949473 0.313848i \(-0.898382\pi\)
−0.949473 + 0.313848i \(0.898382\pi\)
\(140\) 448.262 0.270608
\(141\) 0 0
\(142\) −1743.05 −1.03009
\(143\) −4503.87 −2.63379
\(144\) 0 0
\(145\) −1198.59 −0.686463
\(146\) −424.660 −0.240720
\(147\) 0 0
\(148\) −4510.20 −2.50497
\(149\) −712.220 −0.391593 −0.195797 0.980645i \(-0.562729\pi\)
−0.195797 + 0.980645i \(0.562729\pi\)
\(150\) 0 0
\(151\) −2325.67 −1.25338 −0.626690 0.779269i \(-0.715591\pi\)
−0.626690 + 0.779269i \(0.715591\pi\)
\(152\) −236.458 −0.126179
\(153\) 0 0
\(154\) −1748.14 −0.914735
\(155\) −236.287 −0.122446
\(156\) 0 0
\(157\) −3007.53 −1.52884 −0.764418 0.644720i \(-0.776974\pi\)
−0.764418 + 0.644720i \(0.776974\pi\)
\(158\) 1411.29 0.710610
\(159\) 0 0
\(160\) 685.289 0.338605
\(161\) −610.889 −0.299036
\(162\) 0 0
\(163\) 757.816 0.364152 0.182076 0.983284i \(-0.441718\pi\)
0.182076 + 0.983284i \(0.441718\pi\)
\(164\) −2889.96 −1.37602
\(165\) 0 0
\(166\) −5017.64 −2.34605
\(167\) −2046.23 −0.948157 −0.474079 0.880483i \(-0.657219\pi\)
−0.474079 + 0.880483i \(0.657219\pi\)
\(168\) 0 0
\(169\) 3980.78 1.81191
\(170\) −1815.56 −0.819102
\(171\) 0 0
\(172\) 6179.20 2.73930
\(173\) 857.921 0.377032 0.188516 0.982070i \(-0.439632\pi\)
0.188516 + 0.982070i \(0.439632\pi\)
\(174\) 0 0
\(175\) −655.324 −0.283074
\(176\) 994.827 0.426068
\(177\) 0 0
\(178\) −5028.03 −2.11723
\(179\) −1188.07 −0.496092 −0.248046 0.968748i \(-0.579788\pi\)
−0.248046 + 0.968748i \(0.579788\pi\)
\(180\) 0 0
\(181\) −3062.18 −1.25751 −0.628757 0.777602i \(-0.716436\pi\)
−0.628757 + 0.777602i \(0.716436\pi\)
\(182\) 2397.85 0.976598
\(183\) 0 0
\(184\) 2569.08 1.02932
\(185\) −1611.54 −0.640449
\(186\) 0 0
\(187\) 4490.04 1.75585
\(188\) 341.322 0.132412
\(189\) 0 0
\(190\) −199.691 −0.0762480
\(191\) 1143.09 0.433041 0.216520 0.976278i \(-0.430529\pi\)
0.216520 + 0.976278i \(0.430529\pi\)
\(192\) 0 0
\(193\) −402.366 −0.150067 −0.0750336 0.997181i \(-0.523906\pi\)
−0.0750336 + 0.997181i \(0.523906\pi\)
\(194\) 7433.68 2.75107
\(195\) 0 0
\(196\) −4166.23 −1.51830
\(197\) −1142.27 −0.413115 −0.206558 0.978434i \(-0.566226\pi\)
−0.206558 + 0.978434i \(0.566226\pi\)
\(198\) 0 0
\(199\) −1985.63 −0.707323 −0.353662 0.935373i \(-0.615064\pi\)
−0.353662 + 0.935373i \(0.615064\pi\)
\(200\) 2755.95 0.974375
\(201\) 0 0
\(202\) 3319.65 1.15628
\(203\) −1578.14 −0.545635
\(204\) 0 0
\(205\) −1032.61 −0.351809
\(206\) −1627.34 −0.550398
\(207\) 0 0
\(208\) −1364.56 −0.454882
\(209\) 493.853 0.163448
\(210\) 0 0
\(211\) 4396.49 1.43444 0.717220 0.696847i \(-0.245414\pi\)
0.717220 + 0.696847i \(0.245414\pi\)
\(212\) 2897.49 0.938680
\(213\) 0 0
\(214\) −1649.72 −0.526973
\(215\) 2207.89 0.700358
\(216\) 0 0
\(217\) −311.112 −0.0973257
\(218\) 6266.48 1.94688
\(219\) 0 0
\(220\) 3937.24 1.20658
\(221\) −6158.81 −1.87460
\(222\) 0 0
\(223\) 3098.83 0.930551 0.465276 0.885166i \(-0.345955\pi\)
0.465276 + 0.885166i \(0.345955\pi\)
\(224\) 902.298 0.269140
\(225\) 0 0
\(226\) 878.012 0.258427
\(227\) 1069.74 0.312782 0.156391 0.987695i \(-0.450014\pi\)
0.156391 + 0.987695i \(0.450014\pi\)
\(228\) 0 0
\(229\) 3833.71 1.10628 0.553141 0.833088i \(-0.313429\pi\)
0.553141 + 0.833088i \(0.313429\pi\)
\(230\) 2169.61 0.622000
\(231\) 0 0
\(232\) 6636.83 1.87814
\(233\) 1039.53 0.292284 0.146142 0.989264i \(-0.453314\pi\)
0.146142 + 0.989264i \(0.453314\pi\)
\(234\) 0 0
\(235\) 121.958 0.0338539
\(236\) −8721.04 −2.40547
\(237\) 0 0
\(238\) −2390.49 −0.651062
\(239\) −946.437 −0.256150 −0.128075 0.991764i \(-0.540880\pi\)
−0.128075 + 0.991764i \(0.540880\pi\)
\(240\) 0 0
\(241\) −4085.70 −1.09205 −0.546023 0.837770i \(-0.683859\pi\)
−0.546023 + 0.837770i \(0.683859\pi\)
\(242\) −9130.43 −2.42531
\(243\) 0 0
\(244\) 1621.00 0.425304
\(245\) −1488.64 −0.388186
\(246\) 0 0
\(247\) −677.399 −0.174501
\(248\) 1308.37 0.335007
\(249\) 0 0
\(250\) 5223.71 1.32150
\(251\) 7193.10 1.80886 0.904431 0.426620i \(-0.140296\pi\)
0.904431 + 0.426620i \(0.140296\pi\)
\(252\) 0 0
\(253\) −5365.64 −1.33334
\(254\) −11210.1 −2.76924
\(255\) 0 0
\(256\) −5720.59 −1.39663
\(257\) −518.281 −0.125796 −0.0628978 0.998020i \(-0.520034\pi\)
−0.0628978 + 0.998020i \(0.520034\pi\)
\(258\) 0 0
\(259\) −2121.87 −0.509060
\(260\) −5400.55 −1.28818
\(261\) 0 0
\(262\) 9384.13 2.21280
\(263\) −2727.63 −0.639516 −0.319758 0.947499i \(-0.603602\pi\)
−0.319758 + 0.947499i \(0.603602\pi\)
\(264\) 0 0
\(265\) 1035.30 0.239993
\(266\) −262.927 −0.0606056
\(267\) 0 0
\(268\) 6471.32 1.47500
\(269\) 2110.73 0.478415 0.239208 0.970968i \(-0.423112\pi\)
0.239208 + 0.970968i \(0.423112\pi\)
\(270\) 0 0
\(271\) −3783.81 −0.848156 −0.424078 0.905626i \(-0.639402\pi\)
−0.424078 + 0.905626i \(0.639402\pi\)
\(272\) 1360.38 0.303253
\(273\) 0 0
\(274\) 9029.38 1.99082
\(275\) −5755.93 −1.26217
\(276\) 0 0
\(277\) −2422.91 −0.525555 −0.262777 0.964856i \(-0.584638\pi\)
−0.262777 + 0.964856i \(0.584638\pi\)
\(278\) 14552.3 3.13953
\(279\) 0 0
\(280\) −886.890 −0.189292
\(281\) 2644.49 0.561413 0.280707 0.959794i \(-0.409431\pi\)
0.280707 + 0.959794i \(0.409431\pi\)
\(282\) 0 0
\(283\) 7274.58 1.52802 0.764008 0.645207i \(-0.223229\pi\)
0.764008 + 0.645207i \(0.223229\pi\)
\(284\) 5168.94 1.08000
\(285\) 0 0
\(286\) 21061.1 4.35445
\(287\) −1359.61 −0.279635
\(288\) 0 0
\(289\) 1226.91 0.249727
\(290\) 5604.87 1.13493
\(291\) 0 0
\(292\) 1259.31 0.252382
\(293\) −7627.23 −1.52078 −0.760389 0.649468i \(-0.774992\pi\)
−0.760389 + 0.649468i \(0.774992\pi\)
\(294\) 0 0
\(295\) −3116.12 −0.615009
\(296\) 8923.46 1.75225
\(297\) 0 0
\(298\) 3330.51 0.647420
\(299\) 7359.84 1.42351
\(300\) 0 0
\(301\) 2907.06 0.556679
\(302\) 10875.4 2.07221
\(303\) 0 0
\(304\) 149.626 0.0282290
\(305\) 579.202 0.108738
\(306\) 0 0
\(307\) −9095.70 −1.69094 −0.845471 0.534022i \(-0.820680\pi\)
−0.845471 + 0.534022i \(0.820680\pi\)
\(308\) 5184.04 0.959052
\(309\) 0 0
\(310\) 1104.94 0.202439
\(311\) −101.672 −0.0185380 −0.00926899 0.999957i \(-0.502950\pi\)
−0.00926899 + 0.999957i \(0.502950\pi\)
\(312\) 0 0
\(313\) −178.202 −0.0321807 −0.0160904 0.999871i \(-0.505122\pi\)
−0.0160904 + 0.999871i \(0.505122\pi\)
\(314\) 14063.9 2.52762
\(315\) 0 0
\(316\) −4185.13 −0.745037
\(317\) −6284.14 −1.11341 −0.556707 0.830709i \(-0.687936\pi\)
−0.556707 + 0.830709i \(0.687936\pi\)
\(318\) 0 0
\(319\) −13861.3 −2.43287
\(320\) −3892.75 −0.680036
\(321\) 0 0
\(322\) 2856.66 0.494396
\(323\) 675.320 0.116334
\(324\) 0 0
\(325\) 7895.18 1.34753
\(326\) −3543.73 −0.602052
\(327\) 0 0
\(328\) 5717.80 0.962538
\(329\) 160.578 0.0269087
\(330\) 0 0
\(331\) 1412.84 0.234613 0.117306 0.993096i \(-0.462574\pi\)
0.117306 + 0.993096i \(0.462574\pi\)
\(332\) 14879.6 2.45971
\(333\) 0 0
\(334\) 9568.66 1.56759
\(335\) 2312.27 0.377113
\(336\) 0 0
\(337\) −5832.29 −0.942745 −0.471372 0.881934i \(-0.656241\pi\)
−0.471372 + 0.881934i \(0.656241\pi\)
\(338\) −18615.0 −2.99564
\(339\) 0 0
\(340\) 5383.97 0.858785
\(341\) −2732.60 −0.433955
\(342\) 0 0
\(343\) −4197.76 −0.660809
\(344\) −12225.6 −1.91616
\(345\) 0 0
\(346\) −4011.84 −0.623346
\(347\) 10548.2 1.63187 0.815934 0.578146i \(-0.196223\pi\)
0.815934 + 0.578146i \(0.196223\pi\)
\(348\) 0 0
\(349\) 1719.30 0.263702 0.131851 0.991270i \(-0.457908\pi\)
0.131851 + 0.991270i \(0.457908\pi\)
\(350\) 3064.45 0.468005
\(351\) 0 0
\(352\) 7925.18 1.20004
\(353\) 5719.41 0.862361 0.431180 0.902266i \(-0.358097\pi\)
0.431180 + 0.902266i \(0.358097\pi\)
\(354\) 0 0
\(355\) 1846.92 0.276124
\(356\) 14910.4 2.21980
\(357\) 0 0
\(358\) 5555.70 0.820189
\(359\) −9801.99 −1.44103 −0.720514 0.693440i \(-0.756094\pi\)
−0.720514 + 0.693440i \(0.756094\pi\)
\(360\) 0 0
\(361\) −6784.72 −0.989171
\(362\) 14319.5 2.07905
\(363\) 0 0
\(364\) −7110.73 −1.02391
\(365\) 449.965 0.0645268
\(366\) 0 0
\(367\) −1439.25 −0.204710 −0.102355 0.994748i \(-0.532638\pi\)
−0.102355 + 0.994748i \(0.532638\pi\)
\(368\) −1625.66 −0.230281
\(369\) 0 0
\(370\) 7535.95 1.05885
\(371\) 1363.15 0.190758
\(372\) 0 0
\(373\) −3048.32 −0.423153 −0.211576 0.977361i \(-0.567860\pi\)
−0.211576 + 0.977361i \(0.567860\pi\)
\(374\) −20996.5 −2.90295
\(375\) 0 0
\(376\) −675.309 −0.0926233
\(377\) 19013.0 2.59740
\(378\) 0 0
\(379\) −11419.1 −1.54765 −0.773826 0.633399i \(-0.781659\pi\)
−0.773826 + 0.633399i \(0.781659\pi\)
\(380\) 592.175 0.0799420
\(381\) 0 0
\(382\) −5345.34 −0.715946
\(383\) 4921.04 0.656537 0.328268 0.944585i \(-0.393535\pi\)
0.328268 + 0.944585i \(0.393535\pi\)
\(384\) 0 0
\(385\) 1852.31 0.245201
\(386\) 1881.56 0.248106
\(387\) 0 0
\(388\) −22044.3 −2.88435
\(389\) 3228.49 0.420800 0.210400 0.977615i \(-0.432523\pi\)
0.210400 + 0.977615i \(0.432523\pi\)
\(390\) 0 0
\(391\) −7337.24 −0.949004
\(392\) 8242.91 1.06207
\(393\) 0 0
\(394\) 5341.54 0.683003
\(395\) −1495.39 −0.190484
\(396\) 0 0
\(397\) 7990.82 1.01020 0.505098 0.863062i \(-0.331456\pi\)
0.505098 + 0.863062i \(0.331456\pi\)
\(398\) 9285.25 1.16942
\(399\) 0 0
\(400\) −1743.91 −0.217989
\(401\) −1632.52 −0.203302 −0.101651 0.994820i \(-0.532412\pi\)
−0.101651 + 0.994820i \(0.532412\pi\)
\(402\) 0 0
\(403\) 3748.20 0.463303
\(404\) −9844.27 −1.21230
\(405\) 0 0
\(406\) 7379.76 0.902097
\(407\) −18637.1 −2.26979
\(408\) 0 0
\(409\) −2416.60 −0.292159 −0.146080 0.989273i \(-0.546666\pi\)
−0.146080 + 0.989273i \(0.546666\pi\)
\(410\) 4828.74 0.581645
\(411\) 0 0
\(412\) 4825.80 0.577063
\(413\) −4102.90 −0.488839
\(414\) 0 0
\(415\) 5316.63 0.628875
\(416\) −10870.7 −1.28120
\(417\) 0 0
\(418\) −2309.37 −0.270228
\(419\) 3847.50 0.448598 0.224299 0.974520i \(-0.427991\pi\)
0.224299 + 0.974520i \(0.427991\pi\)
\(420\) 0 0
\(421\) 6588.13 0.762674 0.381337 0.924436i \(-0.375464\pi\)
0.381337 + 0.924436i \(0.375464\pi\)
\(422\) −20559.0 −2.37156
\(423\) 0 0
\(424\) −5732.70 −0.656614
\(425\) −7870.95 −0.898346
\(426\) 0 0
\(427\) 762.617 0.0864300
\(428\) 4892.16 0.552504
\(429\) 0 0
\(430\) −10324.6 −1.15790
\(431\) −1462.53 −0.163452 −0.0817258 0.996655i \(-0.526043\pi\)
−0.0817258 + 0.996655i \(0.526043\pi\)
\(432\) 0 0
\(433\) −9532.02 −1.05792 −0.528961 0.848646i \(-0.677418\pi\)
−0.528961 + 0.848646i \(0.677418\pi\)
\(434\) 1454.83 0.160908
\(435\) 0 0
\(436\) −18583.0 −2.04120
\(437\) −807.013 −0.0883402
\(438\) 0 0
\(439\) 8021.09 0.872040 0.436020 0.899937i \(-0.356388\pi\)
0.436020 + 0.899937i \(0.356388\pi\)
\(440\) −7789.85 −0.844014
\(441\) 0 0
\(442\) 28800.1 3.09927
\(443\) 3257.44 0.349358 0.174679 0.984625i \(-0.444111\pi\)
0.174679 + 0.984625i \(0.444111\pi\)
\(444\) 0 0
\(445\) 5327.64 0.567538
\(446\) −14490.9 −1.53848
\(447\) 0 0
\(448\) −5125.46 −0.540525
\(449\) 9378.18 0.985710 0.492855 0.870112i \(-0.335953\pi\)
0.492855 + 0.870112i \(0.335953\pi\)
\(450\) 0 0
\(451\) −11941.9 −1.24683
\(452\) −2603.71 −0.270947
\(453\) 0 0
\(454\) −5002.38 −0.517121
\(455\) −2540.74 −0.261784
\(456\) 0 0
\(457\) 4170.58 0.426896 0.213448 0.976954i \(-0.431531\pi\)
0.213448 + 0.976954i \(0.431531\pi\)
\(458\) −17927.3 −1.82901
\(459\) 0 0
\(460\) −6433.89 −0.652135
\(461\) 11233.2 1.13488 0.567441 0.823414i \(-0.307933\pi\)
0.567441 + 0.823414i \(0.307933\pi\)
\(462\) 0 0
\(463\) −8526.59 −0.855862 −0.427931 0.903811i \(-0.640757\pi\)
−0.427931 + 0.903811i \(0.640757\pi\)
\(464\) −4199.65 −0.420181
\(465\) 0 0
\(466\) −4861.10 −0.483232
\(467\) −1275.34 −0.126372 −0.0631861 0.998002i \(-0.520126\pi\)
−0.0631861 + 0.998002i \(0.520126\pi\)
\(468\) 0 0
\(469\) 3044.50 0.299748
\(470\) −570.305 −0.0559706
\(471\) 0 0
\(472\) 17254.6 1.68265
\(473\) 25533.7 2.48212
\(474\) 0 0
\(475\) −865.714 −0.0836246
\(476\) 7088.91 0.682604
\(477\) 0 0
\(478\) 4425.76 0.423493
\(479\) −16872.6 −1.60945 −0.804725 0.593647i \(-0.797687\pi\)
−0.804725 + 0.593647i \(0.797687\pi\)
\(480\) 0 0
\(481\) 25563.7 2.42330
\(482\) 19105.7 1.80548
\(483\) 0 0
\(484\) 27075.9 2.54281
\(485\) −7876.65 −0.737444
\(486\) 0 0
\(487\) −203.706 −0.0189544 −0.00947719 0.999955i \(-0.503017\pi\)
−0.00947719 + 0.999955i \(0.503017\pi\)
\(488\) −3207.16 −0.297503
\(489\) 0 0
\(490\) 6961.22 0.641787
\(491\) −19041.4 −1.75016 −0.875078 0.483982i \(-0.839190\pi\)
−0.875078 + 0.483982i \(0.839190\pi\)
\(492\) 0 0
\(493\) −18954.7 −1.73159
\(494\) 3167.68 0.288503
\(495\) 0 0
\(496\) −827.913 −0.0749484
\(497\) 2431.78 0.219477
\(498\) 0 0
\(499\) 3576.66 0.320868 0.160434 0.987047i \(-0.448711\pi\)
0.160434 + 0.987047i \(0.448711\pi\)
\(500\) −15490.7 −1.38553
\(501\) 0 0
\(502\) −33636.6 −2.99059
\(503\) −8180.28 −0.725130 −0.362565 0.931958i \(-0.618099\pi\)
−0.362565 + 0.931958i \(0.618099\pi\)
\(504\) 0 0
\(505\) −3517.46 −0.309950
\(506\) 25091.0 2.20441
\(507\) 0 0
\(508\) 33243.2 2.90340
\(509\) 2577.87 0.224484 0.112242 0.993681i \(-0.464197\pi\)
0.112242 + 0.993681i \(0.464197\pi\)
\(510\) 0 0
\(511\) 592.455 0.0512890
\(512\) 6211.74 0.536177
\(513\) 0 0
\(514\) 2423.60 0.207978
\(515\) 1724.31 0.147538
\(516\) 0 0
\(517\) 1410.41 0.119981
\(518\) 9922.35 0.841628
\(519\) 0 0
\(520\) 10685.0 0.901094
\(521\) −2045.61 −0.172015 −0.0860074 0.996294i \(-0.527411\pi\)
−0.0860074 + 0.996294i \(0.527411\pi\)
\(522\) 0 0
\(523\) 4431.94 0.370545 0.185273 0.982687i \(-0.440683\pi\)
0.185273 + 0.982687i \(0.440683\pi\)
\(524\) −27828.2 −2.32001
\(525\) 0 0
\(526\) 12755.0 1.05731
\(527\) −3736.69 −0.308867
\(528\) 0 0
\(529\) −3398.93 −0.279356
\(530\) −4841.32 −0.396780
\(531\) 0 0
\(532\) 779.699 0.0635418
\(533\) 16380.2 1.33116
\(534\) 0 0
\(535\) 1748.02 0.141259
\(536\) −12803.6 −1.03177
\(537\) 0 0
\(538\) −9870.29 −0.790964
\(539\) −17215.7 −1.37576
\(540\) 0 0
\(541\) −4557.61 −0.362194 −0.181097 0.983465i \(-0.557965\pi\)
−0.181097 + 0.983465i \(0.557965\pi\)
\(542\) 17694.0 1.40226
\(543\) 0 0
\(544\) 10837.3 0.854127
\(545\) −6639.90 −0.521875
\(546\) 0 0
\(547\) −9293.70 −0.726454 −0.363227 0.931701i \(-0.618325\pi\)
−0.363227 + 0.931701i \(0.618325\pi\)
\(548\) −26776.2 −2.08727
\(549\) 0 0
\(550\) 26916.1 2.08674
\(551\) −2084.80 −0.161189
\(552\) 0 0
\(553\) −1968.93 −0.151406
\(554\) 11330.1 0.868899
\(555\) 0 0
\(556\) −43154.2 −3.29163
\(557\) −22480.6 −1.71011 −0.855057 0.518534i \(-0.826478\pi\)
−0.855057 + 0.518534i \(0.826478\pi\)
\(558\) 0 0
\(559\) −35023.6 −2.64998
\(560\) 561.206 0.0423487
\(561\) 0 0
\(562\) −12366.3 −0.928184
\(563\) 13341.8 0.998739 0.499370 0.866389i \(-0.333565\pi\)
0.499370 + 0.866389i \(0.333565\pi\)
\(564\) 0 0
\(565\) −930.332 −0.0692732
\(566\) −34017.6 −2.52627
\(567\) 0 0
\(568\) −10226.8 −0.755468
\(569\) 821.627 0.0605350 0.0302675 0.999542i \(-0.490364\pi\)
0.0302675 + 0.999542i \(0.490364\pi\)
\(570\) 0 0
\(571\) 10415.1 0.763325 0.381663 0.924302i \(-0.375352\pi\)
0.381663 + 0.924302i \(0.375352\pi\)
\(572\) −62455.9 −4.56541
\(573\) 0 0
\(574\) 6357.85 0.462320
\(575\) 9405.85 0.682176
\(576\) 0 0
\(577\) 7859.00 0.567026 0.283513 0.958968i \(-0.408500\pi\)
0.283513 + 0.958968i \(0.408500\pi\)
\(578\) −5737.31 −0.412873
\(579\) 0 0
\(580\) −16621.0 −1.18991
\(581\) 7000.24 0.499861
\(582\) 0 0
\(583\) 11973.0 0.850551
\(584\) −2491.56 −0.176543
\(585\) 0 0
\(586\) 35666.7 2.51430
\(587\) −13386.0 −0.941223 −0.470612 0.882341i \(-0.655967\pi\)
−0.470612 + 0.882341i \(0.655967\pi\)
\(588\) 0 0
\(589\) −410.994 −0.0287516
\(590\) 14571.7 1.01679
\(591\) 0 0
\(592\) −5646.59 −0.392016
\(593\) 14856.3 1.02879 0.514397 0.857552i \(-0.328016\pi\)
0.514397 + 0.857552i \(0.328016\pi\)
\(594\) 0 0
\(595\) 2532.94 0.174522
\(596\) −9876.49 −0.678786
\(597\) 0 0
\(598\) −34416.3 −2.35349
\(599\) 14760.5 1.00684 0.503421 0.864041i \(-0.332074\pi\)
0.503421 + 0.864041i \(0.332074\pi\)
\(600\) 0 0
\(601\) 7361.60 0.499644 0.249822 0.968292i \(-0.419628\pi\)
0.249822 + 0.968292i \(0.419628\pi\)
\(602\) −13594.1 −0.920357
\(603\) 0 0
\(604\) −32250.5 −2.17260
\(605\) 9674.50 0.650123
\(606\) 0 0
\(607\) −25165.1 −1.68273 −0.841367 0.540464i \(-0.818249\pi\)
−0.841367 + 0.540464i \(0.818249\pi\)
\(608\) 1191.98 0.0795083
\(609\) 0 0
\(610\) −2708.48 −0.179776
\(611\) −1934.61 −0.128095
\(612\) 0 0
\(613\) −15062.0 −0.992411 −0.496206 0.868205i \(-0.665274\pi\)
−0.496206 + 0.868205i \(0.665274\pi\)
\(614\) 42533.6 2.79563
\(615\) 0 0
\(616\) −10256.6 −0.670864
\(617\) 6334.01 0.413286 0.206643 0.978416i \(-0.433746\pi\)
0.206643 + 0.978416i \(0.433746\pi\)
\(618\) 0 0
\(619\) −16527.6 −1.07318 −0.536590 0.843843i \(-0.680288\pi\)
−0.536590 + 0.843843i \(0.680288\pi\)
\(620\) −3276.64 −0.212247
\(621\) 0 0
\(622\) 475.444 0.0306488
\(623\) 7014.74 0.451107
\(624\) 0 0
\(625\) 7021.15 0.449354
\(626\) 833.314 0.0532043
\(627\) 0 0
\(628\) −41706.0 −2.65008
\(629\) −25485.2 −1.61552
\(630\) 0 0
\(631\) 13607.2 0.858466 0.429233 0.903194i \(-0.358784\pi\)
0.429233 + 0.903194i \(0.358784\pi\)
\(632\) 8280.30 0.521159
\(633\) 0 0
\(634\) 29386.1 1.84081
\(635\) 11878.1 0.742314
\(636\) 0 0
\(637\) 23614.1 1.46880
\(638\) 64818.9 4.02226
\(639\) 0 0
\(640\) 12721.1 0.785697
\(641\) 13413.4 0.826518 0.413259 0.910613i \(-0.364390\pi\)
0.413259 + 0.910613i \(0.364390\pi\)
\(642\) 0 0
\(643\) 18961.8 1.16296 0.581479 0.813562i \(-0.302474\pi\)
0.581479 + 0.813562i \(0.302474\pi\)
\(644\) −8471.31 −0.518348
\(645\) 0 0
\(646\) −3157.95 −0.192334
\(647\) 28772.7 1.74833 0.874167 0.485625i \(-0.161408\pi\)
0.874167 + 0.485625i \(0.161408\pi\)
\(648\) 0 0
\(649\) −36037.1 −2.17963
\(650\) −36919.7 −2.22786
\(651\) 0 0
\(652\) 10508.8 0.631219
\(653\) 24805.0 1.48651 0.743257 0.669006i \(-0.233280\pi\)
0.743257 + 0.669006i \(0.233280\pi\)
\(654\) 0 0
\(655\) −9943.33 −0.593157
\(656\) −3618.11 −0.215341
\(657\) 0 0
\(658\) −750.903 −0.0444882
\(659\) −20918.5 −1.23652 −0.618261 0.785973i \(-0.712163\pi\)
−0.618261 + 0.785973i \(0.712163\pi\)
\(660\) 0 0
\(661\) 968.836 0.0570096 0.0285048 0.999594i \(-0.490925\pi\)
0.0285048 + 0.999594i \(0.490925\pi\)
\(662\) −6606.79 −0.387885
\(663\) 0 0
\(664\) −29439.3 −1.72058
\(665\) 278.595 0.0162458
\(666\) 0 0
\(667\) 22651.0 1.31492
\(668\) −28375.5 −1.64353
\(669\) 0 0
\(670\) −10812.7 −0.623481
\(671\) 6698.31 0.385373
\(672\) 0 0
\(673\) −8429.13 −0.482792 −0.241396 0.970427i \(-0.577605\pi\)
−0.241396 + 0.970427i \(0.577605\pi\)
\(674\) 27273.2 1.55864
\(675\) 0 0
\(676\) 55202.1 3.14077
\(677\) −34150.7 −1.93873 −0.969363 0.245633i \(-0.921004\pi\)
−0.969363 + 0.245633i \(0.921004\pi\)
\(678\) 0 0
\(679\) −10370.9 −0.586156
\(680\) −10652.2 −0.600727
\(681\) 0 0
\(682\) 12778.3 0.717457
\(683\) −10033.0 −0.562084 −0.281042 0.959695i \(-0.590680\pi\)
−0.281042 + 0.959695i \(0.590680\pi\)
\(684\) 0 0
\(685\) −9567.43 −0.533654
\(686\) 19629.7 1.09251
\(687\) 0 0
\(688\) 7736.10 0.428686
\(689\) −16422.9 −0.908073
\(690\) 0 0
\(691\) −2765.70 −0.152261 −0.0761305 0.997098i \(-0.524257\pi\)
−0.0761305 + 0.997098i \(0.524257\pi\)
\(692\) 11896.9 0.653546
\(693\) 0 0
\(694\) −49325.9 −2.69796
\(695\) −15419.5 −0.841573
\(696\) 0 0
\(697\) −16329.9 −0.887432
\(698\) −8039.86 −0.435979
\(699\) 0 0
\(700\) −9087.50 −0.490679
\(701\) 19939.8 1.07434 0.537172 0.843473i \(-0.319493\pi\)
0.537172 + 0.843473i \(0.319493\pi\)
\(702\) 0 0
\(703\) −2803.09 −0.150385
\(704\) −45018.6 −2.41009
\(705\) 0 0
\(706\) −26745.3 −1.42574
\(707\) −4631.33 −0.246364
\(708\) 0 0
\(709\) −15126.7 −0.801260 −0.400630 0.916240i \(-0.631209\pi\)
−0.400630 + 0.916240i \(0.631209\pi\)
\(710\) −8636.62 −0.456516
\(711\) 0 0
\(712\) −29500.3 −1.55277
\(713\) 4465.38 0.234544
\(714\) 0 0
\(715\) −22316.2 −1.16724
\(716\) −16475.2 −0.859925
\(717\) 0 0
\(718\) 45836.4 2.38245
\(719\) 33913.8 1.75907 0.879534 0.475836i \(-0.157855\pi\)
0.879534 + 0.475836i \(0.157855\pi\)
\(720\) 0 0
\(721\) 2270.34 0.117270
\(722\) 31727.0 1.63539
\(723\) 0 0
\(724\) −42463.8 −2.17977
\(725\) 24298.6 1.24473
\(726\) 0 0
\(727\) −2032.84 −0.103705 −0.0518527 0.998655i \(-0.516513\pi\)
−0.0518527 + 0.998655i \(0.516513\pi\)
\(728\) 14068.6 0.716234
\(729\) 0 0
\(730\) −2104.14 −0.106682
\(731\) 34916.0 1.76664
\(732\) 0 0
\(733\) 21827.0 1.09986 0.549931 0.835210i \(-0.314654\pi\)
0.549931 + 0.835210i \(0.314654\pi\)
\(734\) 6730.29 0.338446
\(735\) 0 0
\(736\) −12950.7 −0.648597
\(737\) 26740.8 1.33651
\(738\) 0 0
\(739\) −7036.04 −0.350237 −0.175118 0.984547i \(-0.556031\pi\)
−0.175118 + 0.984547i \(0.556031\pi\)
\(740\) −22347.5 −1.11015
\(741\) 0 0
\(742\) −6374.41 −0.315380
\(743\) 10684.1 0.527541 0.263770 0.964585i \(-0.415034\pi\)
0.263770 + 0.964585i \(0.415034\pi\)
\(744\) 0 0
\(745\) −3528.97 −0.173546
\(746\) 14254.7 0.699598
\(747\) 0 0
\(748\) 62264.2 3.04359
\(749\) 2301.57 0.112280
\(750\) 0 0
\(751\) −24333.5 −1.18235 −0.591173 0.806544i \(-0.701335\pi\)
−0.591173 + 0.806544i \(0.701335\pi\)
\(752\) 427.322 0.0207218
\(753\) 0 0
\(754\) −88909.4 −4.29429
\(755\) −11523.4 −0.555471
\(756\) 0 0
\(757\) 38024.8 1.82567 0.912837 0.408325i \(-0.133887\pi\)
0.912837 + 0.408325i \(0.133887\pi\)
\(758\) 53398.4 2.55873
\(759\) 0 0
\(760\) −1171.62 −0.0559200
\(761\) 23023.4 1.09671 0.548357 0.836244i \(-0.315254\pi\)
0.548357 + 0.836244i \(0.315254\pi\)
\(762\) 0 0
\(763\) −8742.55 −0.414812
\(764\) 15851.4 0.750631
\(765\) 0 0
\(766\) −23012.0 −1.08545
\(767\) 49430.7 2.32704
\(768\) 0 0
\(769\) −15275.7 −0.716326 −0.358163 0.933659i \(-0.616597\pi\)
−0.358163 + 0.933659i \(0.616597\pi\)
\(770\) −8661.84 −0.405391
\(771\) 0 0
\(772\) −5579.68 −0.260126
\(773\) −11756.3 −0.547017 −0.273509 0.961870i \(-0.588184\pi\)
−0.273509 + 0.961870i \(0.588184\pi\)
\(774\) 0 0
\(775\) 4790.19 0.222024
\(776\) 43614.7 2.01762
\(777\) 0 0
\(778\) −15097.2 −0.695708
\(779\) −1796.11 −0.0826087
\(780\) 0 0
\(781\) 21359.1 0.978603
\(782\) 34310.7 1.56899
\(783\) 0 0
\(784\) −5215.95 −0.237607
\(785\) −14902.0 −0.677548
\(786\) 0 0
\(787\) 7815.34 0.353986 0.176993 0.984212i \(-0.443363\pi\)
0.176993 + 0.984212i \(0.443363\pi\)
\(788\) −15840.1 −0.716093
\(789\) 0 0
\(790\) 6992.79 0.314927
\(791\) −1224.94 −0.0550617
\(792\) 0 0
\(793\) −9187.81 −0.411436
\(794\) −37366.9 −1.67016
\(795\) 0 0
\(796\) −27535.0 −1.22607
\(797\) 35027.6 1.55677 0.778383 0.627789i \(-0.216040\pi\)
0.778383 + 0.627789i \(0.216040\pi\)
\(798\) 0 0
\(799\) 1928.67 0.0853960
\(800\) −13892.7 −0.613975
\(801\) 0 0
\(802\) 7634.03 0.336119
\(803\) 5203.73 0.228687
\(804\) 0 0
\(805\) −3026.89 −0.132526
\(806\) −17527.5 −0.765978
\(807\) 0 0
\(808\) 19476.9 0.848016
\(809\) −10686.8 −0.464437 −0.232219 0.972664i \(-0.574598\pi\)
−0.232219 + 0.972664i \(0.574598\pi\)
\(810\) 0 0
\(811\) 6783.48 0.293712 0.146856 0.989158i \(-0.453085\pi\)
0.146856 + 0.989158i \(0.453085\pi\)
\(812\) −21884.4 −0.945801
\(813\) 0 0
\(814\) 87151.3 3.75264
\(815\) 3754.89 0.161384
\(816\) 0 0
\(817\) 3840.37 0.164452
\(818\) 11300.6 0.483027
\(819\) 0 0
\(820\) −14319.4 −0.609824
\(821\) −17162.6 −0.729571 −0.364785 0.931092i \(-0.618858\pi\)
−0.364785 + 0.931092i \(0.618858\pi\)
\(822\) 0 0
\(823\) −678.971 −0.0287575 −0.0143788 0.999897i \(-0.504577\pi\)
−0.0143788 + 0.999897i \(0.504577\pi\)
\(824\) −9547.87 −0.403660
\(825\) 0 0
\(826\) 19186.1 0.808197
\(827\) 13266.8 0.557839 0.278920 0.960314i \(-0.410024\pi\)
0.278920 + 0.960314i \(0.410024\pi\)
\(828\) 0 0
\(829\) −38747.2 −1.62334 −0.811668 0.584119i \(-0.801440\pi\)
−0.811668 + 0.584119i \(0.801440\pi\)
\(830\) −24861.8 −1.03972
\(831\) 0 0
\(832\) 61750.3 2.57308
\(833\) −23541.6 −0.979193
\(834\) 0 0
\(835\) −10138.9 −0.420203
\(836\) 6848.35 0.283320
\(837\) 0 0
\(838\) −17991.8 −0.741667
\(839\) 6016.94 0.247590 0.123795 0.992308i \(-0.460494\pi\)
0.123795 + 0.992308i \(0.460494\pi\)
\(840\) 0 0
\(841\) 34126.5 1.39926
\(842\) −30807.6 −1.26093
\(843\) 0 0
\(844\) 60966.9 2.48645
\(845\) 19724.3 0.803002
\(846\) 0 0
\(847\) 12738.1 0.516750
\(848\) 3627.54 0.146899
\(849\) 0 0
\(850\) 36806.4 1.48523
\(851\) 30455.1 1.22678
\(852\) 0 0
\(853\) 13360.3 0.536281 0.268141 0.963380i \(-0.413591\pi\)
0.268141 + 0.963380i \(0.413591\pi\)
\(854\) −3566.17 −0.142895
\(855\) 0 0
\(856\) −9679.17 −0.386481
\(857\) −3628.56 −0.144631 −0.0723157 0.997382i \(-0.523039\pi\)
−0.0723157 + 0.997382i \(0.523039\pi\)
\(858\) 0 0
\(859\) −18432.0 −0.732119 −0.366060 0.930591i \(-0.619293\pi\)
−0.366060 + 0.930591i \(0.619293\pi\)
\(860\) 30617.2 1.21400
\(861\) 0 0
\(862\) 6839.13 0.270234
\(863\) −21402.6 −0.844209 −0.422105 0.906547i \(-0.638709\pi\)
−0.422105 + 0.906547i \(0.638709\pi\)
\(864\) 0 0
\(865\) 4250.90 0.167092
\(866\) 44574.0 1.74906
\(867\) 0 0
\(868\) −4314.25 −0.168704
\(869\) −17293.8 −0.675088
\(870\) 0 0
\(871\) −36679.3 −1.42690
\(872\) 36766.5 1.42784
\(873\) 0 0
\(874\) 3773.78 0.146053
\(875\) −7287.74 −0.281566
\(876\) 0 0
\(877\) 37687.2 1.45109 0.725546 0.688174i \(-0.241587\pi\)
0.725546 + 0.688174i \(0.241587\pi\)
\(878\) −37508.5 −1.44174
\(879\) 0 0
\(880\) 4929.26 0.188824
\(881\) 4916.17 0.188002 0.0940011 0.995572i \(-0.470034\pi\)
0.0940011 + 0.995572i \(0.470034\pi\)
\(882\) 0 0
\(883\) 30231.7 1.15218 0.576091 0.817386i \(-0.304577\pi\)
0.576091 + 0.817386i \(0.304577\pi\)
\(884\) −85405.3 −3.24943
\(885\) 0 0
\(886\) −15232.5 −0.577593
\(887\) 28730.0 1.08755 0.543776 0.839230i \(-0.316994\pi\)
0.543776 + 0.839230i \(0.316994\pi\)
\(888\) 0 0
\(889\) 15639.6 0.590027
\(890\) −24913.3 −0.938310
\(891\) 0 0
\(892\) 42972.0 1.61301
\(893\) 212.132 0.00794929
\(894\) 0 0
\(895\) −5886.76 −0.219858
\(896\) 16749.5 0.624510
\(897\) 0 0
\(898\) −43854.6 −1.62967
\(899\) 11535.7 0.427959
\(900\) 0 0
\(901\) 16372.5 0.605379
\(902\) 55843.1 2.06139
\(903\) 0 0
\(904\) 5151.45 0.189529
\(905\) −15172.8 −0.557304
\(906\) 0 0
\(907\) 33898.0 1.24097 0.620487 0.784217i \(-0.286935\pi\)
0.620487 + 0.784217i \(0.286935\pi\)
\(908\) 14834.3 0.542175
\(909\) 0 0
\(910\) 11881.1 0.432807
\(911\) 22863.4 0.831501 0.415751 0.909479i \(-0.363519\pi\)
0.415751 + 0.909479i \(0.363519\pi\)
\(912\) 0 0
\(913\) 61485.5 2.22878
\(914\) −19502.6 −0.705786
\(915\) 0 0
\(916\) 53162.7 1.91762
\(917\) −13092.1 −0.471470
\(918\) 0 0
\(919\) 2266.44 0.0813524 0.0406762 0.999172i \(-0.487049\pi\)
0.0406762 + 0.999172i \(0.487049\pi\)
\(920\) 12729.5 0.456173
\(921\) 0 0
\(922\) −52528.9 −1.87630
\(923\) −29297.4 −1.04478
\(924\) 0 0
\(925\) 32670.4 1.16129
\(926\) 39872.3 1.41500
\(927\) 0 0
\(928\) −33456.1 −1.18346
\(929\) −53382.9 −1.88529 −0.942646 0.333795i \(-0.891671\pi\)
−0.942646 + 0.333795i \(0.891671\pi\)
\(930\) 0 0
\(931\) −2589.31 −0.0911505
\(932\) 14415.4 0.506644
\(933\) 0 0
\(934\) 5963.80 0.208931
\(935\) 22247.7 0.778157
\(936\) 0 0
\(937\) −12337.6 −0.430152 −0.215076 0.976597i \(-0.569000\pi\)
−0.215076 + 0.976597i \(0.569000\pi\)
\(938\) −14236.8 −0.495573
\(939\) 0 0
\(940\) 1691.21 0.0586823
\(941\) −3928.15 −0.136083 −0.0680414 0.997682i \(-0.521675\pi\)
−0.0680414 + 0.997682i \(0.521675\pi\)
\(942\) 0 0
\(943\) 19514.4 0.673888
\(944\) −10918.4 −0.376444
\(945\) 0 0
\(946\) −119402. −4.10368
\(947\) 32673.6 1.12117 0.560585 0.828097i \(-0.310576\pi\)
0.560585 + 0.828097i \(0.310576\pi\)
\(948\) 0 0
\(949\) −7137.75 −0.244153
\(950\) 4048.28 0.138256
\(951\) 0 0
\(952\) −14025.4 −0.477487
\(953\) −12329.1 −0.419074 −0.209537 0.977801i \(-0.567196\pi\)
−0.209537 + 0.977801i \(0.567196\pi\)
\(954\) 0 0
\(955\) 5663.86 0.191914
\(956\) −13124.4 −0.444010
\(957\) 0 0
\(958\) 78900.1 2.66090
\(959\) −12597.1 −0.424174
\(960\) 0 0
\(961\) −27516.9 −0.923664
\(962\) −119542. −4.00643
\(963\) 0 0
\(964\) −56657.1 −1.89295
\(965\) −1993.68 −0.0665066
\(966\) 0 0
\(967\) 3119.92 0.103754 0.0518769 0.998653i \(-0.483480\pi\)
0.0518769 + 0.998653i \(0.483480\pi\)
\(968\) −53569.8 −1.77872
\(969\) 0 0
\(970\) 36833.1 1.21921
\(971\) 5428.62 0.179416 0.0897079 0.995968i \(-0.471407\pi\)
0.0897079 + 0.995968i \(0.471407\pi\)
\(972\) 0 0
\(973\) −20302.3 −0.668923
\(974\) 952.575 0.0313373
\(975\) 0 0
\(976\) 2029.43 0.0665578
\(977\) 2624.01 0.0859259 0.0429629 0.999077i \(-0.486320\pi\)
0.0429629 + 0.999077i \(0.486320\pi\)
\(978\) 0 0
\(979\) 61612.8 2.01139
\(980\) −20643.2 −0.672880
\(981\) 0 0
\(982\) 89042.1 2.89353
\(983\) 2133.68 0.0692307 0.0346154 0.999401i \(-0.488979\pi\)
0.0346154 + 0.999401i \(0.488979\pi\)
\(984\) 0 0
\(985\) −5659.84 −0.183084
\(986\) 88636.5 2.86284
\(987\) 0 0
\(988\) −9393.61 −0.302480
\(989\) −41725.0 −1.34153
\(990\) 0 0
\(991\) 36080.1 1.15653 0.578266 0.815848i \(-0.303730\pi\)
0.578266 + 0.815848i \(0.303730\pi\)
\(992\) −6595.48 −0.211095
\(993\) 0 0
\(994\) −11371.6 −0.362861
\(995\) −9838.56 −0.313471
\(996\) 0 0
\(997\) −52575.8 −1.67010 −0.835051 0.550172i \(-0.814562\pi\)
−0.835051 + 0.550172i \(0.814562\pi\)
\(998\) −16725.3 −0.530491
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.4.a.b.1.1 yes 12
3.2 odd 2 729.4.a.a.1.12 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.4.a.a.1.12 12 3.2 odd 2
729.4.a.b.1.1 yes 12 1.1 even 1 trivial