Properties

Label 729.4.a.b.1.11
Level $729$
Weight $4$
Character 729.1
Self dual yes
Analytic conductor $43.012$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,4,Mod(1,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.0123923942\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 48 x^{10} + 269 x^{9} + 900 x^{8} - 4059 x^{7} - 8325 x^{6} + 23940 x^{5} + \cdots - 3392 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{5} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.11
Root \(-3.32122\) of defining polynomial
Character \(\chi\) \(=\) 729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+4.32122 q^{2} +10.6730 q^{4} -3.36114 q^{5} -22.2331 q^{7} +11.5505 q^{8} -14.5243 q^{10} +32.7665 q^{11} +17.2460 q^{13} -96.0744 q^{14} -35.4713 q^{16} -104.698 q^{17} +86.2360 q^{19} -35.8734 q^{20} +141.591 q^{22} +37.2508 q^{23} -113.703 q^{25} +74.5237 q^{26} -237.294 q^{28} -179.556 q^{29} -251.179 q^{31} -245.684 q^{32} -452.423 q^{34} +74.7288 q^{35} -347.233 q^{37} +372.645 q^{38} -38.8231 q^{40} -466.757 q^{41} +375.073 q^{43} +349.716 q^{44} +160.969 q^{46} +181.852 q^{47} +151.312 q^{49} -491.335 q^{50} +184.066 q^{52} -148.879 q^{53} -110.133 q^{55} -256.805 q^{56} -775.901 q^{58} -377.724 q^{59} -287.938 q^{61} -1085.40 q^{62} -777.885 q^{64} -57.9661 q^{65} +27.6743 q^{67} -1117.44 q^{68} +322.920 q^{70} +759.978 q^{71} +120.862 q^{73} -1500.47 q^{74} +920.395 q^{76} -728.502 q^{77} +1115.08 q^{79} +119.224 q^{80} -2016.96 q^{82} +736.208 q^{83} +351.904 q^{85} +1620.77 q^{86} +378.471 q^{88} -321.649 q^{89} -383.432 q^{91} +397.577 q^{92} +785.822 q^{94} -289.852 q^{95} +1548.41 q^{97} +653.854 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 36 q^{4} + 12 q^{5} - 42 q^{7} + 21 q^{8} - 60 q^{10} + 42 q^{11} - 78 q^{13} - 312 q^{14} + 48 q^{16} - 18 q^{17} - 228 q^{19} - 69 q^{20} - 309 q^{22} - 114 q^{23} - 18 q^{25} + 30 q^{26}+ \cdots + 9567 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 4.32122 1.52778 0.763892 0.645344i \(-0.223286\pi\)
0.763892 + 0.645344i \(0.223286\pi\)
\(3\) 0 0
\(4\) 10.6730 1.33412
\(5\) −3.36114 −0.300630 −0.150315 0.988638i \(-0.548029\pi\)
−0.150315 + 0.988638i \(0.548029\pi\)
\(6\) 0 0
\(7\) −22.2331 −1.20048 −0.600238 0.799821i \(-0.704928\pi\)
−0.600238 + 0.799821i \(0.704928\pi\)
\(8\) 11.5505 0.510467
\(9\) 0 0
\(10\) −14.5243 −0.459297
\(11\) 32.7665 0.898133 0.449067 0.893498i \(-0.351757\pi\)
0.449067 + 0.893498i \(0.351757\pi\)
\(12\) 0 0
\(13\) 17.2460 0.367936 0.183968 0.982932i \(-0.441106\pi\)
0.183968 + 0.982932i \(0.441106\pi\)
\(14\) −96.0744 −1.83407
\(15\) 0 0
\(16\) −35.4713 −0.554240
\(17\) −104.698 −1.49370 −0.746851 0.664991i \(-0.768435\pi\)
−0.746851 + 0.664991i \(0.768435\pi\)
\(18\) 0 0
\(19\) 86.2360 1.04126 0.520629 0.853783i \(-0.325698\pi\)
0.520629 + 0.853783i \(0.325698\pi\)
\(20\) −35.8734 −0.401077
\(21\) 0 0
\(22\) 141.591 1.37215
\(23\) 37.2508 0.337710 0.168855 0.985641i \(-0.445993\pi\)
0.168855 + 0.985641i \(0.445993\pi\)
\(24\) 0 0
\(25\) −113.703 −0.909622
\(26\) 74.5237 0.562127
\(27\) 0 0
\(28\) −237.294 −1.60158
\(29\) −179.556 −1.14975 −0.574874 0.818242i \(-0.694949\pi\)
−0.574874 + 0.818242i \(0.694949\pi\)
\(30\) 0 0
\(31\) −251.179 −1.45526 −0.727630 0.685970i \(-0.759378\pi\)
−0.727630 + 0.685970i \(0.759378\pi\)
\(32\) −245.684 −1.35723
\(33\) 0 0
\(34\) −452.423 −2.28205
\(35\) 74.7288 0.360899
\(36\) 0 0
\(37\) −347.233 −1.54283 −0.771416 0.636331i \(-0.780451\pi\)
−0.771416 + 0.636331i \(0.780451\pi\)
\(38\) 372.645 1.59082
\(39\) 0 0
\(40\) −38.8231 −0.153462
\(41\) −466.757 −1.77793 −0.888966 0.457973i \(-0.848576\pi\)
−0.888966 + 0.457973i \(0.848576\pi\)
\(42\) 0 0
\(43\) 375.073 1.33019 0.665094 0.746760i \(-0.268391\pi\)
0.665094 + 0.746760i \(0.268391\pi\)
\(44\) 349.716 1.19822
\(45\) 0 0
\(46\) 160.969 0.515947
\(47\) 181.852 0.564379 0.282189 0.959359i \(-0.408939\pi\)
0.282189 + 0.959359i \(0.408939\pi\)
\(48\) 0 0
\(49\) 151.312 0.441144
\(50\) −491.335 −1.38971
\(51\) 0 0
\(52\) 184.066 0.490872
\(53\) −148.879 −0.385850 −0.192925 0.981214i \(-0.561797\pi\)
−0.192925 + 0.981214i \(0.561797\pi\)
\(54\) 0 0
\(55\) −110.133 −0.270006
\(56\) −256.805 −0.612804
\(57\) 0 0
\(58\) −775.901 −1.75657
\(59\) −377.724 −0.833483 −0.416742 0.909025i \(-0.636828\pi\)
−0.416742 + 0.909025i \(0.636828\pi\)
\(60\) 0 0
\(61\) −287.938 −0.604371 −0.302185 0.953249i \(-0.597716\pi\)
−0.302185 + 0.953249i \(0.597716\pi\)
\(62\) −1085.40 −2.22332
\(63\) 0 0
\(64\) −777.885 −1.51931
\(65\) −57.9661 −0.110613
\(66\) 0 0
\(67\) 27.6743 0.0504619 0.0252310 0.999682i \(-0.491968\pi\)
0.0252310 + 0.999682i \(0.491968\pi\)
\(68\) −1117.44 −1.99278
\(69\) 0 0
\(70\) 322.920 0.551376
\(71\) 759.978 1.27032 0.635161 0.772380i \(-0.280934\pi\)
0.635161 + 0.772380i \(0.280934\pi\)
\(72\) 0 0
\(73\) 120.862 0.193778 0.0968892 0.995295i \(-0.469111\pi\)
0.0968892 + 0.995295i \(0.469111\pi\)
\(74\) −1500.47 −2.35711
\(75\) 0 0
\(76\) 920.395 1.38917
\(77\) −728.502 −1.07819
\(78\) 0 0
\(79\) 1115.08 1.58806 0.794028 0.607882i \(-0.207981\pi\)
0.794028 + 0.607882i \(0.207981\pi\)
\(80\) 119.224 0.166621
\(81\) 0 0
\(82\) −2016.96 −2.71629
\(83\) 736.208 0.973606 0.486803 0.873512i \(-0.338163\pi\)
0.486803 + 0.873512i \(0.338163\pi\)
\(84\) 0 0
\(85\) 351.904 0.449051
\(86\) 1620.77 2.03224
\(87\) 0 0
\(88\) 378.471 0.458467
\(89\) −321.649 −0.383087 −0.191544 0.981484i \(-0.561349\pi\)
−0.191544 + 0.981484i \(0.561349\pi\)
\(90\) 0 0
\(91\) −383.432 −0.441698
\(92\) 397.577 0.450546
\(93\) 0 0
\(94\) 785.822 0.862249
\(95\) −289.852 −0.313033
\(96\) 0 0
\(97\) 1548.41 1.62080 0.810401 0.585876i \(-0.199250\pi\)
0.810401 + 0.585876i \(0.199250\pi\)
\(98\) 653.854 0.673972
\(99\) 0 0
\(100\) −1213.55 −1.21355
\(101\) 807.686 0.795721 0.397860 0.917446i \(-0.369753\pi\)
0.397860 + 0.917446i \(0.369753\pi\)
\(102\) 0 0
\(103\) −815.358 −0.779996 −0.389998 0.920816i \(-0.627524\pi\)
−0.389998 + 0.920816i \(0.627524\pi\)
\(104\) 199.200 0.187819
\(105\) 0 0
\(106\) −643.338 −0.589495
\(107\) 361.979 0.327045 0.163522 0.986540i \(-0.447714\pi\)
0.163522 + 0.986540i \(0.447714\pi\)
\(108\) 0 0
\(109\) 888.751 0.780981 0.390490 0.920607i \(-0.372305\pi\)
0.390490 + 0.920607i \(0.372305\pi\)
\(110\) −475.909 −0.412510
\(111\) 0 0
\(112\) 788.639 0.665351
\(113\) 1144.99 0.953198 0.476599 0.879121i \(-0.341869\pi\)
0.476599 + 0.879121i \(0.341869\pi\)
\(114\) 0 0
\(115\) −125.205 −0.101526
\(116\) −1916.40 −1.53391
\(117\) 0 0
\(118\) −1632.23 −1.27338
\(119\) 2327.76 1.79315
\(120\) 0 0
\(121\) −257.357 −0.193356
\(122\) −1244.24 −0.923348
\(123\) 0 0
\(124\) −2680.83 −1.94149
\(125\) 802.314 0.574089
\(126\) 0 0
\(127\) −2109.78 −1.47412 −0.737058 0.675830i \(-0.763785\pi\)
−0.737058 + 0.675830i \(0.763785\pi\)
\(128\) −1395.94 −0.963946
\(129\) 0 0
\(130\) −250.485 −0.168992
\(131\) 1958.10 1.30595 0.652977 0.757378i \(-0.273520\pi\)
0.652977 + 0.757378i \(0.273520\pi\)
\(132\) 0 0
\(133\) −1917.30 −1.25001
\(134\) 119.587 0.0770949
\(135\) 0 0
\(136\) −1209.32 −0.762486
\(137\) −1076.89 −0.671570 −0.335785 0.941939i \(-0.609002\pi\)
−0.335785 + 0.941939i \(0.609002\pi\)
\(138\) 0 0
\(139\) −138.169 −0.0843119 −0.0421560 0.999111i \(-0.513423\pi\)
−0.0421560 + 0.999111i \(0.513423\pi\)
\(140\) 797.579 0.481483
\(141\) 0 0
\(142\) 3284.04 1.94078
\(143\) 565.089 0.330456
\(144\) 0 0
\(145\) 603.513 0.345649
\(146\) 522.272 0.296052
\(147\) 0 0
\(148\) −3706.01 −2.05833
\(149\) 2225.74 1.22376 0.611878 0.790952i \(-0.290414\pi\)
0.611878 + 0.790952i \(0.290414\pi\)
\(150\) 0 0
\(151\) −2783.61 −1.50018 −0.750088 0.661338i \(-0.769989\pi\)
−0.750088 + 0.661338i \(0.769989\pi\)
\(152\) 996.073 0.531528
\(153\) 0 0
\(154\) −3148.02 −1.64724
\(155\) 844.248 0.437494
\(156\) 0 0
\(157\) −3194.84 −1.62405 −0.812026 0.583621i \(-0.801635\pi\)
−0.812026 + 0.583621i \(0.801635\pi\)
\(158\) 4818.51 2.42620
\(159\) 0 0
\(160\) 825.779 0.408022
\(161\) −828.201 −0.405412
\(162\) 0 0
\(163\) 883.995 0.424784 0.212392 0.977185i \(-0.431875\pi\)
0.212392 + 0.977185i \(0.431875\pi\)
\(164\) −4981.69 −2.37198
\(165\) 0 0
\(166\) 3181.32 1.48746
\(167\) −800.402 −0.370880 −0.185440 0.982656i \(-0.559371\pi\)
−0.185440 + 0.982656i \(0.559371\pi\)
\(168\) 0 0
\(169\) −1899.58 −0.864623
\(170\) 1520.66 0.686053
\(171\) 0 0
\(172\) 4003.15 1.77463
\(173\) 3252.60 1.42943 0.714714 0.699417i \(-0.246557\pi\)
0.714714 + 0.699417i \(0.246557\pi\)
\(174\) 0 0
\(175\) 2527.97 1.09198
\(176\) −1162.27 −0.497781
\(177\) 0 0
\(178\) −1389.92 −0.585274
\(179\) −1274.44 −0.532157 −0.266079 0.963951i \(-0.585728\pi\)
−0.266079 + 0.963951i \(0.585728\pi\)
\(180\) 0 0
\(181\) −833.975 −0.342480 −0.171240 0.985229i \(-0.554777\pi\)
−0.171240 + 0.985229i \(0.554777\pi\)
\(182\) −1656.89 −0.674820
\(183\) 0 0
\(184\) 430.267 0.172390
\(185\) 1167.10 0.463821
\(186\) 0 0
\(187\) −3430.58 −1.34154
\(188\) 1940.90 0.752951
\(189\) 0 0
\(190\) −1252.51 −0.478247
\(191\) 3342.52 1.26626 0.633132 0.774044i \(-0.281769\pi\)
0.633132 + 0.774044i \(0.281769\pi\)
\(192\) 0 0
\(193\) 1718.02 0.640754 0.320377 0.947290i \(-0.396190\pi\)
0.320377 + 0.947290i \(0.396190\pi\)
\(194\) 6691.05 2.47623
\(195\) 0 0
\(196\) 1614.95 0.588540
\(197\) −4254.29 −1.53861 −0.769304 0.638883i \(-0.779397\pi\)
−0.769304 + 0.638883i \(0.779397\pi\)
\(198\) 0 0
\(199\) −5356.72 −1.90818 −0.954091 0.299518i \(-0.903174\pi\)
−0.954091 + 0.299518i \(0.903174\pi\)
\(200\) −1313.33 −0.464332
\(201\) 0 0
\(202\) 3490.19 1.21569
\(203\) 3992.09 1.38025
\(204\) 0 0
\(205\) 1568.84 0.534499
\(206\) −3523.35 −1.19167
\(207\) 0 0
\(208\) −611.737 −0.203925
\(209\) 2825.65 0.935188
\(210\) 0 0
\(211\) −5774.35 −1.88399 −0.941997 0.335620i \(-0.891054\pi\)
−0.941997 + 0.335620i \(0.891054\pi\)
\(212\) −1588.98 −0.514771
\(213\) 0 0
\(214\) 1564.19 0.499654
\(215\) −1260.67 −0.399894
\(216\) 0 0
\(217\) 5584.49 1.74700
\(218\) 3840.49 1.19317
\(219\) 0 0
\(220\) −1175.45 −0.360221
\(221\) −1805.61 −0.549587
\(222\) 0 0
\(223\) 144.030 0.0432511 0.0216255 0.999766i \(-0.493116\pi\)
0.0216255 + 0.999766i \(0.493116\pi\)
\(224\) 5462.32 1.62932
\(225\) 0 0
\(226\) 4947.75 1.45628
\(227\) −4209.03 −1.23068 −0.615338 0.788264i \(-0.710980\pi\)
−0.615338 + 0.788264i \(0.710980\pi\)
\(228\) 0 0
\(229\) −2433.68 −0.702280 −0.351140 0.936323i \(-0.614206\pi\)
−0.351140 + 0.936323i \(0.614206\pi\)
\(230\) −541.040 −0.155109
\(231\) 0 0
\(232\) −2073.97 −0.586908
\(233\) 1809.70 0.508829 0.254414 0.967095i \(-0.418117\pi\)
0.254414 + 0.967095i \(0.418117\pi\)
\(234\) 0 0
\(235\) −611.230 −0.169669
\(236\) −4031.44 −1.11197
\(237\) 0 0
\(238\) 10058.8 2.73955
\(239\) −1938.19 −0.524566 −0.262283 0.964991i \(-0.584475\pi\)
−0.262283 + 0.964991i \(0.584475\pi\)
\(240\) 0 0
\(241\) 5357.82 1.43207 0.716033 0.698067i \(-0.245956\pi\)
0.716033 + 0.698067i \(0.245956\pi\)
\(242\) −1112.10 −0.295407
\(243\) 0 0
\(244\) −3073.15 −0.806305
\(245\) −508.582 −0.132621
\(246\) 0 0
\(247\) 1487.22 0.383116
\(248\) −2901.25 −0.742862
\(249\) 0 0
\(250\) 3466.98 0.877084
\(251\) −15.6125 −0.00392610 −0.00196305 0.999998i \(-0.500625\pi\)
−0.00196305 + 0.999998i \(0.500625\pi\)
\(252\) 0 0
\(253\) 1220.58 0.303308
\(254\) −9116.83 −2.25213
\(255\) 0 0
\(256\) 190.894 0.0466050
\(257\) −3500.11 −0.849537 −0.424768 0.905302i \(-0.639644\pi\)
−0.424768 + 0.905302i \(0.639644\pi\)
\(258\) 0 0
\(259\) 7720.08 1.85213
\(260\) −618.671 −0.147571
\(261\) 0 0
\(262\) 8461.38 1.99521
\(263\) 2513.37 0.589281 0.294641 0.955608i \(-0.404800\pi\)
0.294641 + 0.955608i \(0.404800\pi\)
\(264\) 0 0
\(265\) 500.402 0.115998
\(266\) −8285.07 −1.90974
\(267\) 0 0
\(268\) 295.367 0.0673224
\(269\) 3522.65 0.798437 0.399218 0.916856i \(-0.369282\pi\)
0.399218 + 0.916856i \(0.369282\pi\)
\(270\) 0 0
\(271\) −448.194 −0.100464 −0.0502321 0.998738i \(-0.515996\pi\)
−0.0502321 + 0.998738i \(0.515996\pi\)
\(272\) 3713.77 0.827869
\(273\) 0 0
\(274\) −4653.49 −1.02601
\(275\) −3725.64 −0.816962
\(276\) 0 0
\(277\) −2867.90 −0.622078 −0.311039 0.950397i \(-0.600677\pi\)
−0.311039 + 0.950397i \(0.600677\pi\)
\(278\) −597.060 −0.128810
\(279\) 0 0
\(280\) 863.158 0.184227
\(281\) 6067.10 1.28802 0.644009 0.765018i \(-0.277270\pi\)
0.644009 + 0.765018i \(0.277270\pi\)
\(282\) 0 0
\(283\) −4710.89 −0.989517 −0.494759 0.869030i \(-0.664744\pi\)
−0.494759 + 0.869030i \(0.664744\pi\)
\(284\) 8111.23 1.69476
\(285\) 0 0
\(286\) 2441.88 0.504865
\(287\) 10377.5 2.13437
\(288\) 0 0
\(289\) 6048.62 1.23115
\(290\) 2607.92 0.528076
\(291\) 0 0
\(292\) 1289.96 0.258524
\(293\) −7210.41 −1.43767 −0.718834 0.695182i \(-0.755324\pi\)
−0.718834 + 0.695182i \(0.755324\pi\)
\(294\) 0 0
\(295\) 1269.59 0.250570
\(296\) −4010.74 −0.787565
\(297\) 0 0
\(298\) 9617.91 1.86963
\(299\) 642.425 0.124256
\(300\) 0 0
\(301\) −8339.05 −1.59686
\(302\) −12028.6 −2.29194
\(303\) 0 0
\(304\) −3058.91 −0.577106
\(305\) 967.800 0.181692
\(306\) 0 0
\(307\) 8.62224 0.00160292 0.000801462 1.00000i \(-0.499745\pi\)
0.000801462 1.00000i \(0.499745\pi\)
\(308\) −7775.28 −1.43843
\(309\) 0 0
\(310\) 3648.19 0.668397
\(311\) 3260.63 0.594513 0.297256 0.954798i \(-0.403928\pi\)
0.297256 + 0.954798i \(0.403928\pi\)
\(312\) 0 0
\(313\) 3987.70 0.720122 0.360061 0.932929i \(-0.382756\pi\)
0.360061 + 0.932929i \(0.382756\pi\)
\(314\) −13805.6 −2.48120
\(315\) 0 0
\(316\) 11901.2 2.11866
\(317\) 7302.14 1.29378 0.646891 0.762582i \(-0.276069\pi\)
0.646891 + 0.762582i \(0.276069\pi\)
\(318\) 0 0
\(319\) −5883.42 −1.03263
\(320\) 2614.58 0.456749
\(321\) 0 0
\(322\) −3578.84 −0.619382
\(323\) −9028.72 −1.55533
\(324\) 0 0
\(325\) −1960.91 −0.334683
\(326\) 3819.94 0.648978
\(327\) 0 0
\(328\) −5391.30 −0.907575
\(329\) −4043.13 −0.677523
\(330\) 0 0
\(331\) −10675.5 −1.77275 −0.886376 0.462966i \(-0.846785\pi\)
−0.886376 + 0.462966i \(0.846785\pi\)
\(332\) 7857.53 1.29891
\(333\) 0 0
\(334\) −3458.72 −0.566625
\(335\) −93.0172 −0.0151704
\(336\) 0 0
\(337\) 4177.51 0.675263 0.337631 0.941278i \(-0.390374\pi\)
0.337631 + 0.941278i \(0.390374\pi\)
\(338\) −8208.50 −1.32096
\(339\) 0 0
\(340\) 3755.87 0.599090
\(341\) −8230.25 −1.30702
\(342\) 0 0
\(343\) 4261.82 0.670894
\(344\) 4332.30 0.679017
\(345\) 0 0
\(346\) 14055.2 2.18386
\(347\) 3953.54 0.611635 0.305817 0.952090i \(-0.401070\pi\)
0.305817 + 0.952090i \(0.401070\pi\)
\(348\) 0 0
\(349\) 10.7075 0.00164229 0.000821147 1.00000i \(-0.499739\pi\)
0.000821147 1.00000i \(0.499739\pi\)
\(350\) 10923.9 1.66831
\(351\) 0 0
\(352\) −8050.20 −1.21897
\(353\) −3203.52 −0.483020 −0.241510 0.970398i \(-0.577643\pi\)
−0.241510 + 0.970398i \(0.577643\pi\)
\(354\) 0 0
\(355\) −2554.40 −0.381896
\(356\) −3432.96 −0.511085
\(357\) 0 0
\(358\) −5507.14 −0.813021
\(359\) 4093.88 0.601857 0.300929 0.953647i \(-0.402703\pi\)
0.300929 + 0.953647i \(0.402703\pi\)
\(360\) 0 0
\(361\) 577.650 0.0842178
\(362\) −3603.79 −0.523235
\(363\) 0 0
\(364\) −4092.36 −0.589280
\(365\) −406.235 −0.0582556
\(366\) 0 0
\(367\) −2022.81 −0.287711 −0.143855 0.989599i \(-0.545950\pi\)
−0.143855 + 0.989599i \(0.545950\pi\)
\(368\) −1321.33 −0.187172
\(369\) 0 0
\(370\) 5043.30 0.708619
\(371\) 3310.04 0.463204
\(372\) 0 0
\(373\) −2520.20 −0.349842 −0.174921 0.984583i \(-0.555967\pi\)
−0.174921 + 0.984583i \(0.555967\pi\)
\(374\) −14824.3 −2.04959
\(375\) 0 0
\(376\) 2100.49 0.288097
\(377\) −3096.61 −0.423034
\(378\) 0 0
\(379\) −456.488 −0.0618686 −0.0309343 0.999521i \(-0.509848\pi\)
−0.0309343 + 0.999521i \(0.509848\pi\)
\(380\) −3093.58 −0.417625
\(381\) 0 0
\(382\) 14443.8 1.93458
\(383\) −11401.7 −1.52115 −0.760575 0.649250i \(-0.775083\pi\)
−0.760575 + 0.649250i \(0.775083\pi\)
\(384\) 0 0
\(385\) 2448.60 0.324135
\(386\) 7423.93 0.978933
\(387\) 0 0
\(388\) 16526.2 2.16235
\(389\) −834.987 −0.108832 −0.0544158 0.998518i \(-0.517330\pi\)
−0.0544158 + 0.998518i \(0.517330\pi\)
\(390\) 0 0
\(391\) −3900.07 −0.504438
\(392\) 1747.74 0.225189
\(393\) 0 0
\(394\) −18383.8 −2.35066
\(395\) −3747.95 −0.477417
\(396\) 0 0
\(397\) 1528.12 0.193184 0.0965920 0.995324i \(-0.469206\pi\)
0.0965920 + 0.995324i \(0.469206\pi\)
\(398\) −23147.6 −2.91529
\(399\) 0 0
\(400\) 4033.19 0.504148
\(401\) 11674.5 1.45386 0.726928 0.686713i \(-0.240947\pi\)
0.726928 + 0.686713i \(0.240947\pi\)
\(402\) 0 0
\(403\) −4331.82 −0.535442
\(404\) 8620.42 1.06159
\(405\) 0 0
\(406\) 17250.7 2.10872
\(407\) −11377.6 −1.38567
\(408\) 0 0
\(409\) −10228.7 −1.23661 −0.618306 0.785937i \(-0.712181\pi\)
−0.618306 + 0.785937i \(0.712181\pi\)
\(410\) 6779.30 0.816599
\(411\) 0 0
\(412\) −8702.30 −1.04061
\(413\) 8398.00 1.00058
\(414\) 0 0
\(415\) −2474.50 −0.292695
\(416\) −4237.06 −0.499372
\(417\) 0 0
\(418\) 12210.3 1.42877
\(419\) −1135.49 −0.132393 −0.0661963 0.997807i \(-0.521086\pi\)
−0.0661963 + 0.997807i \(0.521086\pi\)
\(420\) 0 0
\(421\) −252.776 −0.0292626 −0.0146313 0.999893i \(-0.504657\pi\)
−0.0146313 + 0.999893i \(0.504657\pi\)
\(422\) −24952.3 −2.87834
\(423\) 0 0
\(424\) −1719.63 −0.196964
\(425\) 11904.4 1.35870
\(426\) 0 0
\(427\) 6401.75 0.725533
\(428\) 3863.39 0.436318
\(429\) 0 0
\(430\) −5447.66 −0.610952
\(431\) −447.152 −0.0499734 −0.0249867 0.999688i \(-0.507954\pi\)
−0.0249867 + 0.999688i \(0.507954\pi\)
\(432\) 0 0
\(433\) 4400.35 0.488377 0.244189 0.969728i \(-0.421478\pi\)
0.244189 + 0.969728i \(0.421478\pi\)
\(434\) 24131.8 2.66905
\(435\) 0 0
\(436\) 9485.62 1.04192
\(437\) 3212.36 0.351643
\(438\) 0 0
\(439\) 9773.16 1.06252 0.531261 0.847208i \(-0.321718\pi\)
0.531261 + 0.847208i \(0.321718\pi\)
\(440\) −1272.10 −0.137829
\(441\) 0 0
\(442\) −7802.46 −0.839650
\(443\) 12083.8 1.29598 0.647990 0.761649i \(-0.275610\pi\)
0.647990 + 0.761649i \(0.275610\pi\)
\(444\) 0 0
\(445\) 1081.11 0.115167
\(446\) 622.388 0.0660783
\(447\) 0 0
\(448\) 17294.8 1.82389
\(449\) 16507.7 1.73507 0.867535 0.497375i \(-0.165703\pi\)
0.867535 + 0.497375i \(0.165703\pi\)
\(450\) 0 0
\(451\) −15294.0 −1.59682
\(452\) 12220.4 1.27168
\(453\) 0 0
\(454\) −18188.2 −1.88021
\(455\) 1288.77 0.132788
\(456\) 0 0
\(457\) 4918.71 0.503474 0.251737 0.967796i \(-0.418998\pi\)
0.251737 + 0.967796i \(0.418998\pi\)
\(458\) −10516.5 −1.07293
\(459\) 0 0
\(460\) −1336.31 −0.135448
\(461\) −8126.57 −0.821024 −0.410512 0.911855i \(-0.634650\pi\)
−0.410512 + 0.911855i \(0.634650\pi\)
\(462\) 0 0
\(463\) 2460.50 0.246974 0.123487 0.992346i \(-0.460592\pi\)
0.123487 + 0.992346i \(0.460592\pi\)
\(464\) 6369.09 0.637236
\(465\) 0 0
\(466\) 7820.10 0.777380
\(467\) −15753.5 −1.56100 −0.780500 0.625156i \(-0.785035\pi\)
−0.780500 + 0.625156i \(0.785035\pi\)
\(468\) 0 0
\(469\) −615.286 −0.0605784
\(470\) −2641.26 −0.259218
\(471\) 0 0
\(472\) −4362.92 −0.425466
\(473\) 12289.8 1.19469
\(474\) 0 0
\(475\) −9805.27 −0.947151
\(476\) 24844.1 2.39229
\(477\) 0 0
\(478\) −8375.37 −0.801423
\(479\) −11202.5 −1.06859 −0.534294 0.845299i \(-0.679422\pi\)
−0.534294 + 0.845299i \(0.679422\pi\)
\(480\) 0 0
\(481\) −5988.37 −0.567664
\(482\) 23152.4 2.18789
\(483\) 0 0
\(484\) −2746.77 −0.257961
\(485\) −5204.44 −0.487261
\(486\) 0 0
\(487\) 7312.98 0.680458 0.340229 0.940343i \(-0.389495\pi\)
0.340229 + 0.940343i \(0.389495\pi\)
\(488\) −3325.84 −0.308511
\(489\) 0 0
\(490\) −2197.70 −0.202616
\(491\) 3742.40 0.343975 0.171988 0.985099i \(-0.444981\pi\)
0.171988 + 0.985099i \(0.444981\pi\)
\(492\) 0 0
\(493\) 18799.1 1.71738
\(494\) 6426.62 0.585319
\(495\) 0 0
\(496\) 8909.65 0.806562
\(497\) −16896.7 −1.52499
\(498\) 0 0
\(499\) −12595.3 −1.12995 −0.564974 0.825109i \(-0.691114\pi\)
−0.564974 + 0.825109i \(0.691114\pi\)
\(500\) 8563.08 0.765905
\(501\) 0 0
\(502\) −67.4651 −0.00599824
\(503\) 1573.72 0.139500 0.0697501 0.997564i \(-0.477780\pi\)
0.0697501 + 0.997564i \(0.477780\pi\)
\(504\) 0 0
\(505\) −2714.75 −0.239217
\(506\) 5274.39 0.463389
\(507\) 0 0
\(508\) −22517.6 −1.96665
\(509\) −16893.8 −1.47113 −0.735564 0.677455i \(-0.763083\pi\)
−0.735564 + 0.677455i \(0.763083\pi\)
\(510\) 0 0
\(511\) −2687.14 −0.232626
\(512\) 11992.4 1.03515
\(513\) 0 0
\(514\) −15124.8 −1.29791
\(515\) 2740.54 0.234490
\(516\) 0 0
\(517\) 5958.64 0.506888
\(518\) 33360.2 2.82966
\(519\) 0 0
\(520\) −669.541 −0.0564640
\(521\) −17746.8 −1.49233 −0.746165 0.665762i \(-0.768107\pi\)
−0.746165 + 0.665762i \(0.768107\pi\)
\(522\) 0 0
\(523\) 20042.4 1.67570 0.837850 0.545900i \(-0.183812\pi\)
0.837850 + 0.545900i \(0.183812\pi\)
\(524\) 20898.7 1.74230
\(525\) 0 0
\(526\) 10860.8 0.900294
\(527\) 26297.9 2.17372
\(528\) 0 0
\(529\) −10779.4 −0.885952
\(530\) 2162.35 0.177220
\(531\) 0 0
\(532\) −20463.3 −1.66766
\(533\) −8049.67 −0.654165
\(534\) 0 0
\(535\) −1216.66 −0.0983194
\(536\) 319.653 0.0257591
\(537\) 0 0
\(538\) 15222.1 1.21984
\(539\) 4957.97 0.396206
\(540\) 0 0
\(541\) −15921.2 −1.26526 −0.632630 0.774455i \(-0.718024\pi\)
−0.632630 + 0.774455i \(0.718024\pi\)
\(542\) −1936.74 −0.153488
\(543\) 0 0
\(544\) 25722.6 2.02729
\(545\) −2987.22 −0.234786
\(546\) 0 0
\(547\) 8082.66 0.631791 0.315896 0.948794i \(-0.397695\pi\)
0.315896 + 0.948794i \(0.397695\pi\)
\(548\) −11493.7 −0.895957
\(549\) 0 0
\(550\) −16099.3 −1.24814
\(551\) −15484.2 −1.19718
\(552\) 0 0
\(553\) −24791.7 −1.90642
\(554\) −12392.9 −0.950401
\(555\) 0 0
\(556\) −1474.68 −0.112482
\(557\) 17943.5 1.36498 0.682488 0.730897i \(-0.260898\pi\)
0.682488 + 0.730897i \(0.260898\pi\)
\(558\) 0 0
\(559\) 6468.49 0.489424
\(560\) −2650.73 −0.200024
\(561\) 0 0
\(562\) 26217.3 1.96781
\(563\) −609.231 −0.0456057 −0.0228029 0.999740i \(-0.507259\pi\)
−0.0228029 + 0.999740i \(0.507259\pi\)
\(564\) 0 0
\(565\) −3848.47 −0.286560
\(566\) −20356.8 −1.51177
\(567\) 0 0
\(568\) 8778.16 0.648457
\(569\) −16787.5 −1.23685 −0.618424 0.785844i \(-0.712229\pi\)
−0.618424 + 0.785844i \(0.712229\pi\)
\(570\) 0 0
\(571\) −8312.94 −0.609257 −0.304628 0.952471i \(-0.598532\pi\)
−0.304628 + 0.952471i \(0.598532\pi\)
\(572\) 6031.19 0.440868
\(573\) 0 0
\(574\) 44843.4 3.26085
\(575\) −4235.51 −0.307188
\(576\) 0 0
\(577\) −10217.8 −0.737212 −0.368606 0.929586i \(-0.620165\pi\)
−0.368606 + 0.929586i \(0.620165\pi\)
\(578\) 26137.5 1.88092
\(579\) 0 0
\(580\) 6441.28 0.461138
\(581\) −16368.2 −1.16879
\(582\) 0 0
\(583\) −4878.23 −0.346545
\(584\) 1396.02 0.0989175
\(585\) 0 0
\(586\) −31157.8 −2.19644
\(587\) −4471.30 −0.314395 −0.157198 0.987567i \(-0.550246\pi\)
−0.157198 + 0.987567i \(0.550246\pi\)
\(588\) 0 0
\(589\) −21660.7 −1.51530
\(590\) 5486.16 0.382817
\(591\) 0 0
\(592\) 12316.8 0.855099
\(593\) −1365.36 −0.0945506 −0.0472753 0.998882i \(-0.515054\pi\)
−0.0472753 + 0.998882i \(0.515054\pi\)
\(594\) 0 0
\(595\) −7823.93 −0.539076
\(596\) 23755.3 1.63264
\(597\) 0 0
\(598\) 2776.06 0.189836
\(599\) 11156.0 0.760971 0.380486 0.924787i \(-0.375757\pi\)
0.380486 + 0.924787i \(0.375757\pi\)
\(600\) 0 0
\(601\) −10329.1 −0.701055 −0.350527 0.936553i \(-0.613998\pi\)
−0.350527 + 0.936553i \(0.613998\pi\)
\(602\) −36034.9 −2.43966
\(603\) 0 0
\(604\) −29709.4 −2.00142
\(605\) 865.015 0.0581287
\(606\) 0 0
\(607\) 6616.59 0.442436 0.221218 0.975224i \(-0.428997\pi\)
0.221218 + 0.975224i \(0.428997\pi\)
\(608\) −21186.8 −1.41322
\(609\) 0 0
\(610\) 4182.08 0.277586
\(611\) 3136.21 0.207655
\(612\) 0 0
\(613\) −5058.25 −0.333280 −0.166640 0.986018i \(-0.553292\pi\)
−0.166640 + 0.986018i \(0.553292\pi\)
\(614\) 37.2586 0.00244892
\(615\) 0 0
\(616\) −8414.59 −0.550379
\(617\) 27350.4 1.78458 0.892290 0.451462i \(-0.149098\pi\)
0.892290 + 0.451462i \(0.149098\pi\)
\(618\) 0 0
\(619\) 812.301 0.0527449 0.0263725 0.999652i \(-0.491604\pi\)
0.0263725 + 0.999652i \(0.491604\pi\)
\(620\) 9010.64 0.583671
\(621\) 0 0
\(622\) 14089.9 0.908286
\(623\) 7151.27 0.459887
\(624\) 0 0
\(625\) 11516.1 0.737033
\(626\) 17231.7 1.10019
\(627\) 0 0
\(628\) −34098.5 −2.16669
\(629\) 36354.5 2.30453
\(630\) 0 0
\(631\) 15522.5 0.979307 0.489653 0.871917i \(-0.337123\pi\)
0.489653 + 0.871917i \(0.337123\pi\)
\(632\) 12879.8 0.810650
\(633\) 0 0
\(634\) 31554.2 1.97662
\(635\) 7091.27 0.443163
\(636\) 0 0
\(637\) 2609.52 0.162313
\(638\) −25423.6 −1.57763
\(639\) 0 0
\(640\) 4691.97 0.289791
\(641\) −17574.3 −1.08291 −0.541454 0.840731i \(-0.682126\pi\)
−0.541454 + 0.840731i \(0.682126\pi\)
\(642\) 0 0
\(643\) 13127.3 0.805119 0.402560 0.915394i \(-0.368121\pi\)
0.402560 + 0.915394i \(0.368121\pi\)
\(644\) −8839.38 −0.540870
\(645\) 0 0
\(646\) −39015.1 −2.37621
\(647\) 19927.3 1.21085 0.605426 0.795901i \(-0.293003\pi\)
0.605426 + 0.795901i \(0.293003\pi\)
\(648\) 0 0
\(649\) −12376.7 −0.748579
\(650\) −8473.54 −0.511323
\(651\) 0 0
\(652\) 9434.86 0.566714
\(653\) −10185.0 −0.610369 −0.305185 0.952293i \(-0.598718\pi\)
−0.305185 + 0.952293i \(0.598718\pi\)
\(654\) 0 0
\(655\) −6581.45 −0.392608
\(656\) 16556.5 0.985400
\(657\) 0 0
\(658\) −17471.3 −1.03511
\(659\) 19821.1 1.17165 0.585827 0.810436i \(-0.300770\pi\)
0.585827 + 0.810436i \(0.300770\pi\)
\(660\) 0 0
\(661\) −13456.9 −0.791850 −0.395925 0.918283i \(-0.629576\pi\)
−0.395925 + 0.918283i \(0.629576\pi\)
\(662\) −46131.4 −2.70838
\(663\) 0 0
\(664\) 8503.61 0.496994
\(665\) 6444.31 0.375789
\(666\) 0 0
\(667\) −6688.60 −0.388281
\(668\) −8542.68 −0.494800
\(669\) 0 0
\(670\) −401.948 −0.0231770
\(671\) −9434.70 −0.542806
\(672\) 0 0
\(673\) −9632.15 −0.551697 −0.275848 0.961201i \(-0.588959\pi\)
−0.275848 + 0.961201i \(0.588959\pi\)
\(674\) 18052.0 1.03166
\(675\) 0 0
\(676\) −20274.1 −1.15351
\(677\) −16689.5 −0.947456 −0.473728 0.880671i \(-0.657092\pi\)
−0.473728 + 0.880671i \(0.657092\pi\)
\(678\) 0 0
\(679\) −34426.1 −1.94573
\(680\) 4064.69 0.229226
\(681\) 0 0
\(682\) −35564.7 −1.99684
\(683\) −29437.9 −1.64921 −0.824604 0.565710i \(-0.808602\pi\)
−0.824604 + 0.565710i \(0.808602\pi\)
\(684\) 0 0
\(685\) 3619.59 0.201894
\(686\) 18416.3 1.02498
\(687\) 0 0
\(688\) −13304.3 −0.737243
\(689\) −2567.55 −0.141968
\(690\) 0 0
\(691\) −16775.2 −0.923530 −0.461765 0.887002i \(-0.652784\pi\)
−0.461765 + 0.887002i \(0.652784\pi\)
\(692\) 34715.0 1.90703
\(693\) 0 0
\(694\) 17084.1 0.934446
\(695\) 464.406 0.0253467
\(696\) 0 0
\(697\) 48868.4 2.65570
\(698\) 46.2696 0.00250907
\(699\) 0 0
\(700\) 26980.9 1.45683
\(701\) −22612.6 −1.21835 −0.609176 0.793035i \(-0.708500\pi\)
−0.609176 + 0.793035i \(0.708500\pi\)
\(702\) 0 0
\(703\) −29944.0 −1.60649
\(704\) −25488.6 −1.36454
\(705\) 0 0
\(706\) −13843.1 −0.737950
\(707\) −17957.4 −0.955244
\(708\) 0 0
\(709\) 4601.19 0.243726 0.121863 0.992547i \(-0.461113\pi\)
0.121863 + 0.992547i \(0.461113\pi\)
\(710\) −11038.1 −0.583455
\(711\) 0 0
\(712\) −3715.23 −0.195553
\(713\) −9356.60 −0.491455
\(714\) 0 0
\(715\) −1899.35 −0.0993448
\(716\) −13602.1 −0.709963
\(717\) 0 0
\(718\) 17690.6 0.919508
\(719\) −2324.99 −0.120595 −0.0602973 0.998180i \(-0.519205\pi\)
−0.0602973 + 0.998180i \(0.519205\pi\)
\(720\) 0 0
\(721\) 18128.0 0.936367
\(722\) 2496.15 0.128667
\(723\) 0 0
\(724\) −8901.00 −0.456910
\(725\) 20416.0 1.04584
\(726\) 0 0
\(727\) −4915.99 −0.250790 −0.125395 0.992107i \(-0.540020\pi\)
−0.125395 + 0.992107i \(0.540020\pi\)
\(728\) −4428.85 −0.225472
\(729\) 0 0
\(730\) −1755.43 −0.0890019
\(731\) −39269.3 −1.98690
\(732\) 0 0
\(733\) −33675.5 −1.69691 −0.848454 0.529269i \(-0.822466\pi\)
−0.848454 + 0.529269i \(0.822466\pi\)
\(734\) −8741.01 −0.439560
\(735\) 0 0
\(736\) −9151.92 −0.458348
\(737\) 906.788 0.0453215
\(738\) 0 0
\(739\) −12008.7 −0.597762 −0.298881 0.954290i \(-0.596613\pi\)
−0.298881 + 0.954290i \(0.596613\pi\)
\(740\) 12456.4 0.618795
\(741\) 0 0
\(742\) 14303.4 0.707675
\(743\) −20885.8 −1.03126 −0.515629 0.856812i \(-0.672442\pi\)
−0.515629 + 0.856812i \(0.672442\pi\)
\(744\) 0 0
\(745\) −7481.02 −0.367897
\(746\) −10890.3 −0.534482
\(747\) 0 0
\(748\) −36614.5 −1.78978
\(749\) −8047.92 −0.392609
\(750\) 0 0
\(751\) 2210.99 0.107431 0.0537153 0.998556i \(-0.482894\pi\)
0.0537153 + 0.998556i \(0.482894\pi\)
\(752\) −6450.52 −0.312801
\(753\) 0 0
\(754\) −13381.2 −0.646304
\(755\) 9356.10 0.450998
\(756\) 0 0
\(757\) −7793.92 −0.374207 −0.187104 0.982340i \(-0.559910\pi\)
−0.187104 + 0.982340i \(0.559910\pi\)
\(758\) −1972.59 −0.0945218
\(759\) 0 0
\(760\) −3347.95 −0.159793
\(761\) −19565.7 −0.932005 −0.466003 0.884783i \(-0.654306\pi\)
−0.466003 + 0.884783i \(0.654306\pi\)
\(762\) 0 0
\(763\) −19759.7 −0.937549
\(764\) 35674.6 1.68935
\(765\) 0 0
\(766\) −49269.4 −2.32399
\(767\) −6514.22 −0.306669
\(768\) 0 0
\(769\) 28969.5 1.35847 0.679237 0.733919i \(-0.262311\pi\)
0.679237 + 0.733919i \(0.262311\pi\)
\(770\) 10580.9 0.495209
\(771\) 0 0
\(772\) 18336.4 0.854844
\(773\) −39776.6 −1.85079 −0.925397 0.379000i \(-0.876268\pi\)
−0.925397 + 0.379000i \(0.876268\pi\)
\(774\) 0 0
\(775\) 28559.7 1.32374
\(776\) 17885.0 0.827365
\(777\) 0 0
\(778\) −3608.17 −0.166271
\(779\) −40251.3 −1.85129
\(780\) 0 0
\(781\) 24901.8 1.14092
\(782\) −16853.1 −0.770671
\(783\) 0 0
\(784\) −5367.25 −0.244499
\(785\) 10738.3 0.488239
\(786\) 0 0
\(787\) 11873.5 0.537795 0.268898 0.963169i \(-0.413341\pi\)
0.268898 + 0.963169i \(0.413341\pi\)
\(788\) −45406.0 −2.05269
\(789\) 0 0
\(790\) −16195.7 −0.729389
\(791\) −25456.6 −1.14429
\(792\) 0 0
\(793\) −4965.76 −0.222370
\(794\) 6603.34 0.295143
\(795\) 0 0
\(796\) −57172.2 −2.54575
\(797\) −12939.1 −0.575066 −0.287533 0.957771i \(-0.592835\pi\)
−0.287533 + 0.957771i \(0.592835\pi\)
\(798\) 0 0
\(799\) −19039.5 −0.843014
\(800\) 27934.9 1.23456
\(801\) 0 0
\(802\) 50448.1 2.22118
\(803\) 3960.22 0.174039
\(804\) 0 0
\(805\) 2783.70 0.121879
\(806\) −18718.8 −0.818040
\(807\) 0 0
\(808\) 9329.22 0.406189
\(809\) −18133.3 −0.788049 −0.394024 0.919100i \(-0.628917\pi\)
−0.394024 + 0.919100i \(0.628917\pi\)
\(810\) 0 0
\(811\) 26902.2 1.16481 0.582407 0.812897i \(-0.302111\pi\)
0.582407 + 0.812897i \(0.302111\pi\)
\(812\) 42607.5 1.84142
\(813\) 0 0
\(814\) −49165.2 −2.11700
\(815\) −2971.23 −0.127703
\(816\) 0 0
\(817\) 32344.8 1.38507
\(818\) −44200.3 −1.88928
\(819\) 0 0
\(820\) 16744.2 0.713088
\(821\) −2255.42 −0.0958768 −0.0479384 0.998850i \(-0.515265\pi\)
−0.0479384 + 0.998850i \(0.515265\pi\)
\(822\) 0 0
\(823\) −22738.1 −0.963063 −0.481531 0.876429i \(-0.659919\pi\)
−0.481531 + 0.876429i \(0.659919\pi\)
\(824\) −9417.83 −0.398162
\(825\) 0 0
\(826\) 36289.6 1.52867
\(827\) 28656.1 1.20492 0.602462 0.798148i \(-0.294187\pi\)
0.602462 + 0.798148i \(0.294187\pi\)
\(828\) 0 0
\(829\) −19121.7 −0.801114 −0.400557 0.916272i \(-0.631183\pi\)
−0.400557 + 0.916272i \(0.631183\pi\)
\(830\) −10692.9 −0.447175
\(831\) 0 0
\(832\) −13415.4 −0.559008
\(833\) −15842.1 −0.658937
\(834\) 0 0
\(835\) 2690.27 0.111498
\(836\) 30158.1 1.24766
\(837\) 0 0
\(838\) −4906.72 −0.202267
\(839\) 3406.70 0.140182 0.0700909 0.997541i \(-0.477671\pi\)
0.0700909 + 0.997541i \(0.477671\pi\)
\(840\) 0 0
\(841\) 7851.33 0.321921
\(842\) −1092.30 −0.0447069
\(843\) 0 0
\(844\) −61629.6 −2.51348
\(845\) 6384.75 0.259931
\(846\) 0 0
\(847\) 5721.86 0.232120
\(848\) 5280.92 0.213853
\(849\) 0 0
\(850\) 51441.7 2.07581
\(851\) −12934.7 −0.521029
\(852\) 0 0
\(853\) 43325.4 1.73908 0.869538 0.493865i \(-0.164416\pi\)
0.869538 + 0.493865i \(0.164416\pi\)
\(854\) 27663.4 1.10846
\(855\) 0 0
\(856\) 4181.05 0.166946
\(857\) 36770.9 1.46566 0.732829 0.680413i \(-0.238200\pi\)
0.732829 + 0.680413i \(0.238200\pi\)
\(858\) 0 0
\(859\) −9578.35 −0.380453 −0.190226 0.981740i \(-0.560922\pi\)
−0.190226 + 0.981740i \(0.560922\pi\)
\(860\) −13455.1 −0.533508
\(861\) 0 0
\(862\) −1932.24 −0.0763485
\(863\) 2609.85 0.102944 0.0514719 0.998674i \(-0.483609\pi\)
0.0514719 + 0.998674i \(0.483609\pi\)
\(864\) 0 0
\(865\) −10932.5 −0.429728
\(866\) 19014.9 0.746135
\(867\) 0 0
\(868\) 59603.2 2.33072
\(869\) 36537.3 1.42629
\(870\) 0 0
\(871\) 477.269 0.0185668
\(872\) 10265.6 0.398665
\(873\) 0 0
\(874\) 13881.3 0.537234
\(875\) −17838.0 −0.689181
\(876\) 0 0
\(877\) −577.965 −0.0222537 −0.0111268 0.999938i \(-0.503542\pi\)
−0.0111268 + 0.999938i \(0.503542\pi\)
\(878\) 42232.0 1.62330
\(879\) 0 0
\(880\) 3906.56 0.149648
\(881\) −17578.3 −0.672223 −0.336112 0.941822i \(-0.609112\pi\)
−0.336112 + 0.941822i \(0.609112\pi\)
\(882\) 0 0
\(883\) 35663.8 1.35921 0.679604 0.733579i \(-0.262152\pi\)
0.679604 + 0.733579i \(0.262152\pi\)
\(884\) −19271.3 −0.733216
\(885\) 0 0
\(886\) 52216.8 1.97998
\(887\) −4177.67 −0.158143 −0.0790713 0.996869i \(-0.525195\pi\)
−0.0790713 + 0.996869i \(0.525195\pi\)
\(888\) 0 0
\(889\) 46907.0 1.76964
\(890\) 4671.72 0.175951
\(891\) 0 0
\(892\) 1537.23 0.0577023
\(893\) 15682.2 0.587664
\(894\) 0 0
\(895\) 4283.58 0.159982
\(896\) 31036.2 1.15719
\(897\) 0 0
\(898\) 71333.5 2.65081
\(899\) 45100.6 1.67318
\(900\) 0 0
\(901\) 15587.2 0.576345
\(902\) −66088.8 −2.43960
\(903\) 0 0
\(904\) 13225.2 0.486576
\(905\) 2803.11 0.102960
\(906\) 0 0
\(907\) −3530.69 −0.129255 −0.0646277 0.997909i \(-0.520586\pi\)
−0.0646277 + 0.997909i \(0.520586\pi\)
\(908\) −44922.9 −1.64187
\(909\) 0 0
\(910\) 5569.06 0.202871
\(911\) −19956.9 −0.725797 −0.362898 0.931829i \(-0.618213\pi\)
−0.362898 + 0.931829i \(0.618213\pi\)
\(912\) 0 0
\(913\) 24123.0 0.874428
\(914\) 21254.9 0.769200
\(915\) 0 0
\(916\) −25974.6 −0.936928
\(917\) −43534.7 −1.56777
\(918\) 0 0
\(919\) 1053.74 0.0378235 0.0189117 0.999821i \(-0.493980\pi\)
0.0189117 + 0.999821i \(0.493980\pi\)
\(920\) −1446.19 −0.0518255
\(921\) 0 0
\(922\) −35116.7 −1.25435
\(923\) 13106.5 0.467397
\(924\) 0 0
\(925\) 39481.4 1.40339
\(926\) 10632.4 0.377323
\(927\) 0 0
\(928\) 44114.0 1.56047
\(929\) −14474.4 −0.511183 −0.255592 0.966785i \(-0.582270\pi\)
−0.255592 + 0.966785i \(0.582270\pi\)
\(930\) 0 0
\(931\) 13048.6 0.459344
\(932\) 19314.8 0.678840
\(933\) 0 0
\(934\) −68074.6 −2.38487
\(935\) 11530.7 0.403308
\(936\) 0 0
\(937\) −36085.8 −1.25813 −0.629067 0.777351i \(-0.716563\pi\)
−0.629067 + 0.777351i \(0.716563\pi\)
\(938\) −2658.79 −0.0925506
\(939\) 0 0
\(940\) −6523.64 −0.226359
\(941\) −6939.63 −0.240410 −0.120205 0.992749i \(-0.538355\pi\)
−0.120205 + 0.992749i \(0.538355\pi\)
\(942\) 0 0
\(943\) −17387.1 −0.600425
\(944\) 13398.4 0.461949
\(945\) 0 0
\(946\) 53107.1 1.82522
\(947\) 28579.7 0.980693 0.490346 0.871528i \(-0.336870\pi\)
0.490346 + 0.871528i \(0.336870\pi\)
\(948\) 0 0
\(949\) 2084.38 0.0712981
\(950\) −42370.8 −1.44704
\(951\) 0 0
\(952\) 26886.9 0.915346
\(953\) 11960.8 0.406557 0.203278 0.979121i \(-0.434840\pi\)
0.203278 + 0.979121i \(0.434840\pi\)
\(954\) 0 0
\(955\) −11234.7 −0.380676
\(956\) −20686.3 −0.699835
\(957\) 0 0
\(958\) −48408.3 −1.63257
\(959\) 23942.7 0.806204
\(960\) 0 0
\(961\) 33299.8 1.11778
\(962\) −25877.1 −0.867267
\(963\) 0 0
\(964\) 57184.0 1.91055
\(965\) −5774.50 −0.192630
\(966\) 0 0
\(967\) 7031.84 0.233846 0.116923 0.993141i \(-0.462697\pi\)
0.116923 + 0.993141i \(0.462697\pi\)
\(968\) −2972.62 −0.0987020
\(969\) 0 0
\(970\) −22489.6 −0.744429
\(971\) 28959.5 0.957110 0.478555 0.878057i \(-0.341161\pi\)
0.478555 + 0.878057i \(0.341161\pi\)
\(972\) 0 0
\(973\) 3071.93 0.101214
\(974\) 31601.0 1.03959
\(975\) 0 0
\(976\) 10213.5 0.334966
\(977\) 7934.65 0.259828 0.129914 0.991525i \(-0.458530\pi\)
0.129914 + 0.991525i \(0.458530\pi\)
\(978\) 0 0
\(979\) −10539.3 −0.344063
\(980\) −5428.09 −0.176933
\(981\) 0 0
\(982\) 16171.7 0.525520
\(983\) 2948.06 0.0956545 0.0478272 0.998856i \(-0.484770\pi\)
0.0478272 + 0.998856i \(0.484770\pi\)
\(984\) 0 0
\(985\) 14299.3 0.462551
\(986\) 81235.1 2.62379
\(987\) 0 0
\(988\) 15873.1 0.511124
\(989\) 13971.8 0.449217
\(990\) 0 0
\(991\) −28435.4 −0.911482 −0.455741 0.890112i \(-0.650626\pi\)
−0.455741 + 0.890112i \(0.650626\pi\)
\(992\) 61710.6 1.97511
\(993\) 0 0
\(994\) −73014.4 −2.32986
\(995\) 18004.7 0.573656
\(996\) 0 0
\(997\) −6736.12 −0.213977 −0.106988 0.994260i \(-0.534121\pi\)
−0.106988 + 0.994260i \(0.534121\pi\)
\(998\) −54427.2 −1.72632
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.4.a.b.1.11 yes 12
3.2 odd 2 729.4.a.a.1.2 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.4.a.a.1.2 12 3.2 odd 2
729.4.a.b.1.11 yes 12 1.1 even 1 trivial