Properties

Label 729.4.a.b.1.5
Level $729$
Weight $4$
Character 729.1
Self dual yes
Analytic conductor $43.012$
Analytic rank $1$
Dimension $12$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [729,4,Mod(1,729)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(729, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("729.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 729 = 3^{6} \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 729.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.0123923942\)
Analytic rank: \(1\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 6 x^{11} - 48 x^{10} + 269 x^{9} + 900 x^{8} - 4059 x^{7} - 8325 x^{6} + 23940 x^{5} + \cdots - 3392 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{3}\cdot 3^{5} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.5
Root \(1.45995\) of defining polynomial
Character \(\chi\) \(=\) 729.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.459945 q^{2} -7.78845 q^{4} -11.1167 q^{5} -7.10397 q^{7} +7.26182 q^{8} +5.11307 q^{10} -4.86293 q^{11} +7.82754 q^{13} +3.26744 q^{14} +58.9676 q^{16} +102.280 q^{17} +120.959 q^{19} +86.5818 q^{20} +2.23668 q^{22} +63.8485 q^{23} -1.41923 q^{25} -3.60024 q^{26} +55.3289 q^{28} -136.281 q^{29} -217.939 q^{31} -85.2164 q^{32} -47.0432 q^{34} +78.9727 q^{35} +121.549 q^{37} -55.6344 q^{38} -80.7274 q^{40} -87.3695 q^{41} -208.031 q^{43} +37.8747 q^{44} -29.3668 q^{46} +470.414 q^{47} -292.534 q^{49} +0.652769 q^{50} -60.9644 q^{52} -496.852 q^{53} +54.0596 q^{55} -51.5878 q^{56} +62.6820 q^{58} +832.796 q^{59} +395.570 q^{61} +100.240 q^{62} -432.546 q^{64} -87.0163 q^{65} -789.333 q^{67} -796.603 q^{68} -36.3231 q^{70} -665.848 q^{71} -687.195 q^{73} -55.9059 q^{74} -942.082 q^{76} +34.5461 q^{77} +96.0375 q^{79} -655.524 q^{80} +40.1852 q^{82} -44.0012 q^{83} -1137.02 q^{85} +95.6830 q^{86} -35.3137 q^{88} +1492.59 q^{89} -55.6066 q^{91} -497.281 q^{92} -216.365 q^{94} -1344.66 q^{95} -246.479 q^{97} +134.549 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} + 36 q^{4} + 12 q^{5} - 42 q^{7} + 21 q^{8} - 60 q^{10} + 42 q^{11} - 78 q^{13} - 312 q^{14} + 48 q^{16} - 18 q^{17} - 228 q^{19} - 69 q^{20} - 309 q^{22} - 114 q^{23} - 18 q^{25} + 30 q^{26}+ \cdots + 9567 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.459945 −0.162615 −0.0813076 0.996689i \(-0.525910\pi\)
−0.0813076 + 0.996689i \(0.525910\pi\)
\(3\) 0 0
\(4\) −7.78845 −0.973556
\(5\) −11.1167 −0.994307 −0.497153 0.867663i \(-0.665621\pi\)
−0.497153 + 0.867663i \(0.665621\pi\)
\(6\) 0 0
\(7\) −7.10397 −0.383578 −0.191789 0.981436i \(-0.561429\pi\)
−0.191789 + 0.981436i \(0.561429\pi\)
\(8\) 7.26182 0.320930
\(9\) 0 0
\(10\) 5.11307 0.161689
\(11\) −4.86293 −0.133293 −0.0666467 0.997777i \(-0.521230\pi\)
−0.0666467 + 0.997777i \(0.521230\pi\)
\(12\) 0 0
\(13\) 7.82754 0.166998 0.0834988 0.996508i \(-0.473391\pi\)
0.0834988 + 0.996508i \(0.473391\pi\)
\(14\) 3.26744 0.0623757
\(15\) 0 0
\(16\) 58.9676 0.921368
\(17\) 102.280 1.45921 0.729604 0.683870i \(-0.239704\pi\)
0.729604 + 0.683870i \(0.239704\pi\)
\(18\) 0 0
\(19\) 120.959 1.46052 0.730259 0.683170i \(-0.239399\pi\)
0.730259 + 0.683170i \(0.239399\pi\)
\(20\) 86.5818 0.968014
\(21\) 0 0
\(22\) 2.23668 0.0216755
\(23\) 63.8485 0.578841 0.289420 0.957202i \(-0.406537\pi\)
0.289420 + 0.957202i \(0.406537\pi\)
\(24\) 0 0
\(25\) −1.41923 −0.0113538
\(26\) −3.60024 −0.0271564
\(27\) 0 0
\(28\) 55.3289 0.373435
\(29\) −136.281 −0.872649 −0.436324 0.899789i \(-0.643720\pi\)
−0.436324 + 0.899789i \(0.643720\pi\)
\(30\) 0 0
\(31\) −217.939 −1.26268 −0.631338 0.775508i \(-0.717494\pi\)
−0.631338 + 0.775508i \(0.717494\pi\)
\(32\) −85.2164 −0.470759
\(33\) 0 0
\(34\) −47.0432 −0.237290
\(35\) 78.9727 0.381395
\(36\) 0 0
\(37\) 121.549 0.540069 0.270034 0.962851i \(-0.412965\pi\)
0.270034 + 0.962851i \(0.412965\pi\)
\(38\) −55.6344 −0.237503
\(39\) 0 0
\(40\) −80.7274 −0.319103
\(41\) −87.3695 −0.332801 −0.166400 0.986058i \(-0.553214\pi\)
−0.166400 + 0.986058i \(0.553214\pi\)
\(42\) 0 0
\(43\) −208.031 −0.737779 −0.368889 0.929473i \(-0.620262\pi\)
−0.368889 + 0.929473i \(0.620262\pi\)
\(44\) 37.8747 0.129769
\(45\) 0 0
\(46\) −29.3668 −0.0941283
\(47\) 470.414 1.45993 0.729967 0.683482i \(-0.239535\pi\)
0.729967 + 0.683482i \(0.239535\pi\)
\(48\) 0 0
\(49\) −292.534 −0.852868
\(50\) 0.652769 0.00184631
\(51\) 0 0
\(52\) −60.9644 −0.162582
\(53\) −496.852 −1.28770 −0.643848 0.765153i \(-0.722663\pi\)
−0.643848 + 0.765153i \(0.722663\pi\)
\(54\) 0 0
\(55\) 54.0596 0.132535
\(56\) −51.5878 −0.123102
\(57\) 0 0
\(58\) 62.6820 0.141906
\(59\) 832.796 1.83764 0.918820 0.394676i \(-0.129143\pi\)
0.918820 + 0.394676i \(0.129143\pi\)
\(60\) 0 0
\(61\) 395.570 0.830288 0.415144 0.909756i \(-0.363731\pi\)
0.415144 + 0.909756i \(0.363731\pi\)
\(62\) 100.240 0.205330
\(63\) 0 0
\(64\) −432.546 −0.844816
\(65\) −87.0163 −0.166047
\(66\) 0 0
\(67\) −789.333 −1.43929 −0.719645 0.694342i \(-0.755695\pi\)
−0.719645 + 0.694342i \(0.755695\pi\)
\(68\) −796.603 −1.42062
\(69\) 0 0
\(70\) −36.3231 −0.0620206
\(71\) −665.848 −1.11298 −0.556491 0.830854i \(-0.687852\pi\)
−0.556491 + 0.830854i \(0.687852\pi\)
\(72\) 0 0
\(73\) −687.195 −1.10178 −0.550891 0.834577i \(-0.685712\pi\)
−0.550891 + 0.834577i \(0.685712\pi\)
\(74\) −55.9059 −0.0878234
\(75\) 0 0
\(76\) −942.082 −1.42190
\(77\) 34.5461 0.0511285
\(78\) 0 0
\(79\) 96.0375 0.136773 0.0683865 0.997659i \(-0.478215\pi\)
0.0683865 + 0.997659i \(0.478215\pi\)
\(80\) −655.524 −0.916123
\(81\) 0 0
\(82\) 40.1852 0.0541184
\(83\) −44.0012 −0.0581899 −0.0290950 0.999577i \(-0.509263\pi\)
−0.0290950 + 0.999577i \(0.509263\pi\)
\(84\) 0 0
\(85\) −1137.02 −1.45090
\(86\) 95.6830 0.119974
\(87\) 0 0
\(88\) −35.3137 −0.0427779
\(89\) 1492.59 1.77769 0.888843 0.458212i \(-0.151510\pi\)
0.888843 + 0.458212i \(0.151510\pi\)
\(90\) 0 0
\(91\) −55.6066 −0.0640567
\(92\) −497.281 −0.563534
\(93\) 0 0
\(94\) −216.365 −0.237408
\(95\) −1344.66 −1.45220
\(96\) 0 0
\(97\) −246.479 −0.258002 −0.129001 0.991644i \(-0.541177\pi\)
−0.129001 + 0.991644i \(0.541177\pi\)
\(98\) 134.549 0.138689
\(99\) 0 0
\(100\) 11.0536 0.0110536
\(101\) 1248.57 1.23007 0.615034 0.788500i \(-0.289142\pi\)
0.615034 + 0.788500i \(0.289142\pi\)
\(102\) 0 0
\(103\) −549.924 −0.526074 −0.263037 0.964786i \(-0.584724\pi\)
−0.263037 + 0.964786i \(0.584724\pi\)
\(104\) 56.8422 0.0535946
\(105\) 0 0
\(106\) 228.525 0.209399
\(107\) −1115.38 −1.00773 −0.503866 0.863782i \(-0.668090\pi\)
−0.503866 + 0.863782i \(0.668090\pi\)
\(108\) 0 0
\(109\) −1138.53 −1.00047 −0.500235 0.865890i \(-0.666753\pi\)
−0.500235 + 0.865890i \(0.666753\pi\)
\(110\) −24.8645 −0.0215521
\(111\) 0 0
\(112\) −418.904 −0.353417
\(113\) 2010.83 1.67401 0.837005 0.547195i \(-0.184304\pi\)
0.837005 + 0.547195i \(0.184304\pi\)
\(114\) 0 0
\(115\) −709.784 −0.575545
\(116\) 1061.42 0.849573
\(117\) 0 0
\(118\) −383.041 −0.298828
\(119\) −726.594 −0.559721
\(120\) 0 0
\(121\) −1307.35 −0.982233
\(122\) −181.941 −0.135018
\(123\) 0 0
\(124\) 1697.40 1.22929
\(125\) 1405.36 1.00560
\(126\) 0 0
\(127\) 1649.61 1.15259 0.576296 0.817241i \(-0.304498\pi\)
0.576296 + 0.817241i \(0.304498\pi\)
\(128\) 880.679 0.608139
\(129\) 0 0
\(130\) 40.0227 0.0270017
\(131\) 1078.01 0.718979 0.359489 0.933149i \(-0.382951\pi\)
0.359489 + 0.933149i \(0.382951\pi\)
\(132\) 0 0
\(133\) −859.288 −0.560223
\(134\) 363.050 0.234050
\(135\) 0 0
\(136\) 742.739 0.468304
\(137\) −3176.28 −1.98079 −0.990393 0.138283i \(-0.955842\pi\)
−0.990393 + 0.138283i \(0.955842\pi\)
\(138\) 0 0
\(139\) −2808.11 −1.71353 −0.856764 0.515708i \(-0.827529\pi\)
−0.856764 + 0.515708i \(0.827529\pi\)
\(140\) −615.075 −0.371309
\(141\) 0 0
\(142\) 306.254 0.180988
\(143\) −38.0647 −0.0222597
\(144\) 0 0
\(145\) 1515.00 0.867681
\(146\) 316.072 0.179167
\(147\) 0 0
\(148\) −946.679 −0.525787
\(149\) −738.254 −0.405907 −0.202953 0.979188i \(-0.565054\pi\)
−0.202953 + 0.979188i \(0.565054\pi\)
\(150\) 0 0
\(151\) −1027.19 −0.553588 −0.276794 0.960929i \(-0.589272\pi\)
−0.276794 + 0.960929i \(0.589272\pi\)
\(152\) 878.382 0.468725
\(153\) 0 0
\(154\) −15.8893 −0.00831427
\(155\) 2422.76 1.25549
\(156\) 0 0
\(157\) −1840.76 −0.935722 −0.467861 0.883802i \(-0.654975\pi\)
−0.467861 + 0.883802i \(0.654975\pi\)
\(158\) −44.1720 −0.0222414
\(159\) 0 0
\(160\) 947.325 0.468079
\(161\) −453.578 −0.222031
\(162\) 0 0
\(163\) 739.726 0.355459 0.177730 0.984079i \(-0.443125\pi\)
0.177730 + 0.984079i \(0.443125\pi\)
\(164\) 680.473 0.324000
\(165\) 0 0
\(166\) 20.2382 0.00946257
\(167\) −1012.24 −0.469039 −0.234520 0.972111i \(-0.575352\pi\)
−0.234520 + 0.972111i \(0.575352\pi\)
\(168\) 0 0
\(169\) −2135.73 −0.972112
\(170\) 522.965 0.235939
\(171\) 0 0
\(172\) 1620.24 0.718269
\(173\) −2048.23 −0.900140 −0.450070 0.892993i \(-0.648601\pi\)
−0.450070 + 0.892993i \(0.648601\pi\)
\(174\) 0 0
\(175\) 10.0822 0.00435509
\(176\) −286.755 −0.122812
\(177\) 0 0
\(178\) −686.509 −0.289079
\(179\) −499.102 −0.208406 −0.104203 0.994556i \(-0.533229\pi\)
−0.104203 + 0.994556i \(0.533229\pi\)
\(180\) 0 0
\(181\) −411.248 −0.168883 −0.0844415 0.996428i \(-0.526911\pi\)
−0.0844415 + 0.996428i \(0.526911\pi\)
\(182\) 25.5760 0.0104166
\(183\) 0 0
\(184\) 463.657 0.185767
\(185\) −1351.22 −0.536994
\(186\) 0 0
\(187\) −497.380 −0.194503
\(188\) −3663.80 −1.42133
\(189\) 0 0
\(190\) 618.471 0.236150
\(191\) −919.739 −0.348429 −0.174215 0.984708i \(-0.555739\pi\)
−0.174215 + 0.984708i \(0.555739\pi\)
\(192\) 0 0
\(193\) 4411.86 1.64545 0.822727 0.568437i \(-0.192452\pi\)
0.822727 + 0.568437i \(0.192452\pi\)
\(194\) 113.367 0.0419550
\(195\) 0 0
\(196\) 2278.38 0.830315
\(197\) −2903.11 −1.04994 −0.524969 0.851121i \(-0.675923\pi\)
−0.524969 + 0.851121i \(0.675923\pi\)
\(198\) 0 0
\(199\) −1511.10 −0.538286 −0.269143 0.963100i \(-0.586740\pi\)
−0.269143 + 0.963100i \(0.586740\pi\)
\(200\) −10.3062 −0.00364379
\(201\) 0 0
\(202\) −574.272 −0.200028
\(203\) 968.139 0.334729
\(204\) 0 0
\(205\) 971.260 0.330906
\(206\) 252.935 0.0855476
\(207\) 0 0
\(208\) 461.571 0.153866
\(209\) −588.214 −0.194677
\(210\) 0 0
\(211\) −720.035 −0.234926 −0.117463 0.993077i \(-0.537476\pi\)
−0.117463 + 0.993077i \(0.537476\pi\)
\(212\) 3869.71 1.25365
\(213\) 0 0
\(214\) 513.012 0.163873
\(215\) 2312.62 0.733578
\(216\) 0 0
\(217\) 1548.23 0.484335
\(218\) 523.660 0.162692
\(219\) 0 0
\(220\) −421.041 −0.129030
\(221\) 800.601 0.243684
\(222\) 0 0
\(223\) 3062.84 0.919744 0.459872 0.887985i \(-0.347895\pi\)
0.459872 + 0.887985i \(0.347895\pi\)
\(224\) 605.375 0.180573
\(225\) 0 0
\(226\) −924.873 −0.272220
\(227\) 3616.10 1.05731 0.528655 0.848837i \(-0.322697\pi\)
0.528655 + 0.848837i \(0.322697\pi\)
\(228\) 0 0
\(229\) −126.572 −0.0365246 −0.0182623 0.999833i \(-0.505813\pi\)
−0.0182623 + 0.999833i \(0.505813\pi\)
\(230\) 326.462 0.0935924
\(231\) 0 0
\(232\) −989.651 −0.280059
\(233\) −5065.08 −1.42414 −0.712070 0.702108i \(-0.752242\pi\)
−0.712070 + 0.702108i \(0.752242\pi\)
\(234\) 0 0
\(235\) −5229.44 −1.45162
\(236\) −6486.19 −1.78905
\(237\) 0 0
\(238\) 334.194 0.0910192
\(239\) −4549.84 −1.23140 −0.615700 0.787980i \(-0.711127\pi\)
−0.615700 + 0.787980i \(0.711127\pi\)
\(240\) 0 0
\(241\) −1235.80 −0.330311 −0.165155 0.986268i \(-0.552813\pi\)
−0.165155 + 0.986268i \(0.552813\pi\)
\(242\) 601.310 0.159726
\(243\) 0 0
\(244\) −3080.88 −0.808332
\(245\) 3252.00 0.848012
\(246\) 0 0
\(247\) 946.810 0.243903
\(248\) −1582.63 −0.405231
\(249\) 0 0
\(250\) −646.390 −0.163525
\(251\) −857.660 −0.215677 −0.107839 0.994168i \(-0.534393\pi\)
−0.107839 + 0.994168i \(0.534393\pi\)
\(252\) 0 0
\(253\) −310.491 −0.0771556
\(254\) −758.730 −0.187429
\(255\) 0 0
\(256\) 3055.30 0.745923
\(257\) 6.79502 0.00164927 0.000824634 1.00000i \(-0.499738\pi\)
0.000824634 1.00000i \(0.499738\pi\)
\(258\) 0 0
\(259\) −863.481 −0.207159
\(260\) 677.722 0.161656
\(261\) 0 0
\(262\) −495.826 −0.116917
\(263\) −1282.90 −0.300787 −0.150394 0.988626i \(-0.548054\pi\)
−0.150394 + 0.988626i \(0.548054\pi\)
\(264\) 0 0
\(265\) 5523.35 1.28037
\(266\) 395.226 0.0911009
\(267\) 0 0
\(268\) 6147.68 1.40123
\(269\) 6329.27 1.43458 0.717290 0.696774i \(-0.245382\pi\)
0.717290 + 0.696774i \(0.245382\pi\)
\(270\) 0 0
\(271\) −3310.31 −0.742018 −0.371009 0.928629i \(-0.620988\pi\)
−0.371009 + 0.928629i \(0.620988\pi\)
\(272\) 6031.20 1.34447
\(273\) 0 0
\(274\) 1460.91 0.322106
\(275\) 6.90162 0.00151339
\(276\) 0 0
\(277\) −7760.10 −1.68325 −0.841623 0.540066i \(-0.818399\pi\)
−0.841623 + 0.540066i \(0.818399\pi\)
\(278\) 1291.58 0.278646
\(279\) 0 0
\(280\) 573.486 0.122401
\(281\) 1714.24 0.363925 0.181963 0.983305i \(-0.441755\pi\)
0.181963 + 0.983305i \(0.441755\pi\)
\(282\) 0 0
\(283\) 7547.55 1.58535 0.792677 0.609642i \(-0.208687\pi\)
0.792677 + 0.609642i \(0.208687\pi\)
\(284\) 5185.93 1.08355
\(285\) 0 0
\(286\) 17.5077 0.00361976
\(287\) 620.671 0.127655
\(288\) 0 0
\(289\) 5548.20 1.12929
\(290\) −696.816 −0.141098
\(291\) 0 0
\(292\) 5352.19 1.07265
\(293\) −5236.74 −1.04414 −0.522071 0.852902i \(-0.674840\pi\)
−0.522071 + 0.852902i \(0.674840\pi\)
\(294\) 0 0
\(295\) −9257.93 −1.82718
\(296\) 882.668 0.173324
\(297\) 0 0
\(298\) 339.556 0.0660066
\(299\) 499.777 0.0966650
\(300\) 0 0
\(301\) 1477.85 0.282996
\(302\) 472.453 0.0900218
\(303\) 0 0
\(304\) 7132.65 1.34568
\(305\) −4397.43 −0.825561
\(306\) 0 0
\(307\) −6667.93 −1.23961 −0.619803 0.784758i \(-0.712787\pi\)
−0.619803 + 0.784758i \(0.712787\pi\)
\(308\) −269.061 −0.0497764
\(309\) 0 0
\(310\) −1114.34 −0.204161
\(311\) 4667.46 0.851021 0.425511 0.904953i \(-0.360094\pi\)
0.425511 + 0.904953i \(0.360094\pi\)
\(312\) 0 0
\(313\) 1259.12 0.227379 0.113690 0.993516i \(-0.463733\pi\)
0.113690 + 0.993516i \(0.463733\pi\)
\(314\) 846.648 0.152163
\(315\) 0 0
\(316\) −747.983 −0.133156
\(317\) −7867.19 −1.39390 −0.696949 0.717121i \(-0.745459\pi\)
−0.696949 + 0.717121i \(0.745459\pi\)
\(318\) 0 0
\(319\) 662.726 0.116318
\(320\) 4808.47 0.840006
\(321\) 0 0
\(322\) 208.621 0.0361056
\(323\) 12371.7 2.13120
\(324\) 0 0
\(325\) −11.1091 −0.00189607
\(326\) −340.234 −0.0578030
\(327\) 0 0
\(328\) −634.462 −0.106806
\(329\) −3341.81 −0.559999
\(330\) 0 0
\(331\) −3495.07 −0.580381 −0.290191 0.956969i \(-0.593719\pi\)
−0.290191 + 0.956969i \(0.593719\pi\)
\(332\) 342.701 0.0566512
\(333\) 0 0
\(334\) 465.576 0.0762729
\(335\) 8774.77 1.43110
\(336\) 0 0
\(337\) 7630.86 1.23347 0.616735 0.787171i \(-0.288455\pi\)
0.616735 + 0.787171i \(0.288455\pi\)
\(338\) 982.319 0.158080
\(339\) 0 0
\(340\) 8855.59 1.41253
\(341\) 1059.82 0.168306
\(342\) 0 0
\(343\) 4514.81 0.710720
\(344\) −1510.69 −0.236776
\(345\) 0 0
\(346\) 942.074 0.146376
\(347\) −2270.78 −0.351302 −0.175651 0.984453i \(-0.556203\pi\)
−0.175651 + 0.984453i \(0.556203\pi\)
\(348\) 0 0
\(349\) 3421.14 0.524726 0.262363 0.964969i \(-0.415498\pi\)
0.262363 + 0.964969i \(0.415498\pi\)
\(350\) −4.63725 −0.000708204 0
\(351\) 0 0
\(352\) 414.401 0.0627490
\(353\) −5311.03 −0.800787 −0.400394 0.916343i \(-0.631127\pi\)
−0.400394 + 0.916343i \(0.631127\pi\)
\(354\) 0 0
\(355\) 7402.03 1.10664
\(356\) −11624.9 −1.73068
\(357\) 0 0
\(358\) 229.560 0.0338900
\(359\) −10257.5 −1.50799 −0.753996 0.656879i \(-0.771876\pi\)
−0.753996 + 0.656879i \(0.771876\pi\)
\(360\) 0 0
\(361\) 7772.03 1.13311
\(362\) 189.152 0.0274629
\(363\) 0 0
\(364\) 433.089 0.0623628
\(365\) 7639.33 1.09551
\(366\) 0 0
\(367\) −11286.9 −1.60537 −0.802684 0.596404i \(-0.796596\pi\)
−0.802684 + 0.596404i \(0.796596\pi\)
\(368\) 3764.99 0.533325
\(369\) 0 0
\(370\) 621.489 0.0873234
\(371\) 3529.63 0.493933
\(372\) 0 0
\(373\) 7156.42 0.993419 0.496709 0.867917i \(-0.334542\pi\)
0.496709 + 0.867917i \(0.334542\pi\)
\(374\) 228.768 0.0316291
\(375\) 0 0
\(376\) 3416.06 0.468537
\(377\) −1066.75 −0.145730
\(378\) 0 0
\(379\) 10053.0 1.36251 0.681253 0.732048i \(-0.261435\pi\)
0.681253 + 0.732048i \(0.261435\pi\)
\(380\) 10472.8 1.41380
\(381\) 0 0
\(382\) 423.029 0.0566599
\(383\) −6679.30 −0.891113 −0.445557 0.895254i \(-0.646994\pi\)
−0.445557 + 0.895254i \(0.646994\pi\)
\(384\) 0 0
\(385\) −384.038 −0.0508374
\(386\) −2029.21 −0.267576
\(387\) 0 0
\(388\) 1919.69 0.251179
\(389\) −4112.68 −0.536044 −0.268022 0.963413i \(-0.586370\pi\)
−0.268022 + 0.963413i \(0.586370\pi\)
\(390\) 0 0
\(391\) 6530.43 0.844649
\(392\) −2124.33 −0.273711
\(393\) 0 0
\(394\) 1335.27 0.170736
\(395\) −1067.62 −0.135994
\(396\) 0 0
\(397\) −2142.41 −0.270842 −0.135421 0.990788i \(-0.543239\pi\)
−0.135421 + 0.990788i \(0.543239\pi\)
\(398\) 695.022 0.0875335
\(399\) 0 0
\(400\) −83.6886 −0.0104611
\(401\) −3200.71 −0.398593 −0.199296 0.979939i \(-0.563866\pi\)
−0.199296 + 0.979939i \(0.563866\pi\)
\(402\) 0 0
\(403\) −1705.92 −0.210864
\(404\) −9724.39 −1.19754
\(405\) 0 0
\(406\) −445.291 −0.0544321
\(407\) −591.084 −0.0719876
\(408\) 0 0
\(409\) 7010.83 0.847587 0.423794 0.905759i \(-0.360698\pi\)
0.423794 + 0.905759i \(0.360698\pi\)
\(410\) −446.726 −0.0538103
\(411\) 0 0
\(412\) 4283.05 0.512162
\(413\) −5916.16 −0.704879
\(414\) 0 0
\(415\) 489.148 0.0578586
\(416\) −667.035 −0.0786156
\(417\) 0 0
\(418\) 270.546 0.0316575
\(419\) 9072.29 1.05778 0.528890 0.848690i \(-0.322608\pi\)
0.528890 + 0.848690i \(0.322608\pi\)
\(420\) 0 0
\(421\) −4555.40 −0.527356 −0.263678 0.964611i \(-0.584936\pi\)
−0.263678 + 0.964611i \(0.584936\pi\)
\(422\) 331.177 0.0382025
\(423\) 0 0
\(424\) −3608.06 −0.413261
\(425\) −145.159 −0.0165676
\(426\) 0 0
\(427\) −2810.12 −0.318481
\(428\) 8687.05 0.981085
\(429\) 0 0
\(430\) −1063.68 −0.119291
\(431\) 5707.29 0.637843 0.318922 0.947781i \(-0.396679\pi\)
0.318922 + 0.947781i \(0.396679\pi\)
\(432\) 0 0
\(433\) 1350.67 0.149905 0.0749526 0.997187i \(-0.476119\pi\)
0.0749526 + 0.997187i \(0.476119\pi\)
\(434\) −712.101 −0.0787603
\(435\) 0 0
\(436\) 8867.36 0.974013
\(437\) 7723.04 0.845407
\(438\) 0 0
\(439\) 7301.19 0.793774 0.396887 0.917868i \(-0.370091\pi\)
0.396887 + 0.917868i \(0.370091\pi\)
\(440\) 392.572 0.0425344
\(441\) 0 0
\(442\) −368.233 −0.0396268
\(443\) 570.523 0.0611881 0.0305941 0.999532i \(-0.490260\pi\)
0.0305941 + 0.999532i \(0.490260\pi\)
\(444\) 0 0
\(445\) −16592.6 −1.76756
\(446\) −1408.74 −0.149564
\(447\) 0 0
\(448\) 3072.79 0.324053
\(449\) −9143.49 −0.961043 −0.480521 0.876983i \(-0.659553\pi\)
−0.480521 + 0.876983i \(0.659553\pi\)
\(450\) 0 0
\(451\) 424.871 0.0443601
\(452\) −15661.3 −1.62974
\(453\) 0 0
\(454\) −1663.21 −0.171935
\(455\) 618.162 0.0636920
\(456\) 0 0
\(457\) −6793.72 −0.695398 −0.347699 0.937606i \(-0.613037\pi\)
−0.347699 + 0.937606i \(0.613037\pi\)
\(458\) 58.2163 0.00593945
\(459\) 0 0
\(460\) 5528.12 0.560326
\(461\) −9737.96 −0.983822 −0.491911 0.870645i \(-0.663701\pi\)
−0.491911 + 0.870645i \(0.663701\pi\)
\(462\) 0 0
\(463\) −11251.3 −1.12936 −0.564679 0.825310i \(-0.691000\pi\)
−0.564679 + 0.825310i \(0.691000\pi\)
\(464\) −8036.18 −0.804031
\(465\) 0 0
\(466\) 2329.66 0.231587
\(467\) −1340.50 −0.132829 −0.0664144 0.997792i \(-0.521156\pi\)
−0.0664144 + 0.997792i \(0.521156\pi\)
\(468\) 0 0
\(469\) 5607.40 0.552081
\(470\) 2405.26 0.236056
\(471\) 0 0
\(472\) 6047.62 0.589755
\(473\) 1011.64 0.0983410
\(474\) 0 0
\(475\) −171.668 −0.0165825
\(476\) 5659.04 0.544920
\(477\) 0 0
\(478\) 2092.68 0.200245
\(479\) 13640.3 1.30113 0.650564 0.759452i \(-0.274533\pi\)
0.650564 + 0.759452i \(0.274533\pi\)
\(480\) 0 0
\(481\) 951.430 0.0901902
\(482\) 568.400 0.0537135
\(483\) 0 0
\(484\) 10182.2 0.956259
\(485\) 2740.03 0.256533
\(486\) 0 0
\(487\) −17589.3 −1.63665 −0.818325 0.574756i \(-0.805097\pi\)
−0.818325 + 0.574756i \(0.805097\pi\)
\(488\) 2872.56 0.266465
\(489\) 0 0
\(490\) −1495.74 −0.137900
\(491\) 18671.3 1.71614 0.858068 0.513535i \(-0.171664\pi\)
0.858068 + 0.513535i \(0.171664\pi\)
\(492\) 0 0
\(493\) −13938.9 −1.27338
\(494\) −435.481 −0.0396624
\(495\) 0 0
\(496\) −12851.3 −1.16339
\(497\) 4730.17 0.426916
\(498\) 0 0
\(499\) −1815.82 −0.162900 −0.0814501 0.996677i \(-0.525955\pi\)
−0.0814501 + 0.996677i \(0.525955\pi\)
\(500\) −10945.6 −0.979004
\(501\) 0 0
\(502\) 394.477 0.0350724
\(503\) −7340.27 −0.650669 −0.325334 0.945599i \(-0.605477\pi\)
−0.325334 + 0.945599i \(0.605477\pi\)
\(504\) 0 0
\(505\) −13879.9 −1.22307
\(506\) 142.809 0.0125467
\(507\) 0 0
\(508\) −12847.9 −1.12211
\(509\) −15594.6 −1.35799 −0.678997 0.734141i \(-0.737585\pi\)
−0.678997 + 0.734141i \(0.737585\pi\)
\(510\) 0 0
\(511\) 4881.82 0.422620
\(512\) −8450.70 −0.729437
\(513\) 0 0
\(514\) −3.12534 −0.000268196 0
\(515\) 6113.33 0.523079
\(516\) 0 0
\(517\) −2287.59 −0.194600
\(518\) 397.154 0.0336872
\(519\) 0 0
\(520\) −631.897 −0.0532895
\(521\) 19088.8 1.60517 0.802587 0.596535i \(-0.203456\pi\)
0.802587 + 0.596535i \(0.203456\pi\)
\(522\) 0 0
\(523\) 1005.56 0.0840731 0.0420366 0.999116i \(-0.486615\pi\)
0.0420366 + 0.999116i \(0.486615\pi\)
\(524\) −8396.03 −0.699966
\(525\) 0 0
\(526\) 590.064 0.0489126
\(527\) −22290.8 −1.84251
\(528\) 0 0
\(529\) −8090.37 −0.664944
\(530\) −2540.44 −0.208207
\(531\) 0 0
\(532\) 6692.52 0.545409
\(533\) −683.888 −0.0555769
\(534\) 0 0
\(535\) 12399.3 1.00200
\(536\) −5732.00 −0.461912
\(537\) 0 0
\(538\) −2911.12 −0.233285
\(539\) 1422.57 0.113682
\(540\) 0 0
\(541\) −7836.19 −0.622743 −0.311372 0.950288i \(-0.600788\pi\)
−0.311372 + 0.950288i \(0.600788\pi\)
\(542\) 1522.56 0.120663
\(543\) 0 0
\(544\) −8715.94 −0.686935
\(545\) 12656.7 0.994773
\(546\) 0 0
\(547\) −12504.7 −0.977445 −0.488723 0.872439i \(-0.662537\pi\)
−0.488723 + 0.872439i \(0.662537\pi\)
\(548\) 24738.3 1.92841
\(549\) 0 0
\(550\) −3.17437 −0.000246101 0
\(551\) −16484.4 −1.27452
\(552\) 0 0
\(553\) −682.248 −0.0524632
\(554\) 3569.22 0.273721
\(555\) 0 0
\(556\) 21870.8 1.66822
\(557\) 12312.0 0.936582 0.468291 0.883574i \(-0.344870\pi\)
0.468291 + 0.883574i \(0.344870\pi\)
\(558\) 0 0
\(559\) −1628.37 −0.123207
\(560\) 4656.82 0.351405
\(561\) 0 0
\(562\) −788.456 −0.0591798
\(563\) 14827.0 1.10992 0.554959 0.831878i \(-0.312734\pi\)
0.554959 + 0.831878i \(0.312734\pi\)
\(564\) 0 0
\(565\) −22353.8 −1.66448
\(566\) −3471.46 −0.257803
\(567\) 0 0
\(568\) −4835.27 −0.357189
\(569\) −17003.7 −1.25278 −0.626391 0.779509i \(-0.715469\pi\)
−0.626391 + 0.779509i \(0.715469\pi\)
\(570\) 0 0
\(571\) −15153.9 −1.11063 −0.555317 0.831639i \(-0.687403\pi\)
−0.555317 + 0.831639i \(0.687403\pi\)
\(572\) 296.465 0.0216710
\(573\) 0 0
\(574\) −285.475 −0.0207587
\(575\) −90.6158 −0.00657207
\(576\) 0 0
\(577\) −11634.7 −0.839443 −0.419722 0.907653i \(-0.637872\pi\)
−0.419722 + 0.907653i \(0.637872\pi\)
\(578\) −2551.87 −0.183640
\(579\) 0 0
\(580\) −11799.5 −0.844736
\(581\) 312.584 0.0223204
\(582\) 0 0
\(583\) 2416.16 0.171641
\(584\) −4990.29 −0.353595
\(585\) 0 0
\(586\) 2408.61 0.169793
\(587\) 6383.80 0.448872 0.224436 0.974489i \(-0.427946\pi\)
0.224436 + 0.974489i \(0.427946\pi\)
\(588\) 0 0
\(589\) −26361.6 −1.84416
\(590\) 4258.14 0.297127
\(591\) 0 0
\(592\) 7167.45 0.497602
\(593\) 5472.02 0.378936 0.189468 0.981887i \(-0.439324\pi\)
0.189468 + 0.981887i \(0.439324\pi\)
\(594\) 0 0
\(595\) 8077.32 0.556534
\(596\) 5749.85 0.395173
\(597\) 0 0
\(598\) −229.870 −0.0157192
\(599\) 9204.38 0.627848 0.313924 0.949448i \(-0.398356\pi\)
0.313924 + 0.949448i \(0.398356\pi\)
\(600\) 0 0
\(601\) 6769.03 0.459425 0.229713 0.973258i \(-0.426221\pi\)
0.229713 + 0.973258i \(0.426221\pi\)
\(602\) −679.730 −0.0460195
\(603\) 0 0
\(604\) 8000.24 0.538949
\(605\) 14533.4 0.976641
\(606\) 0 0
\(607\) −24846.8 −1.66145 −0.830725 0.556683i \(-0.812074\pi\)
−0.830725 + 0.556683i \(0.812074\pi\)
\(608\) −10307.7 −0.687552
\(609\) 0 0
\(610\) 2022.58 0.134249
\(611\) 3682.18 0.243806
\(612\) 0 0
\(613\) 18378.0 1.21090 0.605449 0.795884i \(-0.292994\pi\)
0.605449 + 0.795884i \(0.292994\pi\)
\(614\) 3066.88 0.201579
\(615\) 0 0
\(616\) 250.868 0.0164087
\(617\) 6262.45 0.408617 0.204309 0.978907i \(-0.434505\pi\)
0.204309 + 0.978907i \(0.434505\pi\)
\(618\) 0 0
\(619\) 14118.5 0.916752 0.458376 0.888758i \(-0.348431\pi\)
0.458376 + 0.888758i \(0.348431\pi\)
\(620\) −18869.5 −1.22229
\(621\) 0 0
\(622\) −2146.78 −0.138389
\(623\) −10603.3 −0.681882
\(624\) 0 0
\(625\) −15445.6 −0.988517
\(626\) −579.126 −0.0369753
\(627\) 0 0
\(628\) 14336.6 0.910978
\(629\) 12432.0 0.788073
\(630\) 0 0
\(631\) −3557.70 −0.224453 −0.112227 0.993683i \(-0.535798\pi\)
−0.112227 + 0.993683i \(0.535798\pi\)
\(632\) 697.408 0.0438946
\(633\) 0 0
\(634\) 3618.48 0.226669
\(635\) −18338.2 −1.14603
\(636\) 0 0
\(637\) −2289.82 −0.142427
\(638\) −304.818 −0.0189151
\(639\) 0 0
\(640\) −9790.23 −0.604676
\(641\) 20879.0 1.28654 0.643269 0.765640i \(-0.277578\pi\)
0.643269 + 0.765640i \(0.277578\pi\)
\(642\) 0 0
\(643\) −9481.59 −0.581520 −0.290760 0.956796i \(-0.593908\pi\)
−0.290760 + 0.956796i \(0.593908\pi\)
\(644\) 3532.67 0.216159
\(645\) 0 0
\(646\) −5690.29 −0.346566
\(647\) −20313.7 −1.23434 −0.617168 0.786831i \(-0.711720\pi\)
−0.617168 + 0.786831i \(0.711720\pi\)
\(648\) 0 0
\(649\) −4049.82 −0.244945
\(650\) 5.10957 0.000308329 0
\(651\) 0 0
\(652\) −5761.32 −0.346059
\(653\) 10806.6 0.647619 0.323810 0.946122i \(-0.395036\pi\)
0.323810 + 0.946122i \(0.395036\pi\)
\(654\) 0 0
\(655\) −11983.9 −0.714886
\(656\) −5151.97 −0.306632
\(657\) 0 0
\(658\) 1537.05 0.0910644
\(659\) −21257.1 −1.25654 −0.628269 0.777996i \(-0.716236\pi\)
−0.628269 + 0.777996i \(0.716236\pi\)
\(660\) 0 0
\(661\) 989.827 0.0582448 0.0291224 0.999576i \(-0.490729\pi\)
0.0291224 + 0.999576i \(0.490729\pi\)
\(662\) 1607.54 0.0943788
\(663\) 0 0
\(664\) −319.529 −0.0186749
\(665\) 9552.44 0.557034
\(666\) 0 0
\(667\) −8701.36 −0.505125
\(668\) 7883.79 0.456636
\(669\) 0 0
\(670\) −4035.92 −0.232718
\(671\) −1923.63 −0.110672
\(672\) 0 0
\(673\) 21092.8 1.20813 0.604063 0.796937i \(-0.293548\pi\)
0.604063 + 0.796937i \(0.293548\pi\)
\(674\) −3509.78 −0.200581
\(675\) 0 0
\(676\) 16634.0 0.946406
\(677\) −15100.5 −0.857251 −0.428626 0.903482i \(-0.641002\pi\)
−0.428626 + 0.903482i \(0.641002\pi\)
\(678\) 0 0
\(679\) 1750.98 0.0989639
\(680\) −8256.80 −0.465638
\(681\) 0 0
\(682\) −487.459 −0.0273692
\(683\) −7001.86 −0.392267 −0.196134 0.980577i \(-0.562839\pi\)
−0.196134 + 0.980577i \(0.562839\pi\)
\(684\) 0 0
\(685\) 35309.7 1.96951
\(686\) −2076.57 −0.115574
\(687\) 0 0
\(688\) −12267.1 −0.679766
\(689\) −3889.13 −0.215042
\(690\) 0 0
\(691\) −33946.2 −1.86885 −0.934425 0.356160i \(-0.884086\pi\)
−0.934425 + 0.356160i \(0.884086\pi\)
\(692\) 15952.5 0.876336
\(693\) 0 0
\(694\) 1044.43 0.0571270
\(695\) 31216.8 1.70377
\(696\) 0 0
\(697\) −8936.15 −0.485625
\(698\) −1573.54 −0.0853285
\(699\) 0 0
\(700\) −78.5245 −0.00423993
\(701\) −30431.8 −1.63965 −0.819825 0.572614i \(-0.805929\pi\)
−0.819825 + 0.572614i \(0.805929\pi\)
\(702\) 0 0
\(703\) 14702.4 0.788780
\(704\) 2103.44 0.112608
\(705\) 0 0
\(706\) 2442.79 0.130220
\(707\) −8869.78 −0.471828
\(708\) 0 0
\(709\) 22190.4 1.17543 0.587713 0.809069i \(-0.300028\pi\)
0.587713 + 0.809069i \(0.300028\pi\)
\(710\) −3404.53 −0.179957
\(711\) 0 0
\(712\) 10838.9 0.570513
\(713\) −13915.1 −0.730888
\(714\) 0 0
\(715\) 423.154 0.0221329
\(716\) 3887.23 0.202895
\(717\) 0 0
\(718\) 4717.88 0.245223
\(719\) −10671.9 −0.553538 −0.276769 0.960937i \(-0.589264\pi\)
−0.276769 + 0.960937i \(0.589264\pi\)
\(720\) 0 0
\(721\) 3906.64 0.201791
\(722\) −3574.71 −0.184262
\(723\) 0 0
\(724\) 3202.98 0.164417
\(725\) 193.415 0.00990792
\(726\) 0 0
\(727\) −34608.4 −1.76555 −0.882774 0.469799i \(-0.844327\pi\)
−0.882774 + 0.469799i \(0.844327\pi\)
\(728\) −403.805 −0.0205577
\(729\) 0 0
\(730\) −3513.68 −0.178147
\(731\) −21277.4 −1.07657
\(732\) 0 0
\(733\) −1097.10 −0.0552827 −0.0276414 0.999618i \(-0.508800\pi\)
−0.0276414 + 0.999618i \(0.508800\pi\)
\(734\) 5191.35 0.261057
\(735\) 0 0
\(736\) −5440.94 −0.272494
\(737\) 3838.47 0.191848
\(738\) 0 0
\(739\) −39868.4 −1.98455 −0.992275 0.124056i \(-0.960410\pi\)
−0.992275 + 0.124056i \(0.960410\pi\)
\(740\) 10523.9 0.522794
\(741\) 0 0
\(742\) −1623.44 −0.0803210
\(743\) 2587.55 0.127763 0.0638815 0.997957i \(-0.479652\pi\)
0.0638815 + 0.997957i \(0.479652\pi\)
\(744\) 0 0
\(745\) 8206.94 0.403596
\(746\) −3291.56 −0.161545
\(747\) 0 0
\(748\) 3873.82 0.189360
\(749\) 7923.60 0.386545
\(750\) 0 0
\(751\) −25125.4 −1.22082 −0.610411 0.792085i \(-0.708996\pi\)
−0.610411 + 0.792085i \(0.708996\pi\)
\(752\) 27739.2 1.34514
\(753\) 0 0
\(754\) 490.646 0.0236980
\(755\) 11419.0 0.550436
\(756\) 0 0
\(757\) 36022.2 1.72953 0.864763 0.502181i \(-0.167469\pi\)
0.864763 + 0.502181i \(0.167469\pi\)
\(758\) −4623.85 −0.221564
\(759\) 0 0
\(760\) −9764.69 −0.466056
\(761\) −2304.78 −0.109788 −0.0548938 0.998492i \(-0.517482\pi\)
−0.0548938 + 0.998492i \(0.517482\pi\)
\(762\) 0 0
\(763\) 8088.07 0.383758
\(764\) 7163.34 0.339215
\(765\) 0 0
\(766\) 3072.11 0.144909
\(767\) 6518.74 0.306882
\(768\) 0 0
\(769\) −30373.1 −1.42430 −0.712148 0.702029i \(-0.752278\pi\)
−0.712148 + 0.702029i \(0.752278\pi\)
\(770\) 176.637 0.00826693
\(771\) 0 0
\(772\) −34361.5 −1.60194
\(773\) −27192.3 −1.26525 −0.632626 0.774457i \(-0.718023\pi\)
−0.632626 + 0.774457i \(0.718023\pi\)
\(774\) 0 0
\(775\) 309.305 0.0143362
\(776\) −1789.89 −0.0828005
\(777\) 0 0
\(778\) 1891.61 0.0871689
\(779\) −10568.1 −0.486061
\(780\) 0 0
\(781\) 3237.97 0.148353
\(782\) −3003.64 −0.137353
\(783\) 0 0
\(784\) −17250.0 −0.785805
\(785\) 20463.1 0.930395
\(786\) 0 0
\(787\) 11585.2 0.524737 0.262368 0.964968i \(-0.415496\pi\)
0.262368 + 0.964968i \(0.415496\pi\)
\(788\) 22610.7 1.02217
\(789\) 0 0
\(790\) 491.046 0.0221147
\(791\) −14284.9 −0.642114
\(792\) 0 0
\(793\) 3096.34 0.138656
\(794\) 985.390 0.0440430
\(795\) 0 0
\(796\) 11769.1 0.524052
\(797\) −15752.2 −0.700089 −0.350044 0.936733i \(-0.613834\pi\)
−0.350044 + 0.936733i \(0.613834\pi\)
\(798\) 0 0
\(799\) 48113.9 2.13035
\(800\) 120.942 0.00534492
\(801\) 0 0
\(802\) 1472.15 0.0648173
\(803\) 3341.78 0.146860
\(804\) 0 0
\(805\) 5042.29 0.220767
\(806\) 784.632 0.0342897
\(807\) 0 0
\(808\) 9066.87 0.394766
\(809\) 11596.3 0.503961 0.251981 0.967732i \(-0.418918\pi\)
0.251981 + 0.967732i \(0.418918\pi\)
\(810\) 0 0
\(811\) −34806.7 −1.50706 −0.753531 0.657412i \(-0.771651\pi\)
−0.753531 + 0.657412i \(0.771651\pi\)
\(812\) −7540.30 −0.325878
\(813\) 0 0
\(814\) 271.866 0.0117063
\(815\) −8223.30 −0.353435
\(816\) 0 0
\(817\) −25163.2 −1.07754
\(818\) −3224.60 −0.137831
\(819\) 0 0
\(820\) −7564.61 −0.322156
\(821\) 33943.9 1.44294 0.721468 0.692448i \(-0.243468\pi\)
0.721468 + 0.692448i \(0.243468\pi\)
\(822\) 0 0
\(823\) 23212.7 0.983162 0.491581 0.870832i \(-0.336419\pi\)
0.491581 + 0.870832i \(0.336419\pi\)
\(824\) −3993.45 −0.168833
\(825\) 0 0
\(826\) 2721.11 0.114624
\(827\) 37918.9 1.59440 0.797201 0.603714i \(-0.206313\pi\)
0.797201 + 0.603714i \(0.206313\pi\)
\(828\) 0 0
\(829\) 9417.51 0.394552 0.197276 0.980348i \(-0.436790\pi\)
0.197276 + 0.980348i \(0.436790\pi\)
\(830\) −224.981 −0.00940870
\(831\) 0 0
\(832\) −3385.77 −0.141082
\(833\) −29920.3 −1.24451
\(834\) 0 0
\(835\) 11252.8 0.466369
\(836\) 4581.27 0.189529
\(837\) 0 0
\(838\) −4172.76 −0.172011
\(839\) 13603.7 0.559776 0.279888 0.960033i \(-0.409703\pi\)
0.279888 + 0.960033i \(0.409703\pi\)
\(840\) 0 0
\(841\) −5816.39 −0.238484
\(842\) 2095.24 0.0857561
\(843\) 0 0
\(844\) 5607.96 0.228713
\(845\) 23742.2 0.966577
\(846\) 0 0
\(847\) 9287.39 0.376763
\(848\) −29298.2 −1.18644
\(849\) 0 0
\(850\) 66.7652 0.00269415
\(851\) 7760.72 0.312614
\(852\) 0 0
\(853\) −11862.8 −0.476170 −0.238085 0.971244i \(-0.576520\pi\)
−0.238085 + 0.971244i \(0.576520\pi\)
\(854\) 1292.50 0.0517898
\(855\) 0 0
\(856\) −8099.66 −0.323412
\(857\) −33355.2 −1.32951 −0.664757 0.747060i \(-0.731465\pi\)
−0.664757 + 0.747060i \(0.731465\pi\)
\(858\) 0 0
\(859\) 44045.0 1.74947 0.874735 0.484602i \(-0.161035\pi\)
0.874735 + 0.484602i \(0.161035\pi\)
\(860\) −18011.7 −0.714180
\(861\) 0 0
\(862\) −2625.04 −0.103723
\(863\) 22274.1 0.878586 0.439293 0.898344i \(-0.355229\pi\)
0.439293 + 0.898344i \(0.355229\pi\)
\(864\) 0 0
\(865\) 22769.5 0.895015
\(866\) −621.233 −0.0243769
\(867\) 0 0
\(868\) −12058.3 −0.471528
\(869\) −467.023 −0.0182309
\(870\) 0 0
\(871\) −6178.54 −0.240358
\(872\) −8267.79 −0.321081
\(873\) 0 0
\(874\) −3552.18 −0.137476
\(875\) −9983.66 −0.385725
\(876\) 0 0
\(877\) 44962.4 1.73121 0.865606 0.500725i \(-0.166933\pi\)
0.865606 + 0.500725i \(0.166933\pi\)
\(878\) −3358.15 −0.129080
\(879\) 0 0
\(880\) 3187.76 0.122113
\(881\) −9974.44 −0.381439 −0.190719 0.981645i \(-0.561082\pi\)
−0.190719 + 0.981645i \(0.561082\pi\)
\(882\) 0 0
\(883\) −30814.0 −1.17438 −0.587188 0.809451i \(-0.699765\pi\)
−0.587188 + 0.809451i \(0.699765\pi\)
\(884\) −6235.44 −0.237240
\(885\) 0 0
\(886\) −262.409 −0.00995012
\(887\) 11030.9 0.417567 0.208784 0.977962i \(-0.433050\pi\)
0.208784 + 0.977962i \(0.433050\pi\)
\(888\) 0 0
\(889\) −11718.8 −0.442109
\(890\) 7631.70 0.287433
\(891\) 0 0
\(892\) −23854.8 −0.895423
\(893\) 56900.7 2.13226
\(894\) 0 0
\(895\) 5548.37 0.207219
\(896\) −6256.32 −0.233269
\(897\) 0 0
\(898\) 4205.51 0.156280
\(899\) 29701.0 1.10187
\(900\) 0 0
\(901\) −50818.1 −1.87902
\(902\) −195.418 −0.00721363
\(903\) 0 0
\(904\) 14602.3 0.537241
\(905\) 4571.72 0.167922
\(906\) 0 0
\(907\) 8747.08 0.320223 0.160111 0.987099i \(-0.448815\pi\)
0.160111 + 0.987099i \(0.448815\pi\)
\(908\) −28163.8 −1.02935
\(909\) 0 0
\(910\) −284.320 −0.0103573
\(911\) −43088.9 −1.56707 −0.783534 0.621348i \(-0.786585\pi\)
−0.783534 + 0.621348i \(0.786585\pi\)
\(912\) 0 0
\(913\) 213.975 0.00775633
\(914\) 3124.74 0.113082
\(915\) 0 0
\(916\) 985.802 0.0355587
\(917\) −7658.16 −0.275785
\(918\) 0 0
\(919\) −40894.9 −1.46790 −0.733948 0.679205i \(-0.762325\pi\)
−0.733948 + 0.679205i \(0.762325\pi\)
\(920\) −5154.33 −0.184710
\(921\) 0 0
\(922\) 4478.93 0.159984
\(923\) −5211.95 −0.185865
\(924\) 0 0
\(925\) −172.506 −0.00613186
\(926\) 5174.99 0.183651
\(927\) 0 0
\(928\) 11613.4 0.410807
\(929\) 22735.7 0.802943 0.401471 0.915872i \(-0.368499\pi\)
0.401471 + 0.915872i \(0.368499\pi\)
\(930\) 0 0
\(931\) −35384.5 −1.24563
\(932\) 39449.2 1.38648
\(933\) 0 0
\(934\) 616.558 0.0216000
\(935\) 5529.22 0.193396
\(936\) 0 0
\(937\) 42183.1 1.47072 0.735359 0.677678i \(-0.237014\pi\)
0.735359 + 0.677678i \(0.237014\pi\)
\(938\) −2579.10 −0.0897767
\(939\) 0 0
\(940\) 40729.3 1.41324
\(941\) 16983.1 0.588344 0.294172 0.955752i \(-0.404956\pi\)
0.294172 + 0.955752i \(0.404956\pi\)
\(942\) 0 0
\(943\) −5578.41 −0.192638
\(944\) 49107.9 1.69314
\(945\) 0 0
\(946\) −465.299 −0.0159917
\(947\) −5643.02 −0.193636 −0.0968181 0.995302i \(-0.530867\pi\)
−0.0968181 + 0.995302i \(0.530867\pi\)
\(948\) 0 0
\(949\) −5379.05 −0.183995
\(950\) 78.9581 0.00269657
\(951\) 0 0
\(952\) −5276.40 −0.179631
\(953\) −18215.5 −0.619157 −0.309579 0.950874i \(-0.600188\pi\)
−0.309579 + 0.950874i \(0.600188\pi\)
\(954\) 0 0
\(955\) 10224.4 0.346445
\(956\) 35436.2 1.19884
\(957\) 0 0
\(958\) −6273.78 −0.211583
\(959\) 22564.2 0.759787
\(960\) 0 0
\(961\) 17706.3 0.594349
\(962\) −437.606 −0.0146663
\(963\) 0 0
\(964\) 9624.96 0.321576
\(965\) −49045.3 −1.63609
\(966\) 0 0
\(967\) −14864.3 −0.494317 −0.247159 0.968975i \(-0.579497\pi\)
−0.247159 + 0.968975i \(0.579497\pi\)
\(968\) −9493.76 −0.315228
\(969\) 0 0
\(970\) −1260.26 −0.0417161
\(971\) 11703.2 0.386790 0.193395 0.981121i \(-0.438050\pi\)
0.193395 + 0.981121i \(0.438050\pi\)
\(972\) 0 0
\(973\) 19948.7 0.657273
\(974\) 8090.12 0.266144
\(975\) 0 0
\(976\) 23325.8 0.765001
\(977\) −18306.8 −0.599473 −0.299737 0.954022i \(-0.596899\pi\)
−0.299737 + 0.954022i \(0.596899\pi\)
\(978\) 0 0
\(979\) −7258.34 −0.236954
\(980\) −25328.1 −0.825587
\(981\) 0 0
\(982\) −8587.77 −0.279070
\(983\) −31834.8 −1.03293 −0.516466 0.856308i \(-0.672753\pi\)
−0.516466 + 0.856308i \(0.672753\pi\)
\(984\) 0 0
\(985\) 32273.0 1.04396
\(986\) 6411.11 0.207070
\(987\) 0 0
\(988\) −7374.18 −0.237453
\(989\) −13282.5 −0.427056
\(990\) 0 0
\(991\) −39271.3 −1.25882 −0.629412 0.777072i \(-0.716704\pi\)
−0.629412 + 0.777072i \(0.716704\pi\)
\(992\) 18572.0 0.594416
\(993\) 0 0
\(994\) −2175.62 −0.0694230
\(995\) 16798.4 0.535221
\(996\) 0 0
\(997\) 30945.2 0.982994 0.491497 0.870879i \(-0.336450\pi\)
0.491497 + 0.870879i \(0.336450\pi\)
\(998\) 835.177 0.0264901
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 729.4.a.b.1.5 yes 12
3.2 odd 2 729.4.a.a.1.8 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
729.4.a.a.1.8 12 3.2 odd 2
729.4.a.b.1.5 yes 12 1.1 even 1 trivial